Courses
- IA301: Logics and Symbolic AI : knowledge representation and reasoning (Isabelle Bloch and Natalia Diaz Rodriguez, 3 ECTS)
This course aims at providing the bases of symbolic AI, along with a few selected advanced topics. It includes courses on formal logics, ontologies, symbolic learning, typical AI topics such as revision, merging, etc., with illustrations on preference modeling and image understanding.
- IA304: [En option] Probabilistic Models and Machine Learning (Wojciech Piecynszki, 2 ECTS)
L'objectif du cours est d'exposer les principaux modèles markoviens avec applications en traitements bayésiens (segmentation, filtrage, lissage, prédiction, ...) des données. On traitera en particulier certains développements récents des modèles de Markov cachés et traitements généraux, de type de traitement particulaires, correspondants. L'accent sera mis sur les méthodes classiques d'estimation des paramètres aboutissant à des traitements non supervisés. On présentera différents exemples d'applications dans les domaines de traitement d'images, de poursuite, finances, ou encore codage et communications numériques.
- IA306: Deep learning I (Geoffroy Peeters, 2,5 ECTS)
- IA307: GPU programming for learning (Goran Frehse and Élisabeth Brunet, 2 ECTS)
Web page: https://sites.google.com/site/frehseg/teaching/ia307
Calendar: https://www-inf.telecom-sudparis.eu/COURS/masteripparis/vapia/?page=../common/courses&genics=IA307The aim of this course is to give a vision of algorithms and their implementations in modern machine learning libraries on neural networks. In particular, the use of specific hardware, such as graphics cards, to improve performance is at the heart of these libraries. It is important to understand how the calculations are shared between the hardware and the CPU.
- IA311: Projet de l'option IA (Antoine Amarilli, 12 ECTS)
- IA312: Natural Language Processing (Chloe Clavel and Giovanna Varni, 4 ECTS)
Le traitement automatique des langues est un domaine en pleine expansion. Par exemple, beaucoup d'efforts ont été récemment consacrés au développement de méthodes capables d'analyser les données d'opinion disponibles sur le Web social. Le premier objectif de ce cours est d'aborder les différentes méthodes de traitement de la langue et d'apprentissage automatique sous-jacentes à l'analyse des textes. Au cours de ce cours, les étudiants acquerront des compétences théoriques et techniques sur les méthodes avancées d'apprentissage automatique et le traitement du langage naturel. Les techniques et concepts qui seront étudiés comprennent:
- processus de langage naturel: tokenisation, marquage de partie de discours, représentation de document et word embeddings ressources linguistiques : les lexiques, wordnet
- classement de texte et catégorisation de texte: méthodes avancées d'apprentissage automatique telles que les réseaux de neurones, les modèles markov cachés, etc.
- IA314: Intelligence artificielle et sciences des données : enjeux éthiques, sociaux et économiques (Valérie Beaudouin, 2 ECTS)
Intelligence artificielle et sciences des données font l’objet d’une effervescence intense dans l’espace public. En effet, le perfectionnement des techniques d’apprentissage qui s’appuient sur des bases de données toujours plus volumineuses ouvre de nouvelles opportunités. Comme pour toute innovation technologique s’opposent des discours enthousiastes et critiques : tantôt ces technologies constituent un axe majeur d’innovation et de progrès, tantôt une menace pour l’humanité. Pour les utilisateurs, la situation est paradoxale : ils oscillent entre une perception positive des services rendus et une inquiétude face à l’exploitation de leurs traces. L’objectif de ce cours est de prendre au sérieux les représentations de ces technologies telles qu’elles s’expriment dans les discours mais aussi dans des formes artistiques et de les confronter à la réalité de ce que peuvent produire les algorithmes associés à des bases de données de plus en plus importantes. Comment les sciences sociales et les humanités peuvent nous aider à y voir plus clair dans ces débats?
- IA316: AI and E-Commerce (Pascal Bianchi)
Ce cours présentera les concepts et les outils essentiels des systèmes de recommandation. En quelques mots, les systèmes de recommendations consistent à mettre en correspondance des utilisateurs et des objets - tels que des films, des images, des produits. Plus généralement, il peut s’agir les utilisateurs et les objets peuvent être n’importe quels noeuds d'un graphe bi-partite donné. Cette mise en correspondance s'appuie d'une part sur les données des précédentes intéractions entre les utilisateurs et les objets - c’est-à-dire les arêtes du graphe dans la version abstraite - et d'autre part sur les données portant sur les utilisateurs et les objets eux-mêmes, c’est-à-dire sur les noeuds eux-mêmes.
- IA317: Large scale machine learning (Thomas Bonald, 2 ECTS)
On considère la problématique du passage à l'échelle en machine learning. Il s'agit de comprendre et d'apprendre à implémenter les principales approches permettant de résoudre numériquement des problème d'apprentissage statistique supervisé. Plusieurs angles seront abordé : réduction de la dimension et sélection des features, utilisation d'algorithmes d'optimisation adaptés, et utilisation d'outils informatiques distribués permettant de porter les calculs sur un cluster.
- IA318: Apprentissage avancé (dont apprentissage par renforcement) (Thomas Bonald and Mauro Sozio, 3 ECTS)
Ce cours présente des méthodes avancées en apprentissage automatique. Il aborde notamment l’apprentissage par renforcement, l’apprentissage de données en grande dimension et les techniques d’optimisation rapides et distribuées.
- IA324: Image mining and content-base retrieval (Isabelle Bloch, 2,5 ECTS)
- IA325: From complexity to Intelligence (Jean-Louis Dessalles, 2 ECTS)
The notion of complexity has been invented 50 years ago to solve mathematical issues related to machine learning, randomness and proof theory. It led to the development of Algorithmic Information Theory (AIT). Complexity and AIT have more recently been shown essential to address aspects of human intelligence, such as perception, relevance, decision making and emotional intensity. These aspects of cognition were sometimes considered mysterious and unpredictable. They can now be regarded as resulting in part from computations based on complexity and its converse, simplicity. For instance, abnormally simple situations such as a coincidence (two colleagues having dressed in purple independently) or a remarkable lottery draw (e.g. 1-2-3-4-5-6) are systematically perceived as unexpected and interesting. When crediting or blaming a person for an action (e.g. giving the wrong medicine to an allergic child), one considers the simplicity of the causal link leading to the consequences. One also considers the person’s ability to measure that simplicity. A dramatic event is perceived as more emotional if the victims can be defined simply (celebrities, friends’ friends), if the place is simple (famous location or close to one’s home) or if the circumstances are causally complex (e.g. the victim was unlikely to be there). The design of intelligent systems must take advantage of this sensitivity of the human mind to complexity and simplicity.
- IA321: Apprentissage pour la robotique (David Filliat, 2 ECTS)
Cet enseignement donne une vision des méthodes de l’apprentissage dans le contexte de la robotique et l’interaction homme-robot (HRI). Nous couvrons la perception du robot dans ce cadre, le raisonnement, l'intelligence artificielle et les aspects d'apprentissage automatique. Les étudiants apprennent également comment concevoir et analyser des expériences pour évaluer les systèmes HRI. Nous appliquons cet apprentissage aussi à travers la discussion d'articles séminaux et récents sur l’interaction sociale, le travail d'équipe et la collaboration, l'apprentissage automatique avec les humains dans la boucle, le dialogue verbal et non verbal incarné, et plus encore.
- IA322: Navigation pour les systèmes autonomes (2 ECTS)
Etre capable de se déplacer dans un environnement quelconque est à la fois indispensable et extrêmement complexe pour un robot mobile autonome ou pour un véhicule intelligent. Dans ce cours, nous présenterons un panorama des capteurs, des représentations et des différentes méthodes utilisées pour résoudre ce problème. Ce cours présentera les méthodes classiques de navigation, des méthodes réactives les plus simples aux méthodes plus complexes basées sur des cartes de l’environnement. Un certain nombre d'approche pour la commande des robots sont aussi présentées, ainsi qu'un panorama des applications de la robotique mobile. Une séance sera de plus consacrée à l’approche evolutionniste de la robotique qui utilise des méthodes inspirées de la biologie pour concevoir des robots capables de s’adapter aux changements de leurs environnements.
- IA323: Perception pour les systèmes autonomes (Antoine MANZANERA, 2 ECTS)
Web page: https://perso.ensta-paris.fr/~manzaner/Cours/ROB313/
La vision est l'un des capteurs essentiel de la robotique. Ce cours a pour objectif de présenter les principales approches de la vision utilisées en robotique.
- IA308: Meta Heuristiques (Mauro Sozio, 2 ECTS)
Les métaheuristiques sont des algorithmes de recherche stochastiques faisant partie des principales classes de solveur en optimisation non-linéaire. Employés sur des problèmes « difficiles » pour lesquels il est impossible de garantir des solutions optimales, ces méthodes permettent néanmoins de trouver des solutions approchées et sont classiquement employées sur des applications d'aide à la décision. Ce cours explore dans un premier temps les classes de problèmes sur lesquels il peut être pertinent d'employer des métaheuristiques en insistant sur l'importance de la modélisation. Conçues à l'origine sur la base de métaphores (algorithmes évolutionnaires, recuit simulé, essaims, colonies de fourmis, etc.), leur conception s'est mathématisée et met en jeu des outils mathématiques allant de la géométrie aux statistiques. Nous verrons comment aller au-delà des métaphores pour comprendre les aspects communs étant au cœur de ces méthodes, avec un focus sur quelques aspects parmi les plus utiles en pratique. Enfin, au-delà de la conception algorithmique, nous verrons pourquoi il est nécessaire d'employer une méthode empirique de validation issue des sciences expérimentales et comment mener une étude applicative rigoureuse en employant les dernières avancées en matière d'ingénierie algorithmique.