AN INTRODUCTION TO
PROTEGE

tutorial by N. Drummond and M. Horridge)

Review of OWL

OWL...

= is a W3C standard - Web Ontology Language
= is generally found in XML/RDF syntax

= is therefore not much fun to write by hand

So, we have tools to help us

OWL Constructs

Wes =

Person Country

Elvis

Holger lives_in AOParaguay

Kylie

Belgium

= class (concept)
/' = property (relationship)

¢ =individual (instance)

Animal

Installation of Protege

= Install Protege 3 (the software will be
provided)

Go to: http:/ /www-inf.it-sudparis.eu/~gaaloulw / KM/
Download Protege3.0.zip

1.
2.
3. Extract to your home directory
4.

Open “run_protege.bat”

pizzas2_7 Protégé 3.0 beta (file:\C:\NickiWords\T utorialstinternalT raining-200-\OWL Tutorial2Package\examples\pizzas2_/.pprj, OWL Files)

Flle B Project DWW WNIzade C Toole | Cade - OWindow i Heln

lie L b > v e B B s e

For Project: @ pizzas? 7 Eot Class @) Posh (instinee of QW Ciass

-

Asserfed Bietaichv 5;‘@ e & | SameAs Bifferentl’roml

b e

T o L

| Al I Inferedl

.

A i d andiin "’Jj \5) & (’Q K
HECESSaRY & BUFFICIENT

DonainConcept
3 haslopbing Peeaiopping

i_:,l Annoiaiions
Property

U Beopitic=

FizzaRase
;_5) Rlzzalopplog

“alus

opping e B e
Zaluphing

. Lagic view 1) Properties View

Protegeé tabs

’rotege OWL plugin: Tabs

ool &E = fihstance
: P SameAs | DifferentFrom | [Annotations.

tdiscamment .

| Asseited I Inferred R

".j) @ & = ohping (aliniE e RN

Assoited Condminns .
e fopping

Y DomainConeept
3 haslopbing Peeaiopping

FizzaRase
;_5) Rlzzalopplog

. Lagic view 1) Properties View

SUBCLASS RELATIONSHIP <Al

For Project: @ pizza

Asserted Hierarchy

(instance of ok}

s . .

DifferentFrom

Froperty

sTopping PizzaTopping

ClassesTab: Asserted Class

Hierarchy

Subsumption hierarchy (superclass/subclass)
Structure as asserted by the ontology engineer

[N | SemeAs | DifterertFrom A
. _ @ @@ '

. -

| Asserted | inferned |

s

£ Dot Coneent
) 3 has Topping PizsaTopeniy

® L ee Binates Voo

Create and Delete classes (actually subclasses!!
Everything is a subclass of owl:Thing
Search for class

Fab: Class Editor

. e

[Asseted merinhy © . e I Difts BTG o
o .
¥ Cibonancencent
© etison e
b (5 Porson
v Cipzza
 ChseceirebbaRioeal
SN2
esendeuln
O it ctinghtz

| Asserted | inferned | oL 5} @E | G

.

L anurtinien
- - HELE -
O MadeioRen i .
e Shes Ty Pt =

CoCanraa

L
 ThiaeispyEase
) PEzET o ; e Ry

iEh
C hid

® L ee Binates Voo

ClassesTab: Class Editor

Class name and documentation

E

fortide @ ppras
BAoseneddiermchy

Blonoet

[Asserted [Inferred
sTopping (mutipl= P

- % . = . .
G e Disjoints
(Gl caurn
(g)te\zcymﬁaﬁzza Coneept 1
busissoiPas ‘opping PizzaTopping

e

16} Veetirondizzeg

-

Conditions Widget

Exercise: Create Classes

Create a new OWL ontology

Click the “Create SubClass” button w Eﬂ M A JE]

(this is above the class hierarchy)
A new class will be created as a subclass of owl:Thing

Type in a new name “DomainConcept” over the default
(return updates the hierarchy)

Document your class using the rdfs:comment field

Create another class called “Pizza” using the same method

You will notice that Pizza has been created as a subclass of
DomainConcept as this was the class selected when the button was
pressed. You can also right-click any class and select “Create subClass”

Create two more subclasses of DomainConcept called
“PizzaTopping” and “PizzaBase” .
Any mistakes, use the “Delete Class” button next to “Create Class”

Disjointness

m OWL assumes that classes overlap

i PizzaTopping
Plzza o

o
00

o
% oS
¢ o

< =individual

e This means an individual could be both a Pizza and
a PizzaTopping at the same time
 We want to state this is not the case

Disjointness

= If we state that classes are disjoint

Pizza o PizzaTopping
<
< o o

o O
< © < =individual

 This means an individual cannot be both a Pizza
and a PizzaTopping at the same time

e \We must do this explicitly Iin the interface

Classes Disjoints Widget

Add siblings as disjoint
Add new disjoint Remove disjoint siblings

o

r

[sserted | inferred |

S

List of disjoint classes

Exercise: Make Classes Disjoint

Start with your existing ontology

Select the Pizza class
You will notice that the disjoints widget is empty

Click the “Add all siblings...” button

The “Add siblings to disjoints dialog pops up

Select the “Mutually between all siblings” option and OK
PizzaTopping and PizzaBase appear in the disjoints widget

Select the PizzaTopping class
Pizza and PizzaBase are already in the disjoints widget

Note that the same applies for PizzaBase

Exercise: Save Your Work

OWL = easy to make mistakes — save regularly m@
. Select File > Save Project /
A dialog (as shown) will pop up

Select a file using a file selector by clicking the button on the top
right

.
B OWL Files

You will notice that there are 2 files created
.pprj — the project file

this just stores information about the GUI

and the workspace

.owl —the OWL file

this is where your ontology is stored in
RDF/OWL format

Select OK

Exercise: Create PizzaToppings

Start with your existing ontology

1. Create subclasses of PizzaTopping:
CheeseTopping
VegetableTopping
MeatTopping

Make these subclasses all disjoint from one another
(remember to chose “Mutually between all siblings” when prompted)

Create subclasses of CheeseTopping:
MozzarellaTopping, ParmesanTopping

Make these subclasses all disjoint from one another

Create subclasses of VegetableTopping and make them disjoint:
TomatoTopping, MushroomTopping

Save

= We've created a tree of disjoint classes

= Disjoints are inherited down the tree

eg something that is a TomatoTopping cannot be a

Pizza because its superclass, PizzaTopping, is
disjoint from Pizza

= You should now be able to select every class

(except DomainConcept) and see its siblings in
the disjoints widget

What are we missing?

This is not a semantically rich model

Apart from “is kind of” and “is not kind of”, we
currently don’t have any other information of interest

We want to say more about Pizza individuals, such as
their relationship with other individuals

We can do this with properties

Pizza /_\o PizzaTopping
& o
<
< ¢ =individual

PROPERTY BROWSER

@ pizzas2_7

v @h.

[D]hasTopping

Super praper
[0 hasPart

Properties

(instance of owkt ObjectProperty)

[Name | Equivalents | SameAs | DifferentFrom |

[[J anno

(]

[inverse Fu

R

[Symmetric

[Transtive

Fab: Property Browser

Properties can be in a hierarchy

st |2 s |
ROPERTY EDITOR
Pl @ pzes 0B Cinestosiin (netancs of swl Cblesctbicinty)

BlE i 0D R T e | Eatens | Seweas Dmetian | o

[TlhasTapping -
Ul isSuebiror GliEs o, 1

| Bunctiond Gorly s valies)

L1 s PunConal
-
Clpmalopin

o [Qf E @-

L Sytapetein

| Tnskive

Super properties

| | Search for property
SuperProperties of the current selected

Properties Tab: Property Browser

PROFERTY BROWSER

-
¥ DlhasPat |] 4 “‘:
has'l’opping

[0l ssutabieo ‘l Delete Property

New Object Property:
Associates an individual to another individual

, . il
lasPart

Exercise: Create a Property

E 3]:1 3 I__;'1:: 3
. Switch to the Properties tab ﬁ@ = P

There are currently no properties, so the list is blank

. Create a new Object property using the button in the
property browser

. Call the new Property “hasTopping”
. Create another Object Property called “hasBase”
. Save

Associating Properties with

Classes

We now have two properties we want to use to
describe Pizza individuals.

To do this, we must go back to the Pizza class
and add some further information

This comes in the form of Restrictions (which
are a type of Condition)

ClassesTab: Conditions Widget

Conditions asserted by the ontology engineer
Add different types of condition

Asserted I"ul Inferred "".I

ASSERTED CONDITIONS:

IHHEF ITED

[from F'i::::u] C |

Definition of the class (later)
Description of the class
Conditions inherited from superclasses

Exercise: Create a Restriction

Switch to the OWL Classes tab

Select Pizza

Notice that the conditions widget only contains one item,
DomainConcept with a Class icon.

Superclasses show up in the conditions widget in this way

Click the " Create Restriction” button
A dialog pops up that we will investigate in a minute

Select “hasBase” from the Restricted Property pane
| eave the Restriction type as “someValuesFrom”
Type “PizzaBase” in the Filler expression editor

Click OK
A restriction has been added to the Conditions widget

What does this mean?

@ We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

 “If an individual is a member of this class, it is necessary that it has
at least one hasBase relationship with an individual from the class
PizzaBase”

Every individual of the Pizza class must have at least one base from
the class PizzaBase

What does this mean?

@ We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

There can be no individual, that is a member of this class, that does
not have at least one hasBase relationship with an individual from
the class PizzaBase

Restrictions Popup

Create Restriction

Restricted Property ' Restriction Type

Filler Expression

Expression
Construct
Palette

Syntax check

x Cancel

Restriction Types

Existential, someValuesFrom |“Some”, “At least one

Universal, allValuesFrom “Only”

hasValue “equals x”

Cardinality “Exactly n”

Max Cardinality “At most n”

Min Cardinality “At least n”

Exercise:
Another Existential Restriction

Make sure Pizza is selected @

Create a new Existential (SomeValuesFrom) Restriction with the
hasTopping property and a filler of PizzaTopping

When entering the filler, you have 2 shortcut methods rather than typing

the entire classname:

1) enter a partial name and use Tab to
autocomplete

2) use the select Class button
on the editor palette

Exercise:
Create a Universal Restriction

Create 2 disjoint subclasses of PizzaBase

called “ThinAndCrispy” and “DeepPan”
Create a subclass of Pizza called “RealltalianPizza”

Create a new Universal (AllValuesFrom) Restriction on RealltalianPizza

with the hasBase property and a filler of ThinAndCrispy

What does this mean?

@ We have created a restriction: V hasBase
ThinAndCrispy
on Class RealltalianPizza as a necessary condition

. . S
RealltalianPizza as®®® ThinAndCrispy
asease

<
haSBaSe
 “If an individual is a member of this class, it is necessary that it must

only have a hasBase relationship with an individual from the class
ThinAndCrispy”

What does this mean?

@ We have created a restriction: V hasBase
ThinAndCrispy
on Class RealltalianPizza as a necessary condition

DeepPan Realltalian Piz% ThinAndCrispy

©

No individual of the RealltalianPizza class can have a base from a
class other than ThinAndCrispy

Universal Warning - Trivial

Satisfaction

= If we had not already inherited: 3 hasBase PizzaBase
from Class Pizza the following could hold

Trivially satisfied o Lo
by this individual G<}
haSBaSe

If an individual is a member of this class, it is necessary that it must
only have a hasBase relationship with an individual from the class
ThinAndCrispy, or no hasBase relationship at all

le Universal Restrictions by themselves do not state “at least one

Summary

You should now be able to:

= identify components of the Protégé-OWL
Interface

@ create Primitive Classes
= create Properties

create some basic Restrictions on a Class using
Existential and Universal qualifiers

Exercise:

Create a MargheritaPizza

. Create a subclass of Pizza called NamedPizza

. Create a subclass of NamedPizza called MargheritaPizza

. Create a restriction to say that:

“Every MargheritaPizza must have at least one topping from
TomatoTopping”

. Create another restriction to say that:

“Every MargheritaPizza must have at least one topping from
MozzarellaTopping”

Exercise:

Create other pizzas

Extend the example by creating new types of pizzas that does
not already exist. To do so:

1. Add more topping ingredients as subclasses of
PizzaTopping.

. Create new classes that represent the new types of
pizzas.

. Express the fact how this new class is related to other
types using a disjunction constraint.

. Create restrictions on these pizzas to describe their
Ingredients

Vegetarian Pizza

Start from the pizzas2_1.owl available on the

Labs page:

= Select File = Build New Project > OWL Files and
chose pizzas2_1.owl

Create a new pizza called “VegetarianlPizza”

under Pizza

make this disjoint from its siblings as we have been doing

Select MargheritaPizza.

you will notice that it only has a single parent, NamedPizza

Add VegetarianPizza as a new parent using the
conditions widget “Add Named Class” button

notice that MargheritaPizza now occurs in 2 places in the asserted
hierarchy we have asserted that Margherital’izza has 2 parents

Reasoning

We'd like to be able to check the logical
consistency of our model

We'd also like to make automatic inferences
about the subsumption hierarchy. A process
known as classifying

= ie Moving classes around in the hierarchy based on
their logical definition

Generic software capable of these tasks are known as

reasoners (although you may hear them being referred to as
Classifiers)

Pellet is a reasoner

Running Pellet

1. Download and extract Pellet from the Labs page
2. Execute LaunchServer.bat to launch the pellet
server

Classifying

Classify taxonomy (and check consistency)

pizzas? i TutorialZia

(Mame | Suneas | DifterereFrom |

Fizza 2 - Connected to Racer 1.7.23

tutentiing

[Agserd | Inferrod | e ol
. Gibestoos L

At -
) b

DAnenon

O etz
IOt © Doenianat

= Slestopig Puaatoning

Teeia
L ThA ey B

o
& cerrsan
i Pzt
& Susatoroiy

o Peperes v

Reasoning about our Pizzas

1. Classify your ontology

MargheritaPizza turns out to be
Inconsistent — why?

Why is MargheritaPizza

inconsistent?

We are asserting that a MargheritaPizza is a
subclass of two classes we have stated are
disjoint

The disjoint means nothing can be a

NamedPizza and a VegetarianPizza at the
same time

This means that the class of MargheritaPizzas
can never contain any individuals

The class is therefore inconsistent

Attempting again

. Close the inferred hierarchy
and classification results pane

. Remove the disjoint between VegetarianPizza and
Its siblings

. Re-Classify your ontology

Primitive Classes

All classes in our ontology so far are
We primitive pizzas
Primitive Class =

They are marked as yellow in the class
hierarchy

29/11/2004

Defined Classes

Have a definition. That is at least one Necessary
and Sufficient condition

Are marked in in the interface

Classes, all of whose individuals satisty this
definition, can be inferred to be subclasses

Reasoners can perform this inference

Describing a MeatyPizza

Start with pizzas2_3.owl, close the reasoner panes

1. Create a subclass of Pizza called MeatyPizza

. Add a restriction to say:
“Every MeatyPizza must have at least one meat

topping”
. Classify your ontology

Defining a MeatyPizza

. Click and drag your 7hasTopping MeatTopping restriction
from “Necessary” to “Necessary & Sufficient”

. Click and drag the Pizza Superclass from “Necessary” to
“Necessary & Sufficient”

MECESSARY & SUFFICIENT

EI Pizza
.3) 3 hasTopping MeatTopping

NECESSARY
INHERITED

:::E[::l 3 hasBase PizzaBase [from Pizza]

. Classify your ontology

How do we Define a Vegetarian
Pizza’

@ Define in words?
» “a pizza with only vegetarian toppings”?
= “a pizza with no meat (or fish) toppings”?
» “a pizza that is not a MeatyPizza”?

More than one way to model this

Defining a Vegetarian -

Start with pizzas2_5.owl

Create a subclass of PizzaTopping

called VegetarianTopping

Click “Create New Expression” in the Conditions Widget

Type in each of the top level PizzaToppings that are not meat or fish (ie

DairyTopping, FruitTopping etc) and between each, type insert the
union symbol

Press Return when finished

Make this a defined class by moving both conditions from the
“Necessary” to the “Necessary & Sufficient” conditions
Classify your ontology

Vegetarian Pizza attempt 2

. Select MargheritaPizza and remove
VegetarianPizza from its superclasses

. Select VegetarianPizza and create a restriction to say that it
“only has toppings from VegetarianTopping”

. Make this a defined class by moving all conditions from
“Necessary” to “Necessary & Sufficient”

. Classify your ontology

Open World Assumption

The reasoner does not have enough
information to classity pizzas under
VegetarianPizza

Typically several Existential restrictions on a
single property with different fillers - like
primitive pizzas

Existential should be paraphrased by “amongst
other things...”

We need closure for the given property

Closure

= Example: MargheritaPizza

All MargheritaPizzas must have:

at least 1 topping from MozzarellaTopping and
at least 1 topping from TomatoTopping and
only toppings from MozzarellaTopping or TomatoTopping

= The last part is paraphrased into
“no other toppings”

= The union closes the hasTopping property on
MargheritaPizza

Closing Pizza Descriptions

Start with pizzas2_7.owl

. Select MargheritaPizza
. Create a Universal Restriction on the hasTopping property
with a filler of “TomatoTopping |_J MozzarellaTopping”

. Close your other pizzas

. Classify your ontology

Viewing our Hierarchy Graphically

= Using OWLViz
= Requires Graphviz (available on the Labs page)

@ Download it and install it (we will extra
configurations in the next steps if required)

/iewing our Hierarchy Graphicall

Elel Edit Peaject C0AL - Wzards Tools Code © Wiindow - Heli

LAY §

For Project: @ pizzas? 7 ForClass: &f:) PEsn (instance of owiCiassy

Asserted Hisrarchy ; [ame [Samehs t DiffersntErom]

i
DonmainConcept

Andienibiznt L Wizards Tools
ceAndileddPizzal
heesefndiieniPizzas

NerestingPizza

r‘ﬁ' Archive Current %e
i:3 Revert to a Previou

CapnRizzg
MarahettaPiesn
oombizza

*fﬁ} Dicion

FizzaRase
;_5) Rlzzalopplog

. Lagic view 1) Properties View

LViz

View Asserted Model View Inferred Model

Using the created
Ontology

The pizza Finder application

Pizza Finder

@ Download the Pizza Finder Application

= Run the application using your ontology

Exercise from the
course

Exercise
Create an OWL ontology that models the following concepts:

There should be three classes: Customer, Shop and Product.

Customer and Shop should be equipped with properties name
(xsd:string) and email (xsd:string), which are equivalent to
foaf:name and foaf:mbox.

Each Product should have an order number (xsd:int). An order
number can be unambiguously assigned to a Product.

A Shop should have a property sells (range: Product) and a
Product should have a property soldBy (range: Shop) respectively.

Instances of class Shop that sell more than 100 products should
belong to a new class BigShop.

A Product must not be a Customer.

Instances that are both, Shop and Customer should belong to a
class PurchaseAndSale.

. Import the foaf ontology

By P.Siehndel, IVS Semantic Web Group

References

= Slides based on the tutorial prepared by N.

Drummond, M. Horridge
http:/ /www.cs.man.ac.uk/~drummond/cs646

= Software / resources / community at:
» http:/ /protege.stanford.edu/

