
Knowledge management
.

OWL Web Ontology Language

1

RDF/RDFS

• RDF: triples for making assertions about resources
• RDFS extends RDF with “schema vocabulary”,RDFS extends RDF with schema vocabulary ,

e.g.:
– Class, PropertyClass, Property
– type, subClassOf, subPropertyOf
– range, domaing ,

Æ representing simple assertions, taxonomy + typingÆ representing simple assertions, taxonomy + typing

2

Limitations of RDFS

• RDFS too weak to describe resources in sufficient
detail:

– No localized range and domain constraintsg
• Can’t say that the range of hasChild is person when

applied to persons and elephant when applied to
l h telephants

No existence/cardinality constraints– No existence/cardinality constraints
• Can’t say that all instances of person have a mother

that is also a person, or that persons have exactly 2 that is also a person, or that persons have exactly 2
parents

3

Limitations of RDFS

– No transitive, inverse or symmetrical properties
• Can’t say that isPartOf is a transitive property, that

hasPart is the inverse of isPartOf or that touches is
symmetrical

– No in/equality
• Can’t say that a class/instance is the same as some • Can t say that a class/instance is the same as some

other class/instance, can’t say that the
classes/instances are definitely disjoint/different.

– No boolean algebra
• Can’t say that that one class is the union, intersection,

etc. of other classes

4

Ontology Web Language -- OWL

DAML OIL RDF

DAML+OIL

Th i f OWL

OWL

• Three species of OWL
– OWL Lite is the simplest language (+easy to implement/-less

expressive)p)
– OWL DL (+more expressive)
– OWL Full is union of OWL syntax and RDF

5

• OWL allows greater expressiveness than RDF-S

THE STRUCTURE OF OWL
ONTOLOGIES

6

OWL: Ontology Namespaces

• Standard namespaces in an OWL ontology:

<rdf:RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#" >p g

7

OWL: Ontology Namespaces

• Example:

<rdf:RDF
xmlns:sm ="http://www.example.org/superMarket#"
xmlns:owl ="http://www.w3.org/2002/07/owl#" xmlns:owl http://www.w3.org/2002/07/owl#
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#" >

• Can be also written

p // g/ /

<!DOCTYPE rdf:RDF [
<!ENTITY sm "http://www.example.org/superMarket#">]

>

<rdf:RDF
xmlns:sm = "&sm;"

8

…>

OWL: Ontology Headers

• Collection of assertions about the ontology grouped
under an owl:Ontology taggy g

<owl:Ontology rdf:about="">
<rdfs:comment>An example OWL ontology</rdfs:comment> <rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion

rdf:resource="http://www.example.org/old/superMarket"/>
<owl:imports rdf:resource="http://www.example.org/person"/> p p // p g/p /
<rdfs:label>Super Market Ontology</rdfs:label>
…

</owl:Ontology>

• priorVersion provides a link to the previous version
Æ Ontology versioning

gy

Æ Ontology versioning
• imports provides an include-style mechanism

9

BASIC ELEMENTS OF OWL
ONTOLOGIES

10

Classes: Declaration

• Every class in the OWL world is a member of the
class owl:Thingg

• Example of classes in the super Market Ontology

<owl:Class rdf:ID=“Shelf"/> <owl:Class rdf:ID= Shelf />
<owl:Class rdf:ID=“Product"/>
<owl:Class rdf:ID=“Customer"/>

• rdf:ID=“Shelf“ introduces the name of the resource
– Inside the ontology: the Shelf class can be referred to using #Shelf

(e.g. rdf:resource="#Shelf)".
– Outside the ontology: the Shelf class can be referred to using its

complete URI (e.g. http://www.example.org/superMarket#Shelf)".

11

Classes: Definition

• A class definition has two parts: a name introduction
or reference and a list of restrictions.

<owl:Class rdf:ID="Customer">
<rdfs:subClassOf rdf:resource="cl:Person"/>
<rdfs:label xml:lang="en">customer</rdfs:label>
<rdfs:label xml:lang="fr">client</rdfs:label>
...

rdfs:SubClassOf defines a restriction

</owl:Class>

rdfs:SubClassOf defines a restriction

12

Individuals

• Individuals are the members of a class

Equivalent to

<Product rdf:ID= "Apple" />

Equivalent to

<owl:Thing rdf:ID="Apple" />

<owl:Thing rdf:about="#Apple">
<rdf:type rdf:resource="#Product"/>

</owl:Thing></owl:Thing>

13

Properties

• Two types of properties:
– Object property: resource property resourcej p p y p p y

owl:ObjectProperty
– Datatype property: resource property literalyp p p y p p y

owl:DatatypeProperty

• A property has the same “properties” used in RDF-S:
– rdfs:subPropertyOf, rdfs:domain and rdfs:rangerdfs:subPropertyOf, rdfs:domain and rdfs:range

• Example (Wine Ontology)

l Obj tP t df ID " d F G " <owl:ObjectProperty rdf:ID="madeFromGrape">
<rdfs:domain rdf:resource="#Wine"/>
<rdfs:range rdf:resource="#WineGrape"/>

</owl:ObjectProperty>

14

</owl:ObjectProperty>

Properties Hierarchy

• Example (Wine Ontology)

<owl:Class rdf:ID="WineDescriptor" /><owl:Class rdf:ID= WineDescriptor />

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor" /> rdfs:subClassOf rdf:resource #WineDescriptor /
...

</owl:Class>

<owl:ObjectProperty rdf:ID="hasWineDescriptor">
<rdfs:domain rdf:resource="#Wine" />
<rdfs:range rdf:resource="#WineDescriptor" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasColor">

<rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
<rdfs:range rdf:resource="#WineColor" />
...

</owl:ObjectProperty>

15

Properties Characteristics (1/5)

• Transitive property
– P(x,y) and P(y,z) Î P(x,z)(,y) (y,) (,)

– Wine Ontology Example:

<owl:ObjectProperty rdf:ID="locatedIn">
<rdf:type rdf:resource="&owl;TransitiveProperty" />
<rdfs:domain rdf:resource="&owl;Thing" /> <rdfs:domain rdf:resource= &owl;Thing />
<rdfs:range rdf:resource="#Region" />

</owl:ObjectProperty>

<Region rdf:ID="SantaCruzMountainsRegion">
<locatedIn rdf:resource="#CaliforniaRegion" />

</Region> </Region>
<Region rdf:ID="CaliforniaRegion">

<locatedIn rdf:resource="#USRegion" />
</Region>

16

/ eg o

Properties Characteristics (2/5)

• Symmetric property
– P(x,y) if and only if P(y,x)(,y) y (y,)

– Wine Ontology Example:

<owl:ObjectProperty rdf:ID="adjacentRegion">
<rdf:type rdf:resource="&owl;SymmetricProperty" />
<rdfs:domain rdf:resource="#Region" /> <rdfs:domain rdf:resource= #Region />
<rdfs:range rdf:resource="#Region" />

</owl:ObjectProperty>

<Region rdf:ID="MendocinoRegion">
<locatedIn rdf:resource="#CaliforniaRegion" />
<adjacentRegion rdf:resource="#SonomaRegion" /> <adjacentRegion rdf:resource #SonomaRegion />

</Region>

17

Properties Characteristics (3/5)

• Functional property
– P(x,y) and P(x,z) implies y = z(,y) (,) p y

– A functional property states that the value of range
for a certain object in the domain is always the same.j y

– Wine Ontology Example:

<owl:Class rdf:ID="VintageYear" />

<owl:ObjectProperty rdf:ID="hasVintageYear"> j p y g
<rdf:type rdf:resource="&owl;FunctionalProperty" />
<rdfs:domain rdf:resource="#Vintage" />
<rdfs:range rdf:resource="#VintageYear" />

</owl:ObjectProperty>

18

Properties Characteristics (4/5)

• InverseOf property
– P1(x,y) iff P2(y,x)(,y) (y,)

– Wine Ontology Example:

<owl:ObjectProperty rdf:ID="hasMaker">
<rdf:type rdf:resource="&owl;FunctionalProperty" />

</owl:ObjectProperty> </owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="producesWine">
<owl:inverseOf rdf:resource="#hasMaker" /> /

</owl:ObjectProperty>

19

Properties Characteristics (5/5)

• Inverse Functional property
– P(y,x) and P(z,x) implies y = z(y,) (,) p y

– A functional property states that the value of range
for a certain object in the domain is always the same.j y

– Wine Ontology Example:

<owl:ObjectProperty rdf:ID="hasMaker" />

<owl:ObjectProperty rdf:ID="producesWine"> j p y p
<rdf:type rdf:resource="&owl;InverseFunctionalProperty" />
<owl:inverseOf rdf:resource="#hasMaker" />

</owl:ObjectProperty>

20

Exercise

• Represent the following Object Properties:
– ancestor such as If a person A is an ancestor of person p p

B and B of C then A is also an ancestor of C.
– akin such as if a Person A is akin to a Person B then B

is also akin to A.
– hasFather such as a child has always the same

(bi l i l) F th(biological) Father
– hasChild such as If a Person A hasChild a Person B then

B hasFather AB hasFather A

<rdf:type rdf:resource="&owl;TransitiveProperty" />

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<owl:inverseOf rdf:resource=« propertyName" />

21

<rdf:type rdf:resource="&owl;SymmetricProperty" />

Property Restrictions

• Defining a Class by restricting its possible instances
via their property valuesp p y

• OWL distinguishes between the following two:O d st gu s es bet ee t e o o g t o
– Value constraint

• (Mother ≡ Woman ∃hasChild.Person)()

– Cardinality constraint
• (MotherWithManyChildren ≡ Mother ≥3hasChild)

22

Property Restrictions: allValuesFrom

• Wine Ontology example:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
...
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:allValuesFrom rdf:resource="#Winery" />

</owl:Restriction>
</rdfs:subClassOf>

h k f b

...
</owl:Class>

– The maker of a Wine must be a Winery.
– The restriction is on the hasMaker property of

this Wine class only

23

this Wine class only.

Property Restrictions: someValuesFrom

• Wine Ontology example:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
...
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:someValuesFrom rdf:resource="#Winery" />

</owl:Restriction>
</rdfs:subClassOf>

l f h k f b

...
</owl:Class>

– At least one of the makers of a Wine must be a Winery.

24

allValuesFrom vs. someValuesFrom

• The difference between the two formulations is the

difference between a universal and existential

quantification:q

– allValuesFrom: Universal quantification

e.g. For all wines, if they have makers, all the makers are wineries

Does not require a wine to have a makerq

– someValuesFrom: Existential quantification

e.g. For all wines, they have at least one maker that is a winery

A wine must have a maker

25

Property Restrictions: hasValue

• Allows to define classes based on the existence
of particular property valuesof particular property values

• Wine Ontology example:

<owl:Class rdf:ID="Burgundy">
...
<rdfs:subClassOf>

l R t i ti <owl:Restriction>
<owl:onProperty rdf:resource="#hasSugar" />
<owl:hasValue rdf:resource="#Dry" />

</o l Rest iction> </owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

26

Property Restrictions: cardinality

• Definition of cardinality:
– the number of occurrences, either maximumthe number of occurrences, either maximum

(maxCardinality) or minimum (minCardinality) or
exact (cardinality) based upon the context (class)
in which it is used

• Wine Ontology example:
<owl:Class rdf:ID="Vintage">

<rdfs:subClassOf>
<owl:Restriction> <owl:Restriction>

<owl:onProperty rdf:resource="#hasVintageYear"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

11
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

27

/
</owl:Class>

Property Restrictions: Summary

• define a class using LOCAL restrictions on a specific
Propertyp y

rdfs:Class

owl:Class

• Property restrictions:
– allValuesFrom: rdfs:Class (lite/DL owl:Class)

owl:Restriction

– hasValue: specific Individual
– someValuesFrom: rdfs:Class (lite/DL owl:Class)

di li d N i I (i li {0 1})– cardinality: xsd:nonNegativeInteger (in lite {0,1})
– minCardinality: xsd:nonNegativeInteger (in lite {0,1})
– maxCardinality: xsd:nonNegativeInteger (in lite {0 1})

28

maxCardinality: xsd:nonNegativeInteger (in lite {0,1})

Exercises on Property Restrictions

• A Mother is a Woman that has a child (some Person)
Mother Woman ∃ hasChild.Person

• The set of parents that only have daughters (female
children)
ParentsWithOnlyDaughters Person ∀hasChild.Woman

• The set of all child of the woman MARRY
MarysChildren Person hasParent.{MARRY}

• A half Orphan (i.e. a person that has only one Parent)
1HalfOrphan Person =1hasParent.Person

29

COMPLEX CLASSES IN OWL
ONTOLOGIES

30

Complex Classes

• (OWL DL) provide constructors with which we can
form classes based on basic set operations: p
– Intersection
– Union
– Complement

• Enumerated classes
• Disjoint classes

31

Complex Classes: Intersection of Classes

• Instances/Individuals of the Intersection of two
Classes are simultaneously instances of both classy

• Wine Ontology example:

<owl:Class rdf:ID "WhiteWine"> <owl:Class rdf:ID="WhiteWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Wine" />
<owl:Restriction> <owl:Restriction>

<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#White" />

</owl:Restriction> </owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Î Defines white wine

32

Complex Classes: Union of Classes

• Instances/Individuals of the Union of two Classes are
either the instance of one or both classes

• Wine Ontology example:

<owl:Class rdf:ID "Fruit"> <owl:Class rdf:ID="Fruit">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#SweetFruit" />
<owl:Class rdf:about="#NonSweetFruit" /> <owl:Class rdf:about= #NonSweetFruit />

</owl:unionOf>
</owl:Class>

33

Complex Classes: Complement

<owl:Class rdf:ID="ConsumableThing" />

<owl:Class rdf:ID="NonConsumableThing">

• Question: What is the meaning of

<owl:complementOf rdf:resource="#ConsumableThing" />
</owl:Class>

• Question: What is the meaning of

<owl:Class rdf:ID="NonFrenchWine">
<owl:intersectionOf rdf:parseType="Collection"> p yp

<owl:Class rdf:about="#Wine"/>
<owl:Class>

<owl:complementOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#locatedIn" />
<owl:hasValue rdf:resource="#FrenchRegion" />

</owl:Restriction>
</owl:complementOf>

</owl:Class>
/ l i t ti Of

34

</owl:intersectionOf>
</owl:Class>

Complex Classes: Enumerated Classes

• OWL provides the means to specify a class via a
direct enumeration of its members
– the owl:oneOf construct.

• Completely specifies the class extension, and no other Co p ete y spec es t e c ass e te s o , a d o ot e
individuals can be declared to belong to the class.

• Wine Ontology example:gy p

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor"/> p /
<owl:oneOf rdf:parseType="Collection">

<WineColor rdf:about="#White" />
<WineColor rdf:about="#Rose" />
<WineColor rdf:about="#Red" />

</owl:oneOf>
</owl:Class>

35

Complex Classes: Disjoint Classes

• The disjointness of a set of classes can be expressed
using the owl:disjointWith constructor

• An individual that is a member of one class cannot
simultaneously be an instance of another one.

• Example:

<owl:Class rdf:ID="Pasta">
<rdfs:subClassOf rdf:resource="#EdibleThing"/>
<owl:disjointWith rdf:resource="#Meat"/> <owl:disjointWith rdf:resource #Meat />
<owl:disjointWith rdf:resource="#Fowl"/>
<owl:disjointWith rdf:resource="#Seafood"/>
<owl:disjointWith rdf:resource="#Dessert"/> owl:disjointWith rdf:resource #Dessert /
<owl:disjointWith rdf:resource="#Fruit"/>

</owl:Class>

36

Exercises complex classes

• Person ≡ Man Woman
• Man ≡ Person MaleMan Person Male

37

ONTOLOGY MAPPING AND
REUSE

38

Ontology Reuse

• To create a knowledge base or a semantic Web

application we can create a new ontology

– / Designing a large ontology is difficultg g g gy

– ☺ Better reuse, compose, extend existing ontologies to

define a new one.

• Blending existing ontologies is difficult, but OWL Blending existing ontologies is difficult, but OWL

provides constructs facilitating ontology reuse

39

Ontology Reuse: equivalence (1/3)

• When several ontologies are used as part of another
ontology, it’s useful to be able to indicate that a gy
particular class (or property) in one ontology is
equivalent to a class (or property) in a second

lontology.
– owl:equivalentClass
– owl:equivalentProperty

• Example: SuperMarket ontology linking to Wine Ontology

<rdf:RDF
xmlns:vin ="http://www.w3.org/REC-owl-guide-20040210/wine#
xmlns:owl ="http://www.w3.org/2002/07/owl#" p // g/ / /

…>
<owl:Class rdf:ID="Wine">

<owl:equivalentClass rdf:resource=“vin:Wine"/>

40

</owl:Class>

Ontology Reuse: equivalence (2/3)

• Equivalence can be used over a restriction
• Exemple:• Exemple:

<owl:Class rdf:ID="TexasThings">
<owl:equivalentClass> <owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />
<owl:someValuesFrom rdf:resource="#TexasRegion" /> <owl:someValuesFrom rdf:resource= #TexasRegion />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

– TexasThings contains exactly the objects located in the
T R i

</owl:Class>

TexasRegion

41

Ontology Reuse: equivalence (3/3)

• What is the difference between using:
<owl:Class rdf:ID "TexasThings"> <owl:Class rdf:ID="TexasThings">

<owl:equivalentClass>
<owl:Restriction>

<owl:onProperty rdf:resource="#locatedIn" /> <owl:onProperty rdf:resource= #locatedIn />
<owl:someValuesFrom rdf:resource="#TexasRegion" />

</owl:Restriction>
</owl:equivalentClass>

• AND

</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:ID="TexasThings">
<owl:subClassOf>

<owl:Restriction>
f<owl:onProperty rdf:resource="#locatedIn" />

<owl:someValuesFrom rdf:resource="#TexasRegion" />
</owl:Restriction>

</ l bCl Of>

42

</owl:subClassOf>
</owl:Class>

Ontology Reuse: equivalence (3/3)

• What is the difference between using:
owl:subClassOf– owl:subClassOf
• things that are located in Texas are not

necessarily TexasThingsy g
Î Expresses Necessary condition

– owl:equivalentClass
• if something is located in Texas, then it must be in the class

of TexasThings
Î Expresses Necessary and Sufficient condition Î Expresses Necessary and Sufficient condition

43

Ontology Reuse: Property equivalence

SAME AS Classes equivalenceq
Using owl:equivalentProperty

44

Ontology Reuse: Identity between Individuals

• To explicitly state that two individuals are identical
– owl:sameIndividualAs / owl:sameAS/

• Wine Ontology example:
<Wine rdf:ID="MikesFavoriteWine">

• Another example:

<owl:sameAs rdf:resource="#StGenevieveTexasWhite" />
</Wine>

• Another example:
<owl:ObjectProperty rdf:ID="hasMaker">

<rdf:type rdf:resource="&owl;FunctionalProperty" />
</owl:ObjectProperty>

<owl:Thing rdf:about="#BancroftChardonnay">
h M k df "#B ft" / <hasMaker rdf:resource="#Bancroft" />

<hasMaker rdf:resource="#Beringer" />
</owl:Thing>

45

#Bancroft is the same as #Beringer?

Ontology Reuse: Different Individuals (1/2)

• owl:differentFrom provides the opposite effect from
owl:sameAS

• Wine Ontology example:
<WineSugar rdf:ID="Dry" /> g y

<WineSugar rdf:ID="Sweet">
<owl:differentFrom rdf:resource="#Dry"/>

• In some cases it’s important to ensure such

</WineSugar>

• In some cases it s important to ensure such
distinctions. Example:
– We have not asserted that Dry and Sweet are differentWe have not asserted that Dry and Sweet are different
– WineSugar is functional
– If we describe a wine as both Dry and Sweet

46

If we describe a wine as both Dry and Sweet
Î this would imply that Dry and Sweet are identical

Ontology Reuse: Different Individuals (2/2)

• To define a set of mutually distinct individuals :

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">

<vin:WineColor rdf:about="#Red" />
<vin:WineColor rdf:about="#White" />
<vin:WineColor rdf:about="#Rose" />

</owl:distinctMembers>

Î R d Whit d R i i di ti t

</owl:AllDifferent>

Î Red, White, and Rose are pairwise distinct

N t l b d i • Note: owl:distinctMembers can only be used in
combination with owl:AllDifferent

47

S t i if P() th P()

OWL on 2 slides
• Symmetric: if P(x, y) then P(y, x)
• Transitive: if P(x,y) and P(y,z) then P(x, z)
• Functional: if P(x,y) and P(x,z) then y=zFunctional: if P(x,y) and P(x,z) then y z
• InverseOf: if P1(x,y) then P2(y,x)
• InverseFunctional: if P(y,x) and P(z,x) then y=z

llV l F P() d llV l F (C)• allValuesFrom: P(x,y) and y=allValuesFrom(C)
• someValuesFrom: P(x,y) and y=someValuesFrom(C)
• hasValue: P(x y) and y=hasValue(v)• hasValue: P(x,y) and y=hasValue(v)
• cardinality: cardinality(P) = N
• minCardinality: minCardinality(P) = N
• maxCardinality: maxCardinality(P) = N
• equivalentProperty: P1 = P2

Legend:Legend:
Properties are indicated by: P, P1, P2, etc
Specific classes are indicated by: x, y, z
Generic classes are indicated by: C, C1, C2
V l i di t d b 1 2

48

Values are indicated by: v, v1, v2
Instance documents are indicated by: I1, I2, I3

i t ti Of C i t ti Of(C1 C2)

OWL on 2 slides
• intersectionOf: C = intersectionOf(C1, C2, …)
• unionOf: C = unionOf(C1, C2, …)
• complementOf: C = complementOf(C1)• complementOf: C = complementOf(C1)
• oneOf: C = one of(v1, v2, …)
• equivalentClass: C1 = C2
• disjointWith: C1 != C2
• sameIndividualAs: I1 = I2

diffe entF om I1 ! I2• differentFrom: I1 != I2
• AllDifferent: I1 != I2, I1 != I3, I2 != I3, …
• Thing: I1 I2 • Thing: I1, I2, …

Legend:Legend:
Properties are indicated by: P, P1, P2, etc
Specific classes are indicated by: x, y, z
Generic classes are indicated by: C, C1, C2

49

y
Values are indicated by: v, v1, v2
Instance documents are indicated by: I1, I2, I3

Exercise

Create an OWL ontology that models the following concepts:
1. There should be three classes: Customer, Shop and Product.
2. Customer and Shop should be equipped with properties name

(xsd:string) and email (xsd:string), which are equivalent to
foaf:name and foaf:mbox.

3. Each Product should have an order number (xsd:int). An order
number can be unambiguously assigned to a Product.

4 A Sh h ld h t ll (P d t) d 4. A Shop should have a property sells (range: Product) and a
Product should have a property soldBy (range: Shop) respectively.

5. Instances of class Shop that sell more than 100 products should p p
belong to a new class BigShop.

6. A Product must not be a Customer.
7 I t th t b th Sh d C t h ld b l t 7. Instances that are both, Shop and Customer should belong to a

class PurchaseAndSale.

50By P.Siehndel, IVS Semantic Web Group

References

• Slides based on:
– OWL guide: http://www.w3.org/TR/owl-guide/g p // g/ / g /

• OWL page: http://www.w3.org/2004/OWL/
• OWL reference: http://www.w3.org/TR/owl-ref/OWL reference: http://www.w3.org/TR/owl ref/

51

