
(Based on the OWL tutorial by N. Drummond and M. Horridge)

1

OWLOWL…
is a W3C standard – Web Ontology Language
is generally found in XML/RDF syntax
is therefore not much fun to write by handy

So, we have tools to help us, p

2

Person Country
Elvis

= class (concept)

Belgium

Paraguay

Latvia

Elvis
Holger

Kylie

= individual (instance)

China
Hai

S.Claus = property (relationship)

A i l

Flipper

Animal
Rudolph

3

Install Protege 3 (the software will be
provided)

1. Go to: http://www-inf.it-sudparis.eu/~gaaloulw/KM/

2. Download Protege3.0.zip. ow oad otege3.0. p
3. Extract to your home directory
4 Open “run protege bat”4. Open run_protege.bat

4

Protégé tabs

5

Used in this tutorial

Changing the GUIChanging the GUI

Populating the model

Top-level functionality
Extensions (visualisation)

6

7

S b ti hi h (l / b l)Subsumption hierarchy (superclass/subclass)
Structure as asserted by the ontology engineer

Create and Delete classes (actually subclasses!!)
Everything is a subclass of owl:Thing

8

Search for class

9

Class annotations (for class metadata)Class annotations (for class metadata)
Class name and documentation

PropertiesProperties
“available” to

Class

Disjoints
widget

Conditions Widget
Class specific tools (find usage etc)

10

Class-specific tools (find usage etc)

Create a new OWL ontology

1. Click the “Create SubClass” button
(this is above the class hierarchy)

Create a new OWL ontology

A new class will be created as a subclass of owl:Thing
2. Type in a new name “DomainConcept” over the default

(return updates the hierarchy)(return updates the hierarchy)
3. Document your class using the rdfs:comment field
4. Create another class called “Pizza” using the same method

You will notice that Pizza has been created as a subclass of
DomainConcept as this was the class selected when the button was
pressed. You can also right-click any class and select “Create subClass”p g y

5. Create two more subclasses of DomainConcept called
“PizzaTopping” and “PizzaBase”.
Any mistakes use the “Delete Class” button next to “Create Class”

11

Any mistakes, use the Delete Class button next to Create Class

OWL assumes that classes overlap
Pizza PizzaTopping

= individual

Thi i di id l ld b b h Pi d• This means an individual could be both a Pizza and
a PizzaTopping at the same time
W hi i h• We want to state this is not the case

12

If we state that classes are disjoint
Pizza PizzaTopping

Thi i di id l t b b th Pi

= individual

• This means an individual cannot be both a Pizza
and a PizzaTopping at the same time

• We must do this explicitly in the interface

13

Add siblings as disjointAdd siblings as disjoint
Add new disjoint Remove disjoint siblings

List of disjoint classes

14

j

Start with your existing ontology

1. Select the Pizza class
You will notice that the disjoints widget is empty

Start with your existing ontology

2. Click the “Add all siblings…” button
The “Add siblings to disjoints dialog pops up

3 Select the “Mutually between all siblings” option and OK3. Select the “Mutually between all siblings” option and OK
PizzaTopping and PizzaBase appear in the disjoints widget

4. Select the PizzaTopping class
Pizza and PizzaBase are already in the disjoints widget

5. Note that the same applies for PizzaBase

15

OWL = easy to make mistakes – save regularly

1. Select File Save Project
A dialog (as shown) will pop up

OWL easy to make mistakes save regularly

2. Select a file using a file selector by clicking the button on the top
right

You will notice that there are 2 files created
.pprj – the project file

this j st stores information abo t the GUIthis just stores information about the GUI
and the workspace

.owl – the OWL file
this is where your ontology is stored inthis is where your ontology is stored in
RDF/OWL format

3 S l t OK

16

3. Select OK

Start with your existing ontology

1. Create subclasses of PizzaTopping:
CheeseTopping

Start with your existing ontology

VegetableTopping
MeatTopping

2 Make these subclasses all disjoint from one another2. Make these subclasses all disjoint from one another
(remember to chose “Mutually between all siblings” when prompted)

3. Create subclasses of CheeseTopping:
M ll T i P T iMozzarellaTopping, ParmesanTopping

4. Make these subclasses all disjoint from one another
5 Create subclasses of VegetableTopping and make them disjoint:5. Create subclasses of VegetableTopping and make them disjoint:

TomatoTopping, MushroomTopping
6. Save

17

We’ve created a tree of disjoint classes
Disjoints are inherited down the treej
eg something that is a TomatoTopping cannot be a
Pizza because its superclass, PizzaTopping, is
di j i t f Pidisjoint from Pizza

h ld b bl l lYou should now be able to select every class
(except DomainConcept) and see its siblings in
h d dthe disjoints widget

18

h ll h d lThis is not a semantically rich model
Apart from “is kind of” and “is not kind of”, we

tl d ’t h th i f ti f i t tcurrently don’t have any other information of interest
We want to say more about Pizza individuals, such as
their relationship with other individualstheir relationship with other individuals
We can do this with properties

Pizza PizzaTopping

= individual

19

20

P ti b i hi hProperties can be in a hierarchy

Search for property

21

p p y
SuperProperties of the current selected

D l t P tDelete Property

New Object Property:
Associates an individual to another individual

not used in the following exercise:
- New Datatype Property (String, int etc)

- New Annotation Properties for metadata

- New SubProperty – ie create “under” the current selection

22

1. Switch to the Properties tab
There are currently no properties so the list is blankThere are currently no properties, so the list is blank

2. Create a new Object property using the button in the
property browserp p y

3. Call the new Property “hasTopping”
4. Create another Object Property called “hasBase”4. Create another Object Property called hasBase
5. Save

23

We now have two properties we want to use to
describe Pizza individuals.
To do this, we must go back to the Pizza class
and add some further information
This comes in the form of Restrictions (which
are a type of Condition)yp)

24

Conditions asserted by the ontology engineerConditions asserted by the ontology engineer
Add different types of condition

Definition of the class (later)
Description of the class

25

Conditions inherited from superclasses

1. Switch to the OWL Classes tab
2. Select Pizza

Notice that the conditions widget only contains one item,
DomainConcept with a Class icon.
Superclasses show up in the conditions widget in this waySuperclasses show up in the conditions widget in this way

3. Click the “Create Restriction” button
A dialog pops up that we will investigate in a minute

4. Select “hasBase” from the Restricted Property pane
5. Leave the Restriction type as “someValuesFrom”
6 Type “PizzaBase” in the Filler expression editor6. Type PizzaBase in the Filler expression editor
7. Click OK

A restriction has been added to the Conditions widget

26

h d hWe have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase

• “If an individual is a member of this class, it is necessary that it has
at least one hasBase relationship with an individual from the classat least one hasBase relationship with an individual from the class
PizzaBase”

• “Every individual of the Pizza class must have at least one base from
th l Pi B ”

27

the class PizzaBase”

h d hWe have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase

• “There can be no individual, that is a member of this class, that does
not have at least one hasBase relationship with an individual fromnot have at least one hasBase relationship with an individual from
the class PizzaBase”

28

Restriction TypeRestricted Propertyp y

Filler ExpressionFiller Expression

Syntax check
Expression
Construct Syntax checkConstruct
Palette

29

∃ Existential, someValuesFrom “Some”, “At least one”

U i l llV l F “O l ”∀ Universal, allValuesFrom “Only”

hasValue “equals x”∋ hasValue equals x

= Cardinality “Exactly n”

≤ Max Cardinality “At most n”

≥ Min Cardinality “At least n”

30

1. Make sure Pizza is selected
2. Create a new Existential (SomeValuesFrom) Restriction with the ()

hasTopping property and a filler of PizzaTopping

When entering the filler you have 2 shortcut methods rather than typingWhen entering the filler, you have 2 shortcut methods rather than typing
the entire classname:

1) enter a partial name and use Tab to1) enter a partial name and use Tab to
autocomplete

2) th l t Cl b tt2) use the select Class button
on the editor palette

31

1. Create 2 disjoint subclasses of PizzaBase

ll d “Thi A dC i ” d “D P ”called “ThinAndCrispy” and “DeepPan”

2. Create a subclass of Pizza called “RealItalianPizza”

3. Create a new Universal (AllValuesFrom) Restriction on RealItalianPizza

with the hasBase property and a filler of ThinAndCrispyp p y py

32

h d hWe have created a restriction: ∀ hasBase
ThinAndCrispy
on Class RealItalianPizza as a necessary conditionon Class RealItalianPizza as a necessary condition

RealItalianPizza ThinAndCrispy

“If i di id l i b f thi l it i th t it t• “If an individual is a member of this class, it is necessary that it must
only have a hasBase relationship with an individual from the class
ThinAndCrispy”

33

h d hWe have created a restriction: ∀ hasBase
ThinAndCrispy
on Class RealItalianPizza as a necessary conditionon Class RealItalianPizza as a necessary condition

DeepPan RealItalianPizza ThinAndCrispy

“N i di id l f th R lIt li Pi l h b f• “No individual of the RealItalianPizza class can have a base from a
class other than ThinAndCrispy”

34

f h d l d h d hIf we had not already inherited: ∃ hasBase PizzaBase
from Class Pizza the following could hold

RealItalianPizza ThinAndCrispy

Trivially satisfied
by this individual

“If i di id l i b f thi l it i th t it t• “If an individual is a member of this class, it is necessary that it must
only have a hasBase relationship with an individual from the class
ThinAndCrispy, or no hasBase relationship at all”
ie Universal Restrictions by themselves do not state “at least one”

35

• ie Universal Restrictions by themselves do not state “at least one”

You should now be able to:
identify components of the Protégé-OWL y p g
Interface
create Primitive Classesc eate t ve C asses
create Properties
create some basic Restrictions on a Class using create some basic Restrictions on a Class using
Existential and Universal qualifiers

36

1. Create a subclass of Pizza called NamedPizza
2 Create a subclass of NamedPizza called MargheritaPizza2. Create a subclass of NamedPizza called MargheritaPizza
3. Create a restriction to say that:

“Every MargheritaPizza must have at least one topping fromEvery MargheritaPizza must have at least one topping from
TomatoTopping”

4. Create another restriction to say that:4. Create another restriction to say that:
“Every MargheritaPizza must have at least one topping from
MozzarellaTopping”

37

Extend the example by creating new types of pizzas that does
not already exist To do so:not already exist. To do so:

1. Add more topping ingredients as subclasses of
PizzaTopping. Use the hierarchy, but be aware of pp g y,
disjoints

2. Create new classes that represent the new types of y
pizzas.

3. Express the fact how this new class is related to other
types using a disjunction constraint.

4. Create restrictions on these pizzas to describe their
i di t

38

ingredients

Start from the pizzas2_1.owl available on the
Labs page:

Select File Build New Project OWL Files and
chose pizzas2_1.owl

Create a new pizza called “VegetarianPizza”
under Pizza
make this disjoint from its siblings as we have been doing

Select MargheritaPizza.
 ill i h i l h i l N dPiyou will notice that it only has a single parent, NamedPizza

Add VegetarianPizza as a new parent using the
diti id t “Add N d Cl ” b ttconditions widget “Add Named Class” button

notice that MargheritaPizza now occurs in 2 places in the asserted
hierarchy we have asserted that MargheritaPizza has 2 parents 39

We’d like to be able to check the logical
consistency of our model
We’d also like to make automatic inferences
about the subsumption hierarchy. A process p y p
known as classifying

ie Moving classes around in the hierarchy based on g y
their logical definition

Generic software capable of these tasks are known as
reasoners (although you may hear them being referred to as
Classifiers)

Pellet is a reasonerPellet is a reasoner

40

1. Download and extract Pellet from the Labs page
2 Execute LaunchServer bat to launch the pellet2. Execute LaunchServer.bat to launch the pellet

server

41

Classify taxonomy (and check consistency)Classify taxonomy (and check consistency)

Compute inferred types (for individuals)p yp ()

Just check consistency (for efficiency)

42

y (y)

1. Classify your ontology
You will see an inferred hierarchy appear which willYou will see an inferred hierarchy appear, which will
show any movement of classes in the hierarchy
You will also see a results window appear at the bottom

of the screen which describes the results of the reasonerof the screen which describes the results of the reasoner

MargheritaPizza turns out to be
inconsistent why?inconsistent – why?

43

We are asserting that a MargheritaPizza is a
subclass of two classes we have stated are
ddisjoint
The disjoint means nothing can be a j g
NamedPizza and a VegetarianPizza at the
same time
This means that the class of MargheritaPizzas
can never contain any individualsy
The class is therefore inconsistent

44

1. Close the inferred hierarchy
and classification results paneand classification results pane

2. Remove the disjoint between VegetarianPizza and
its siblingsits siblings
When prompted, choose to remove only between this class and its siblings

3. Re-Classify your ontologyy y gy
This should now be accepted by the reasoner with no inconsistencies

45

All classes in our ontology so far are Primitive
We describe primitive pizzasp p
Primitive Class = only Necessary Conditions
They are marked as yellow in the class They are marked as yellow in the class
hierarchy

29/11/2004 46

H d fi iti Th t i t l t N Have a definition. That is at least one Necessary
and Sufficient condition
A k d i i th i t fAre marked in orange in the interface
Classes, all of whose individuals satisfy this
d fi iti b i f d t b b ldefinition, can be inferred to be subclasses
Reasoners can perform this inference

47

Start with pizzas2 3 owl close the reasoner panes

1. Create a subclass of Pizza called MeatyPizza
Don’t put in the disjoints or you’ll get the same problems as before

Start with pizzas2_3.owl, close the reasoner panes

Don t put in the disjoints or you ll get the same problems as before
In general, defined classes are not disjoint

2. Add a restriction to say:
“Every MeatyPizza must have at least one meat
topping”

3. Classify your ontology
What happens?

48

1. Click and drag your ∃ hasTopping MeatTopping restriction
from “Necessary” to “Necessary & Sufficient”from Necessary to Necessary & Sufficient
The MeatyPizza class now turns orange, denoting that it is now a defined class

2. Click and drag the Pizza Superclass from “Necessary” to g p y
“Necessary & Sufficient”
Make sure when you release you are on top of the existing restriction otherwise
you will get 2 sets of conditionsyou will get 2 sets of conditions.

You should have a single orange
icon on the right stretching acrossicon on the right stretching across

both conditions like this…
3. Classify your ontology

49

What happens?

Define in words?
“a pizza with only vegetarian toppings”?
“a pizza with no meat (or fish) toppings”?
“a pizza that is not a MeatyPizza”?

More than one way to model this

50

Start with pizzas2 5 owl

1. Create a subclass of PizzaTopping
called VegetarianTopping

Start with pizzas2_5.owl

2. Click “Create New Expression” in the Conditions Widget
Type in each of the top level PizzaToppings that are not meat or fish (ie
DairyTopping, FruitTopping etc) and between each, type insert the y pp g, pp g) , yp
union symbol

3. Press Return when finished
you have created an anonymous class described by the expressionyou have created an anonymous class described by the expression

4. Make this a defined class by moving both conditions from the
“Necessary” to the “Necessary & Sufficient” conditions

5 Classify your ontology5. Classify your ontology

51

1. Select MargheritaPizza and remove
VegetarianPizza from its superclassesVegetarianPizza from its superclasses

2. Select VegetarianPizza and create a restriction to say that it
“only has toppings from VegetarianTopping”

3. Make this a defined class by moving all conditions from
“Necessary” to “Necessary & Sufficient”
Make sure when you release you are on top of the existing restriction otherwiseMake sure when you release you are on top of the existing restriction otherwise
you will get 2 sets of conditions.
You should have a single orange icon on the right stretching across both
conditionsconditions

4. Classify your ontology
What happens?

52

The reasoner does not have enough
information to classify pizzas under
VegetarianPizza
Typically several Existential restrictions on a yp y
single property with different fillers – like
primitive pizzasp p
Existential should be paraphrased by “amongst
other things…”g
We need closure for the given property

53

Example: MargheritaPizza
All MargheritaPizzas must have:

at least 1 topping from MozzarellaTopping and
at least 1 topping from TomatoTopping and
only toppings from MozzarellaTopping or TomatoToppingonly toppings from MozzarellaTopping or TomatoTopping

The last part is paraphrased into
“ th t i ”“no other toppings”
The union closes the hasTopping property on
MargheritaPizza

54

Start with pizzas2 7 owl

1. Select MargheritaPizza
2 Create a Universal Restriction on the hasTopping property

Start with pizzas2_7.owl

2. Create a Universal Restriction on the hasTopping property
with a filler of “TomatoTopping MozzarellaTopping”
Remember, you can type “or” to achieve this, or you can use the expression

palette
3. Close your other pizzas

Each time you need to create a filler with the union of all the classes used on theEach time you need to create a filler with the union of all the classes used on the
hasTopping property (ie all the toppings used on that pizza)

4. Classify your ontology
Finally the defined class VegetarianPizza should subsume any classes that onlyFinally, the defined class VegetarianPizza should subsume any classes that only
have vegetarian toppings

55

Using OWLViz
Requires Graphviz (available on the Labs page)q p (p g)
Download it and install it (we will extra
configurations in the next steps if required)co gu at o s t e ext steps equ ed)

56

57

View Inferred ModelView Asserted Model View Inferred ModelView Asserted Model

58

The pizza Finder application

59

Download the Pizza Finder Application

Run the application using your ontology

60

61

Create an OWL ontology that models the following concepts:
1 There should be three classes: Customer Shop and Product1. There should be three classes: Customer, Shop and Product.
2. Customer and Shop should be equipped with properties name

(xsd:string) and email (xsd:string), which are equivalent to
foaf:name and foaf:mbox.

3. Each Product should have an order number (xsd:int). An order
number can be unambiguously assigned to a Productnumber can be unambiguously assigned to a Product.

4. A Shop should have a property sells (range: Product) and a
Product should have a property soldBy (range: Shop) respectively.

5. Instances of class Shop that sell more than 100 products should
belong to a new class BigShop.

6 A Product must not be a Customer.6. A Product must not be a Customer.
7. Instances that are both, Shop and Customer should belong to a

class PurchaseAndSale.

By P.Siehndel, IVS Semantic Web Group

Note: Import the foaf ontology

Slides based on the tutorial prepared by N.
Drummond, M. Horridge
h // k/ d d/http://www.cs.man.ac.uk/~drummond/cs646

Software / resources / community at:
http://protege.stanford.edu/http://protege.stanford.edu/

63

