
REST
REpresentational State Transfert
 Toward Resource-Oriented Architecture

(ROA)

Plan

1. Reminders on HTTP

2. Maturity Model of L. Richardson

3. REST Web services

Part 1

Reminders on HTTP

HyperText Transfert Protocol
• HTTP enables to access files that are located on the Internet. It is used for

the World Wide Web
• HTTP is above TCP and operates according to a request/response principle

– The client sends a request containing information about the requested
document.

– The server sends the document if available, or an error message.

HTTP is a synchronous protocol initially connectionless, and each couple
request/response is then independent.

HTTP – Brief history

• From HTTP 1.0 to HTTP 1.1
• Protocol at CERN in the early 1990s to provide a

simple Web transfer protocol.
• Two protocol versions that exist:

– HTTP 1.0 is defined in 1996 by RFC 1945
– HTTP 1.1 is defined in 1999 by RFC 2616

• The version 1.1 brings the following
enhancements :
– Five new methods
– Persistant connections

« Adresses » HTTP

• Uniform Resource Identifier URI
– String of characters structured to uniquely identify a resource

in a space of a defined name.
– This resource may be designated either by a URN or by a URL.
– URN and URL are subsets of URI.

• Uniform Resource Name or URN
– Enables to identify a resource by his name even when this

latter is no longer available.

• Uniform Resource Locator or URL
– Allows to locate a resource.
– In the case of HTTP, URL locates an HTML page, a text file, a CGI

script, an image ...

URI Format

HTTP Protocol : Request (1/2)

• The request that is transmitted by the client to the server
comprises:
– A request line (request-line) containing the method used, the

URI of the requested service, and the version used of HTTP
– One or more header lines, each having a name and a value.

HTTP Protocol : Request (2/2)

• Example
• The client requests the document at the adress

– http://www.example.com/index.html

• He accepts, in return, all types of the document
• Prefers the documents in French language
• Uses a browser that supports Mozilla 4.0 on a Windows NT 5.1 system

(Windows XP)
• Indicates to the TCP server that it should keep the connection opened

after the request (because it has other requests to be transmitted).

HTTP Protocol: methods types (1/2)

• When a client connects to a server and sends a query,
this query may take several types, called methods

• Requests of type GET
– To retrieve information

• Document, chart

– Integrates URI formatting of the data (query string)
• www.toto.com/hello?key1=titi&key2=tata&…

• Requests of type POST
– To post secret information (not visible in the header),

graphic data, ... Transmitted in the body of the request

– Transmitted in the body of the request

Principal methods – GET (1/2)

• The method GET is an information request on a resource
– The information provided as a response takes the following form:

• A set of headers

• And a content

– The client never sends a representation with the request (request body is
empty)

Principal methods– GET (2/2)

• The method GET is an information request on a resource

– The information provided as a response takes the following form:

• A set of headers

• And a content

Principal methods– POST

• The method POST allows to create / add a new resource
– All parameters, to be moved to the services, can be in the header

– No data is expected in response (but this still be possible)

Principal methods– DELETE

• The method DELETE enables to delete a resource

– All parameters, to be moved to the services, can be in the header

– No data is expected in response (but this still be possible)

Principal methods– PUT

• The method PUT allows to update a resource
– Includes adding a sub-resource

– All parameters, to be moved to the services, can be in the header

– No data is expected in response (but this still be possible)

Principal methods– safety et
idempotence

• Two important characteristics
– The safety

– The idempotence

• A safe method should never change the resource state.
– Case of methods GET and HEAD

– POST, DELETE and PUT are not safe

• A method is idempotent if it can be repeated any number of
times, the set of resources always remains in the same state
after applying the method
– In other words, the result of an idempotent operation remains the

same in a given context with given parameters

Principal methods– safety et
idempotence

• The method GET is safe and idempotent
– A client that makes a request of type GET on a resource does not

require any change of this ressource
– The server can evidently change however the client can not be

responsible (e.g., log the request or increment a counter)
– Repeating GET any number of times has the same effect

• Methods PUT and DELETE are idempotent
– Make several requests PUT (or DELETE) on a resource must have the

same effect as to make only one request.
– Known Issue :

• PUT that change the resource state by an increment of 5 on a value
• Such specification is not possible to be idempotent

• The method POST is neither safe nor idempotent
– It serves from «tool box» in various frameworks (custom messages,

etc.)

HTTP Protocol : response (1/3)

• The transmitted response by the server to the client comprises :
– A status line containing the used version of HTTP and a status code
– One or more header lines including a name and a value
– The document body returned (e.g., HTML or binary data).

• A response does not necessarily contain a body (e.g, if it is a response to a
HEAD request, only the status line and the headers are returned).

HTTP Protocol : response(2/3)

Example
• The code 200 indicates that the requested document has been found.
• To facilitate the management the client cache, the server transmits

– The current date,
– The date of the last modification of the document
– The expiration date (after which the document can be requested again).

HTTP Protocol : response(3/3)

Example
• The header Content-Type indicates that the returned document is of type HTML
• The header Content-Length indicates that the document body have a length of

1456 bytes.
• The header Server indicates the used software server.

– Sending such information is not recommended from a security point of view.

Generic headers of HTTP messages

HTTP requests Headers

HTTP responses Headers

Some return codes of HTTP responses

Part 2

Maturity Model of L.

Richardson

The Maturity Model of Richardson

• Original presentation of Leonard Richardson(QCON conference 2009)
– http://www.crummy.com/writing/speaking/2008-QCon/act3.html

• Decryption by Martin Fowler in March 2010
– http://martinfowler.com/articles/richardsonMaturityModel.html

• Level 0: The RPC over HTTP in POX
• Level 1: The use of differentiated resources
• Level 2: The use of verbs and HTTP return codes
• Level 3: The use of hypermedia controls

The Maturity Model of Richardson

MMR – Level 0 – «tunneling»
Mecanism

• HTTP as the transport system for remotely interact with a ”service”
– Model RPC/RPI (Remote Procedure Call / Invocation)
– All requests are sent to the same URI (or endpoint)
– Example: Making an appointment with the doctor

• A unique URI appointmentService

• Example: Making an appointment with the doctor
– A unique URI appointmentService

– The client component must first ask the server component
for available time (open slots) at a given date

MMR – Level 0 – «tunneling»
Mecanism

MMR – Level 0 – «tunneling»
Mecanism

• Example: Making an appointment with the doctor
– A unique URI appointmentService

– The client component must first ask the server component
for available time (open slots) at a given date

• Example: Making an appointment with the doctor
– A unique URI appointmentService
– Then take one appointment among the possible choices

MMR – Level 0 – «tunneling»
Mecanism

MMR – Level 0 – «tunneling»
Mecanism

• Example: Making an appointment with the doctor
– A unique URI appointmentService
– Then take one appointment among the possible choices

• Example: Making an appointment with the doctor
– A unique URI appointmentService
– Then take one appointment among the possible choices

MMR – Level 0 – «tunneling»
Mecanism

• HTTP as the transport system for remotely interact with a ”service”

– Model RPC/RPI (Remote Procedure Call / Invocation)

• A unique URI

• A unique HTTP verb is used (POST) which does not distinguish the type of action to
execute on the server side

– Furthermore neither safe nor idempotent  no possible optimization

• We call functions RPC Approach !!!!

– signatures and return content are in the body of messages

– Here XML, but any other format is possible

• Idem SOAP or RPC-XML – the only difference XML + specific grammar

MMR – Level 0 – «tunneling»
Mecanism

MMR – Level 1 –
The use of resources

• Distinction of several URIs but still a single verb

MMR – Level 1 –
The use of resources

• Distinction of several URIs but still a single verb

MMR – Level 1 –
The use of resources

• Distinction of several URIs but still a single verb

MMR – Level 1 –
The use of resources

• Distinction of several URIs but still a single verb

MMR – Level 1 –
The use of resources

• Distinction of several URIs but still a single verb

• Distinction of several URIs but still a single verb
• It is no longer what we want from the client station  Start of

discoverability !!
– The server has a responsibility to indicate the resource for the future

of the exchange (http://royalhope.nhs.uk/slots/1234/ par exemple)

• Introduction of the notion of identity of an object
– We no longer call simply a function
– We call a method on an identified resource (i.e. an object)

• Important benefits
– Differentiation of URIs by application domain provides semantics to

the system, which is one of the great strengths of the REST
architectural style.

 beginnings of identifying resources

MMR – Level 1 –
The use of resources

MMR – Level 2 – Verbs and HTTP
return codes

• Using all HTTP verbs in compliance with their specifications
– For our example GET and POST
– GET is safe and idempotent for the first request

MMR – Level 2 – Verbs and HTTP
return codes

• Using all HTTP verbs in compliance with their specifications
– For our example GET and POST
– GET is safe and idempotent for the first request

• Using all HTTP verbs in compliance with their specifications
– For our example GET and POST
– POST (as well as PUT) allows the state change

MMR – Level 2 – Verbs and HTTP
return codes

• Using all HTTP verbs in compliance with their specifications
– For our example GET and POST
– POST (as well as PUT) allows the state change

• In the header: response code 201 + the URI slot accessed later to
access the modification  beginning of discoverability again

• In the body: representation of the resource to prevent access for
consultation on slots/1234/appointment

MMR – Level 2 – Verbs and HTTP
return codes

• Using all HTTP verbs in compliance with their specifications
– For our example GET and POST
– POST (as well as PUT) allows the state change

• Return code change on error

MMR – Level 2 – Verbs and HTTP
return codes

• Using all HTTP verbs in compliance with their specifications
– PUT and DELETE are little used in practice

• Using return codes of HTTP verbs
• important benefits

– the semantic use of verbs and HTTP return codes enriches the protocol level
between the client and the server

– Supported by tools (browsers, firewalls, routers, etc.) as standard, so possible
optimizations

– Using the POST verb allows to clearly signify the creation of a resource with
type appointment using the URI slots/1234/. As this is the creation of an
appointment (POST verb), the part /1234 of the URI is not ambiguous for the
server: This is of course of the identifier of appointment.

– the use of HTTP return codes allows for a clear semantics to the client without
reading the message body
• 201 Created : the creation has succeeded
• 404 Not Found : the customer concludes that the resource has moved / deleted

MMR – Level 2 – Verbs and HTTP
return codes

MMR – Level 3 –
hypermedia controls

HATEOAS
Hypertext As The Engine Of Application State

• At level 2, the client must know in advance
– all URIs correspond to different features of the server
– possible actions on these URIs (HTTP methods)

the client must be aware of the possible request during its application

path: he must know in advance the possible application states of the
system.

• At level 3, the client discovers step by step what he is not allowed
to do at the application level, thanks to hypermedia.
– Hypermedia links take us from an application state to another without

having to know them in advance.

• HATEOAS – Hypertext As The Engine Of Application State
• Same initial request as level 2

MMR – Level 3 –
hypermedia controls

• But different return containing "hyperlinks" to find out
where to take the respective appointments

MMR – Level 3 –
hypermedia controls

• But different return containing "hyperlinks"

MMR – Level 3 –
hypermedia controls

• The CHs allow the server to change its URIs without "breaking"
customers
– weak coupling
– Links are no longer known as "hard" by the client but provided by the

server

• The links tell the client application developer opportunities ahead
(but not all information)
– The controls "latest" and "cancel" point to the same URI (respectively

GET and DELETE verbs but it is not specified by the link)

• No standard yet but ATOM recommandations (RCF 4287) to define
a link <link>
– The uri attribute gives the address of the resource
– The rel attribute describes the type of relationship

MMR – Level 3 –
hypermedia controls (HC)

The Maturity Model of Richardson

• Level 0
– A URI, a verb

• Level 1
– Several URIs, a single verb
– Uses a "divide and conquer" approach to break a single point in

several

• Level 2
– Several URIs, Several verbs
– Introduces a standard set of verbs to use similarly in similar situations

• Level 3
– Several URIs, Several verbs
– Links between pages
– Introduces discoverability and self-documentation exchange protocols

Part 3

REST and

ressource-oriented approach

A word on the REST Web services

• Exploited for Data-Oriented Architectures (DOA)
• REST is not a standard, there is no W3C

specification defining a specification
• REST is an architectural style based on a mode of

understanding the web
• REST is based on web standards:

– HTTP protocol
– URIs
– File Formats
– Secure SSL

Ressource-oriented approach
or REST

• REST is an acronym for REpresentational State Transfert
• The principles were defined in the thesis of Roy FIELDING in

2000
– One of the main authors of the HTTP specification
– Founding member of the Apache Foundation
– Apache web server developer

• REST is an architectural style inspired from web
architecture

• So it’s
– A way to build an application

• And it isn’t
– A format, a protocol, a standard

What is REST?

• REST Web Services are used to develop resource-
oriented architectures

• Different denominations available in the
literature
– Data Oriented Architecture (DOA)
– Resource Oriented Architecture (ROA)

• Applications that meet the resource-oriented
architectures are named respectively RESTful

• In the rest of the course we indiscriminately use
the name REST and RESTful

Application state type client – server
(1/2)

• There exist 2 types of states

– The state of the resource is information relating
to the own resource, so the service (eg BD)

– The state of the application is the information for
each customer so related to each "user".

  It is this state which we want to be

independent

Application state type client – server
(2/2)

REST Characteristics

• REST Web services are stateless
– The server never has to know the client's condition and vice versa
– The client maintains the state of the implementation of its view
– The server does the same maintaining the state of its resources
  These states are never shared!!!

– Any change of state occurs as a result of an exchange of messages

between client and server  transfer of representations
– Since server and client do not know their respective states

• Each request sent to the server must contain all the information necessary for
its treatment

• The server does not store customer information

 Minimizing system resources, no session neither state

REST Characteristics

• REST Web services provide a uniform interface based on
HTTP methods
– GET, POST, PUT et DELETE

• REST-oriented architectures are built from resources that
are uniquely identified by URIs

Recommendation:
Treatments must be installed client side,
not server side

The resource-oriented architecture
based on 3 concepts …

• Resource (Identifier)
– Identified by a URL
– Example :

http://localhost:8080/libraryrestwebservice/books

• Method (Verb)
– Allows you to manipulate the username or resource
– Method HTTP : GET, POST, PUT and DELETE

• Representation gives a view of a resource
– We often talk about the view of the state of a resource
– This is the information transferred between the client and

the server
– Example : XML, JSON

… and 4 properties

• The representation must be addressable

• Services must be stateless

• Services / Resources must be connected

• The services respect an interface standard
(Uniform Interface, or UI)

Resources and URI (1/3)

• A resource is something that is identifiable in
a system

– Personne, Agenda, Document, set, map

• http://cours-rest.fr/api?method=findStudent&userid=nLegoff&sessionid=06102015

• http://cours-rest.fr/students/nicolas-legoff

Resources et URI (1/3)

• A resource is something that is identifiable in a system
– Personne, Agenda, Document, Ensemble, Carte

Bad URI
• http://cours-rest.fr/api?method=findStudent&userid=nLegoff&sessionid=06102015

Good URI
• http://cours-rest.fr/students/nicolas-legoff

From an architectural point of view

• First solution = implementation choice
– Here the method call to a remote service

– HTTP used simply as message transport only

• Second solution
– Less impression to invoke a remote operation

– URL reflecting a concept: a student

– AND no action

http://cours-rest.fr/api?method=findStudent&userid=nLegoff&sessionid=06102015
http://cours-rest.fr/api?method=findStudent&userid=nLegoff&sessionid=06102015
http://cours-rest.fr/api?method=findStudent&userid=nLegoff&sessionid=06102015
http://cours-rest.fr/students/nicolas-legoff
http://cours-rest.fr/students/nicolas-legoff
http://cours-rest.fr/students/nicolas-legoff
http://cours-rest.fr/students/nicolas-legoff
http://cours-rest.fr/students/nicolas-legoff

Resources et URI (2/3)

• A resource is something that is identifiable in a system
– Personne, Agenda, Document, Ensemble, Carte

• A URL uniquely identify a resource on the system
– Attention, resource can have multiple URIs
– The representation of the resource is not related to the URI, it can change over time and the

customer
– A URI should be descriptive (Fielding thesis, W3C recommendations)
– A URI must have a structure

Resources et URI (3/3)

Methods CRUD

• A resource may undergo four basic operations referred to as CRUD
– Create –
– Retrieve –
– Update –
– Delete –

• REST uses HTTP to directly express these four basic operations via HTTP
methods
– Create by the method POST
– Retrieve by the method GET
– Update by the method PUT
– Delete by the method DELETE

 Few verbs to be standard, interoperable

• Additional opportunities can be expressed through other HTTP methods
(HEAD, OPTIONS)

The representation (1/2)

• Provide the data according to a representation for
– The client (GET)
– The server (PUT andPOST)

• The data returned in different formats
– XML
– JSON
– (X)HTML
– CSV
– ...

• The input format (POST) and the output format (GET)
of a Web service of a resource can be different

The representation(2/2)

• Examples : JSON and XML formats

The resource-oriented architecture
based on 4 properties

• The representation must be addressable

• Services must be stateless

• Services / Resources must be connected

• The services respect an interface standard
(Uniform Interface, or UI)

Property 1 - A representation should
be addressable

• A web service is addressable since it exposes some of its data in a visible resources
– cf. annotation @Path java classes visible in Jersey

• A URL should never represented more than one resource (otherwise no more of
universality)

Example : A resource accessible in English and French
• A frequently used solution URI a representation

– www.mylibrary/2012/books/en  a representation in English
– www.mylibrary/2012/books/fr  a representation in French

• Other solution
– www.mylibrary/2012/books/  a unique URI
– Both performances still exist (2 GET methods annotated with different @Produces)
– The customer choose with the Accept-Language of the header of the query

The two solutions are RESTful. It only deals with URI, representation
and all happening in the header of the request

Property 2 - Stateless service (1/7)

• When a client makes an HTTP request,
– All necessary information for the execution of the

request by the server are sent to the server

– The server never reuses information from previous
queries

• In practice, information is transfered via the
addresses (URIs)

Any HTTP request must run in a completely
isolated way

Property 2 - Stateless service (2/7)

Be stateless
• A Web application must scale up

– Server clusters with load balancing management, proxies, of input points form
topologies enable applications to move between servers  in order to reduce the
response time to the client

– This means you can transfer independent and comprehensive queries, ie queries
freestanding  the state should not be specific to the server

– A self-supporting request must not therefore store / use any information on the server
peculiar to itself

• A REST Web service included in the header and body of the HTTP
request all that is needed to operate the called service
– Settings, context, necessary data to server

• Being stateless simplifies the design and implementation of server-side

services because the lack of state removes the need to synchronize
data from the session with an external application.

Property 2 - Stateless service (3/7)

Example of a solution with state
• An application requests a "next page" in a set of several

result pages
• With the concept of state

– It is assumed that the service keeps trace of the last page visited
– For this, the increment service and maintains a variable

previousPage to pass then to the next page.

• Such a variable is problematic to update among several
Java servers (EJC or servlet/Java Server Pages for eg. With
java.io.NotSerializableException during session replication.

• In addition, the synchronization sessions adds additional
costs impacting server performance.

• Finally, what about the idempotence??

Property 2 - Stateless service (4/7)

Exempleof a Solution a stateless
• In the case of a web service REST, the server is only responsible for generating

responses
• The client manages the state of the application itself
• In our example, it is the customer that indicates the page he wants and not the

server that has the knowledge !!!
• In addition, the web service indicating the next page in the response to the client

and allows the customer to manage this value

Property 2 - Stateless service (5/7)

Good practices
• Server Side

– Generates responses that include links to other resources to permit client
applications to navigate to these resources

– Generates responses which indicate whether they are "cacheables" or not to
improve performance by reducing the number of requests per resource
duplication or complete elimination request)
• Cache-Control and Last-Modified (date value) HTTP header.

• Client Side
– Use the Cache-Control header value of the response to determine if the

answer can be copied locally or not
– The customer also read the Last-Modified header value of the response and

returns the value if If-Modified-Since header value has changed (called GET
conditional)
• Code 304 (Not Modified) indicates that the current resource has not changed
• The client can use his local copy of the resource so that the resource is updated

– Sending Freestanding queries.

Property 2 – Stateless service (6/7)

• A stateless service influence only one type of states
• To remember, there are 2 types of states in a REST service

– The resource status is the information related to the resource
– The state of the application is the information related to each

customer

• The state of the application may appear when you does not
expect it
– Various websites create unique keys for each registered user
– This key is sent with each request (limiting the number of

request per day / right of access)

Property 2 – Stateless service (7/7)

The importance of being stateless
Moves to scale by
• Putting resource in cache
• By separating the requests to be processed across

multiple servers
– If a server can not handle everything, since services are

independent, without states, we distribute them among
different servers (balancing randomly load, round-robin,
etc.)

– If both servers are not enough, we add a third, etc.
– If a server fails, the others substitute it (fault tolerance)

• No replication of the application state

Property 3 – The resources should be
connected

• The server may guide the client from a ressource
to another by sending links to other resources in
responses according to requests

– Hypermedia as the engine of application state
 (Fielding’s PHD thesis)

• It is the case of « human web » where links to
other pages are present in almost all web pages

• In constrast « programmable web» is hardly
connected

Property 4 – The UI (Uniform
Interface) is respected

• All the interactions between the client and the server passes through the
UI
– GET
– HEAD
– PUT
– DELETE
– POST

• OPTIONS

• If you ever want another operation, then overload the POST operation
• But it is probably rrather than a new resource to add
• Importance of safety and idempotence

– Warning not to POST

• Importance of using the same interface than everyone with the same
operation semantic !!!

