Knowledge management

OWL Web Ontdlogy Language

RDF/RDFS

e RDF: triples for making assertions about resources
e RDFS extends RDF with “schema vocabulary”,
e.g.:
- Class, Property
- type, subClassOf, subPropertyOf
- range, domain

- representing simple assertions, taxonomy + typing

Limitations of RDFS

e RDFS too weak to describe resources in sufficient
detail:

— No localized range and domain constraints

e Can’t say that the range of hasChild is person when
applied to persons and elephant when applied to
elephants

-~] ~=

- No existence/cardinality constraints
e Can’t say that all instances of person have a mother

that is also a person, or that persons have exactly 2
parents

Limitations of RDFS

— No transitive, inverse or symmetrical properties

e Can’t say that isPartOf is a transitive property, that
hasPart is the inverse of isPartOf or that touches is
symmetrical

- No in/equality
e Can’t say that a class/instance is the same as some

other class/instance, can’t say that the
classes/instances are definitely disjoint/different.

— No boolean algebra

e Can’t say that that one class is the union, intersection,
etc. of other classes

Ontology Web Language -- OWL

OWL Lite ¢ OWL DL ¢ OWL Full
e Three species of OWL

— OWL Lite is the simplest language (+easy to implement/-less
expressive)

— OWL DL (+more expressive)
— OWL Full is union of OWL syntax and RDF
e OWL allows greater expressiveness than RDF-S

THE STRUCTURE OF OWL
ONTOLOGIES

OWL: Ontology Namespaces

e Standard namespaces in an OWL ontology:

<rdf:RDF

xmlins:owl ="http://www.w3.0rg/2002/07/owl#"
xmlins:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.0rg/2001/XMLSchema#" >

OWL: Ontology Namespaces

e Example:

<rdf:RDF

xmlns:sm ="http://www.example.org/superMarket#"
xmlIns:owl ="http://www.w3.0rg/2002/07/owl#"

xmlns:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.0rg/2001/XMLSchema#" >

e Can be also written

<!DOCTYPE rdf:RDF [

<!ENTITY sm "http://www.example.org/superMarket#">]
p

<rdf:RDF
xmlns:sm = "&sm;"
LD

OWL: Ontology Headers

e Collection of assertions about the ontology grouped
under an owl:Ontology tag

<owl:Ontology rdf:about="">
<rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion
rdf:resource="http://www.example.org/old/superMarket"/>
<owl:imports rdf:resource="http://www.example.org/person"/>
<rdfs:label>Super Market Ontology</rdfs:label>

</owl:0Ontology>

e priorVersion provides a link to the previous version
- Ontology versioning
e imports provides an include-style mechanism

BASIC ELEMENTS OF OWL
ONTOLOGIES

10

Classes: Declaration

e Every class in the OWL world is a member of the
class owl:Thing

e Example of classes in the super Market Ontology

<owl:Class rdf:ID="Shelf"/>
<owl:Class rdf:ID="Product"/>

<owl:Class rdf:ID="Customer"/>

e rdf:ID="Shelf" introduces the name of the resource

— Inside the ontology: the Shelf class can be referred to using #Shelf
(e.g. rdf:resource="#Shelf)".

— Outside the ontology: the Shelf class can be referred to using its
complete URI (e.g. http://www.example.org/superMarket#Shelf)".

11

Classes: Definition

e A class definition has two parts: a name introduction
or reference and a list of restrictions.

<owl:Class rdf:ID="Customer">
<rdfs:subClassOf rdf:resource="cl:Person"/>
<rdfs:label xml:lang="en">customer</rdfs:label>
<rdfs:label xml:lang="fr">client</rdfs:label>

</owl:Class>

rdfs:SubClassOf defines a restriction

12

Individuals

e Individuals are the members of a class

<Product rdf:ID= "Apple" />

Equivalent to

<owl:Thing rdf:ID="Apple" />

<owl:Thing rdf:about="#Apple">

<rdf:type rdf:resource="#Product"/>
</owl:Thing>

13

Properties

e Two types of properties:
— Object property: resource property resource

owl:ObjectProperty
— Datatype property: resource property literal

owl:DatatypeProperty

e A property has the same “properties” used in RDF-S:
- rdfs:subPropertyOf, rdfs:domain and rdfs:range

e Example (Wine Ontology)

<owl:ObjectProperty rdf:ID="madeFromGrape">
<rdfs:domain rdf:resource="#Wine"/>
<rdfs:range rdf:resource="#WineGrape"/>

</owl:ObjectProperty>

Properties Hierarchy

e Example (Wine Ontology)

<owl:Class rdf:ID="WineDescriptor" />

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor" />

</owl:Class>

<owl:ObjectProperty rdf:ID="hasWineDescriptor">
<rdfs:domain rdf:resource="#Wine" />
<rdfs:range rdf:resource="#WineDescriptor" />
</owl:0ObjectProperty >
<owl:ObjectProperty rdf:ID="hasColor">
<rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
<rdfs:range rdf:resource="#WineColor" />

</owl:0ObjectProperty >

Properties Characteristics (1/5)

e Transitive property
— P(x,y) and P(y,z) = P(X,2)

- Wine Ontology Example:

<owl:ObjectProperty rdf:ID="locatedIn">
<rdf:type rdf:resource="&owl; TransitiveProperty" />
<rdfs:domain rdf:resource="&owl;Thing" />
<rdfs:range rdf:resource="#Region" />
</owl:ObjectProperty>

<Region rdf:ID="SantaCruzMountainsRegion" >

<locatedIn rdf:resource="#CaliforniaRegion" />
</Region>
<Region rdf:ID="CaliforniaRegion">

<locatedIn rdf:resource="#USRegion" />
</Region>

Properties Characteristics (2/5)

e Symmetric property
— P(x,y) 1f and only 1t P(y,X)

- Wine Ontology Example:

<owl:ObjectProperty rdf:ID="adjacentRegion">
<rdf:type rdf:resource="&owl;SymmetricProperty" />
<rdfs:domain rdf:resource="#Region" />
<rdfs:range rdf:resource="#Region" />
</owl:ObjectProperty>

<Region rdf:ID="MendocinoRegion">

<locatedIn rdf:resource="#CaliforniaRegion" />
<adjacentRegion rdf:resource="#SonomaRegion" />
</Region>

Properties Characteristics (3/5)

e Functional property
— P(x,y) and P(x,z) impliesy = z

— A functional property states that the value of range
for a certain object in the domain is always the same.

- Wine Ontology Example:

<owl:Class rdf:ID="VintageYear" />

<owl:ObjectProperty rdf:ID="hasVintageYear" >
<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Vintage" />
<rdfs:range rdf:resource="#VintageYear" />
</owl:0ObjectProperty >

18

Properties Characteristics (4/5)

e InverseOf property
— P1(x,y) iff P2(y,x)

- Wine Ontology Example:

<owl:ObjectProperty rdf:ID="hasMaker">
<rdf:type rdf:resource="&owl;FunctionalProperty" />
</owl:0ObjectProperty >

<owl:ObjectProperty rdf:ID="producesWine">
<owl:inverseOf rdf:resource="#hasMaker" />
</owl:0ObjectProperty >

19

Properties Characteristics (5/5)

e Inverse Functional property
— P(y,x) and P(z,x) implies y = z

— A functional property states that the value of range
for a certain object in the domain is always the same.

- Wine Ontology Example:

<owl:ObjectProperty rdf:ID="hasMaker" />

<owl:ObjectProperty rdf:ID="producesWine">
<rdf:type rdf:resource="&owl;InverseFunctionalProperty" />

<owl:inverseOf rdf:resource="#hasMaker" />
</owl:0ObjectProperty >

20

Exercise

e Represent the following Object Properties:

— ancestor such as If a person A is an ancestor of person
B and B of C then A is also an ancestor of C.

— akin such as if a Person A is akin to a Person B then B
is also akin to A.

- hasFather such as a child has always the same
(biological) Father

— hasChild such as If a Person A hasChild a Person B then
B hasFather A

<rdf:type rdf:resource="&owl; TransitiveProperty" />

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<owl:inverseOf rdf:resource=« propertyName" />

<rdf:type rdf:resource="&owl; SymmetricProperty" />
21

Property Restrictions

e Defining a Class by restricting its possible instances
via their property values

e OWL distinguishes between the following two:
— Value constraint
e (Mother = Woman n 3hasChild.Person)
— Cardinality constraint
e (MotherWithManyChildren = Mother n =3hasChild)

22

Property Restrictions: allValuesFrom

e Wine Ontology example:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:allValuesFrom rdf:resource="#Winery" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

- The maker of a Wine must be a Winery.

— The restriction is on the hasMaker property of
this Wine class only.

23

Property Restrictions: someValuesFrom

e Wine Ontology example:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:someValuesFrom rdf:resource="#Winery" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

— At least one of the makers of a Wine must be a Winery.

24

allValuesFrom vs. someValuesFrom

e The difference between the two formulations is the
difference between a universal and existential
quantification:

- allValuesFrom: Universal quantification

e.g. For all wines, if they have makers, all the makers are wineries
Does not require a wine to have a maker

- someValuesFrom: Existential quantification

e.g. For all wines, they have at least one maker that is a winery

A wine must have a maker

25

Property Restrictions: hasValue

e Allows to define classes based on the existence
of particular property values

e Wine Ontology example:

<owl:Class rdf:ID="Burgundy">

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasSugar" />

<owl:hasValue rdf:resource="#Dry" />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

26

Property Restrictions: cardinality

e Definition of cardinality:

- the number of occurrences, either maximum
(maxCardinality) or minimum (minCardinality) or
exact (cardinality) based upon the context (class)
in which it is used

e Wine Ontology example:

<owl:Class rdf:ID="Vintage">
<rdfs:subClassOf>
<owl:onProperty rdf:resource="#hasVintageYear"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">
1

</owl:cardinality >
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Property Restrictions: Summary

e define a class using LOCAL restrictions on a specific
Property

rdfs:Class

!

owl:Class

!

e Property restrictions: owl:Restriction
— allValuesFrom: rdfs:Class (lite/DL owl:Class)
- hasValue: specific Individual
- someValuesFrom: rdfs:Class (lite/DL owl:Class)
— cardinality: xsd:nonNegativelnteger (in lite {0,1})
- minCardinality: xsd:nonNegativelnteger (in lite {0,1})
— maxCardinality: xsd:nonNegativelnteger (in lite {0,1})

28

Exercises on Property Restrictions

e A Mother is a Woman that has a child (some Person)
Mother & Woman n 3 hasChild.Person

e The set of parents that only have daughters (female

children)
ParentsWithOnlyDaughters C Person n VhasChild.Woman

e The set of all child of the woman MARRY
MarysChildren © Person 1N hasParent.{MARRY}

e A half Orphan (i.e. a person that has only one Parent)
HalfOrphan = Person N =lhasParent.Person

29

COMPLEX CLASSES IN OWL
ONTOLOGIES

30

Complex Classes

e (OWL DL) provide constructors with which we can
form classes based on basic set operations:

— Intersection
— Union
- Complement
e Enumerated classes

e Disjoint classes

31

Complex Classes: Intersection of Classes

e Instances/Individuals of the Intersection of two
Classes are simultaneously instances of both class

e Wine Ontology example:

<owl:Class rdf:ID="WhiteWine">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor" />

<owl:hasValue rdf:resource="#White" />
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

=>» Defines white wine

32

Complex Classes: Union of Classes

e Instances/Individuals of the Union of two Classes are
either the instance of one or both classes

e Wine Ontology example:

<owl:Class rdf:ID="Fruit">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#SweetFruit" />

<owl:Class rdf:about="#NonSweetFruit" />
</owl:unionOf>
</owl:Class>

33

Complex Classes: Complement

<owl:Class rdf:ID="ConsumableThing" />

<owl:Class rdf:ID="NonConsumableThing">
<owl:complementOf rdf:resource="#ConsumableThing" />
</owl:Class>

e Question: What is the meaning of

<owl:Class rdf:ID="NonFrenchWine">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine"/>
<owl:Class>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />
<owl:hasValue rdf:resource="#FrenchRegion" />
</owl:Restriction>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>

Complex Classes: Enumerated Classes

e OWL provides the means to specify a class via a
direct enumeration of its members

— the owl -oneOFf construct.

e Completely specifies the class extension, and no other
individuals can be declared to belong to the class.

e Wine Ontology example:

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor"/>
<owl:oneOf rdf:parseType="Collection">
<WineColor rdf:about="#White" />
<WineColor rdf:about="#Rose" />

<WineColor rdf:about="#Red" />
</owl:oneOf>
</owl:Class>

Complex Classes: Disjoint Classes

e The disjointness of a set of classes can be expressed
using the owl:disjointWith constructor

e An individual that is a member of one class cannot
simultaneously be an instance of another one.

e Example:

<owl:Class rdf:ID="Pasta">
<rdfs:subClassOf rdf:resource="#EdibleThing"/>
<owl:disjointWith rdf:resource="#Fowl"/>
<owl:disjointWith rdf:resource="#Seafood"/>
<owl:disjointWith rdf:resource="#Dessert"/>

<owl:disjointWith rdf:resource="#Fruit"/>
</owl:Class>

Exercises complex classes

e Person = Man 4 Woman
e Man = Person n Male

37

ONTOLOGY MAPPING AND
REUSE

38

Ontology Reuse

e To create a knowledge base or a semantic Web
application we can create a new ontology
- ® Designing a large ontology is difficult

- © Better reuse, compose, extend existing ontologies to

define a new one.

e Blending existing ontologies is difficult, bt

/Al B E R A 4 u VII\-i v!

t OWL

provides constructs facilitating ontology reuse

39

Ontology Reuse: equivalence (1/3)

e When several ontologies are used as part of another
ontology, it's useful to be able to indicate that a
particular class (or property) in one ontology is
equivalent to a class (or property) in a second
ontology.

—owl :equivalentClass
—owl :equivalentProperty

° Example: SuperMarket ontology linking to Wine Ontology

<rdf:RDF

xmlns:vin ="http://www.w3.0rg/REC-owl-guide-20040210/wine#

xmlns:owl ="http://www.w3.0rg/2002/07/owl#"
>

<owl:Class rdf:ID="Wine">
<owl:equivalentClass rdf:resource="vin:Wine"/>
</owl:Class>

Ontology Reuse: equivalence (2/3)

e Equivalence can be used over a restriction
e Exemple:

<owl:Class rdf:ID="TexasThings">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />

<owl:someValuesFrom rdf:resource="#TexasRegion" />
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

— TexasThings contains exactly the objects located in the
TexasRegion

41

Ontology Reuse: equivalence (3/3)

e What is the difference between using:

<owl:Class rdf:ID="TexasThings">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />
<owl:someValuesFrom rdf:resource="#TexasRegion" />
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:ID="TexasThings">
<owl:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />
<owl:someValuesFrom rdf:resource="#TexasRegion" />
</owl:Restriction>
</owl:subClassOf>
</owl:Class>

Ontology Reuse: equivalence (3/3)

e What is the difference between using:
— owl :subClassOf

e things that are located in Texas are not
necessarily TexasThings

= Expresses Necessary condition
—owl:equivalentClass

e if something is located in Texas, then it must be in the class
of TexasThings

-
\I“lﬁl\ﬁﬁl\ﬁ raVYalaYelalse Y Wi -~ f [Ve oY »

7 LAPICOSOCO I\lCLCbbCII Y CIIIU DLII 1CI 1L CUIIU

- -
] [] N

iction

43

Ontology Reuse: Property equivalence

SAME AS Classes equivalence
Using owl -equivalentProperty

44

Ontology Reuse: Identity between Individuals

e To explicitly state that two individuals are identical
— owl:samelndividualAs / owl:sameAS

e Wine Ontology example:
<Wine rdf:ID="MikesFavoriteWine">

<owl:sameAs rdf:resource="#StGenevieveTexasWhite" />
</Wine>

e Another example:

<owl:ObjectProperty rdf:ID="hasMaker">
<rdf:type rdf:resource="&owl;FunctionalProperty"” />

</owl:0ObjectProperty >

<owl:Thing rdf:about="#BancroftChardonnay" >
<hasMaker rdf:resource="#Bancroft" />
<hasMaker rdf:resource="#Beringer" />
</owl:Thing>

#Bancroft is the same as #Beringer?

45

Ontology Reuse: Different Individuals (1/2)

e owl :differentFrom provides the opposite effect from
owl - sameAS

e Wine Ontology example:
<WineSugar rdf:ID="Dry" />

<WineSugar rdf:ID="Sweet">

<owl:differentFrom rdf:resource="#Dry"/>
</WineSugar>

e In some cases it's important to ensure such
distinctions. Example:

- We have not asserted that Dry and Sweet are different
— WineSugar is functional
— If we describe a wine as both Dry and Sweet

=> this would imply that Dry and Sweet are identical
46

Ontology Reuse: Different Individuals (2/2)

e To define a set of mutually distinct individuals :

<owl:AllIDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<vin:WineColor rdf:about="#Red" />
<vin:WineColor rdf:about="#White" />

<vin:WineColor rdf:about="#Rose" />
</owl:distinctMembers>
</owl:AllDifferent>

= Red, White, and Rose are pairwise distinct

e Note: owl:distinctMembers can only be used in
combination with owl:AllDifferent

47

OWL on 2 slides
Symmetric: if P(x, y) then P(y, x)
Transitive: if P(x,y) and P(y,z) then P(x, z)
Functional: if P(x,y) and P(x,z) then y=z
InverseOf: if P1(x,y) then P2(y,x)
InverseFunctional: if P(y,x) and P(z,x) then y=z
allValuesFrom: P(x,y) and y=allValuesFrom(C)
someValuesFrom: P(X,y) and y=someValuesFrom(C)
hasValue: P(x,y) and y=hasValue(v)
cardinality: cardinality(P) = N
minCardinality: minCardinality(P) = N
maxCardinality: maxCardinality(P) = N
equivalentProperty: P1 = P2

48

OWL on 2 slides

7~ 7 I~ 4

iIntersectionOf: C = intersectionOf(C1,
unionOf: C = unionOf(C1, C2, ...)
complementOf: C = complementOf(Cl)
oneOf: C = one of(vl, v2, ...)
equivalentClass: C1 = C2
disjointWith: C1 = C2
samelndividualAs: I1 =12
differentFrom: I1 1= 12

AIIleferent I11'=12,11'=13,12'=13,

C2,

»

Exercise

Create an OWL ontology that models the following concepts:

1.
2.

There should be three classes: Customer, Shop and Product.

Customer and Shop should be equipped with properties name
(xsd:string) and email (xsd:string), which are equivalent to
foaf:name and foaf:mbox.

Each Product should have an order number (xsd:int). An order
number can be unambiguously assigned to a Product.

A Shop should have a property sells (range: Product) and a
Product should have a property soldBy (range: Shop) respectively.

Instances of class Shop that sell more than 100 products should
belong to a new class BigShop.

A Product must not be a Customer.

Instances that are both, Shop and Customer should belong to a
class PurchaseAndSale.

By P.Siehndel, IVS Semantic Web Group 50

References

e Slides based on:
- OWL guide: http://www.w3.org/TR/owl-guide/
e OWL page: http://www.w3.0rg/2004/0WL/
e OWL reference: http://www.w3.org/TR/owl-ref/

51

