
Multi tier architecture

Walid GAALOUL

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

Multilayered software architecture

• A multilayered software architecture is a
software architecture that uses many layers for
allocating the different responsibilities of a
software product.

• 'Layer' represents the orientation of the
different physical or conceptual elements that
make up an entire software solution

• 'Tier' represents the physical layout of the
various mechanisms in a system's infrastructure

3 Layers of Information System

Presentation Layer

• Controls how the
information system
presents information
to external entities
and accepts it from
them.

• External entities are
users (UI) or other
information systems
(API)

Application Logic Layer

• The program

• Business process

• Business logic

• Business rules

Resource Management Layer

• Implements the
resource manager

• Takes care of ACID
properties

• We will discuss them
in coming slides

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

Transaction Processing

• Business Transaction
– Interaction in real world

– Usually between enterprise & person or between
enterprises

• Information processing that is divided into
individual, indivisible operations, called
transactions performs function on (shared)
database

• Online Transaction Processing (OLTP)
– Runs a collection of transaction programs online

The ACID Properties

• A set of properties that guarantee that
transactions are processed reliably

– Atomicity

– Consistency

– Isolation

– Durability

Atomicity

• All (commit) or nothing (abort)

– "all or nothing": if one part of the transaction
fails, the entire transaction fails

– Example: transfer money between two bank
accounts

• Must handle situations including power
failures, errors, and crashes

Consistency

• Each transaction takes valid states to valid
states:

– Satisfy integrity constraints, triggers

• Sometimes the only notion of “valid” state is
a state that could have been produced by
executing a sequence of transactions

Isolation

• Each transaction behaves as if it were executed
in isolation at some instant in time

• AKA Serializability
– Ensures that the concurrent execution of

transactions results in a system state that would be
obtained if transactions were executed serially

• Consistency + Isolation imply the data remains

consistent even when multiple transaction
programs execute concurrently

Durability

• The effect of a committed transaction will
not be lost Even in the event of power loss,
crashes, or errors

• So data must be on stable storage before
commit

• Usually done with a log (or journal) that must
be forced before commit and used in case of
crash recovery

Resource Manager

• How ACID transactions are implemented

– Allocate resources to program executing a
transaction e.g. a locked record is a resource

• Reclaim resources in appropriate state on
commit or abort

• Handled at “Resource Management Layer”

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

Top down design

1. define access channels and
client platforms

2. define presentation formats
and protocols for the
selected clients and
protocols

3. define the functionality
necessary to deliver the
contents and formats
needed at the presentation
layer

4. define the data sources and
data organization needed to
implement the application
logic

Bottom up design

1. define access channels and
client platforms

2. define presentation formats
and protocols for the
selected clients and
protocols

3. define the functionality
necessary to deliver the
contents and formats
needed at the presentation
layer

4. define the data sources and
data organization needed to
implement the application
logic

1-Tier Architecture

• System is necessarily
monolithic

• May be highly efficient

• No stable service interface
API

• Problem of Legacy Systems

2-Tier Architecture

• Added flexibility in
presentation layer
– e.g. multiple specialised

presentation layers add no
complexity to application

• Encouraged stable, published
APIs
– So clients could be developed

2-Tier Architecture disadvantages

• A single server doesn’t scale

2-Tier Architecture disadvantages

• Integration of multiple services must be done at client

3-Tier Architecture

• Scalability at application
Layer

– Multiple application servers

• Application Integration
– Do it in the middle tier

• Encourage stable, published
APIs for resource
management

Integration in middle Tier

N-Tier architecture (Inductivity)

Enterprise application development
considerations

• Distributed computing protocols (RMI, CORBA, IIOP)
• Load balancing
• Persistence, back-end integration
• Transaction processing
• Clustering
• Runtime re-deployment, Server restarting
• Multi-threading
• Resource pooling
• Security, performance, optimization
• …..

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

Java Editions

• Java Platform Micro Edition:
– Mobile devices, set-top boxes etc
– Restricted form of Java

• Java Platform Standard Edition:
– Core libraries, what most people use in standard Java

programming

• Java Platform Enterprise Edition:
– Complete server-side enterprise-class development

and deployment platform

JEE

• Stands for “Java, Enterprise Edition”

• It is a collection of standards
– JDBC, JNDI, JMX, JMS

• It is a component technology

– Enterprise JavaBeans

• It is an “application server”
– Following in the footsteps of Component Transaction

Monitors

JEE Containers

• JEE Infrastructure is divided into logical domains
called containers which host components.

• A container supports services related to security,
transaction management, Java Naming and Directory
Interface (JNDI) lookups, and remote connectivity

• The container also manages some of the connectors
because it is responsible for triggering events and
instantiating components

• The container also manages non-configurable services
such as enterprise bean and servlet life cycles,
database connection resource pooling, data
persistence, and access to the Java EE platform APIs

JEE Containers

Java EE Server

• The runtime portion of a Java EE product. A Java EE
server provides EJB and web containers.

Enterprise JavaBeans (EJB) Container

• Manages the execution of enterprise beans for Java EE applications.
Enterprise beans and their container run on the Java EE server.

Web Container

• Manages the execution of JSP page and servlet components for Java EE
applications. Web components and their container run on the Java EE
server.

Applet Container

• Manages the execution of applets. Consists of a web
browser and Java Plug-in running on the client together.

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

JEE Architecture

• JEE specifications are interested in the activities:
– Development
– Deployment
– Execution

• Components to develop the code of the different elements of an application

– Web components
– Business logic components

• Containers to host the different components of an application
– Web container
– Application client container

• The supporting services for cross functional aspects
– Security, transactions, ...
– Communications infrastructure

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

JEE APIs

• An application programming interface (API)
specifies a software component in terms of
its operations, their inputs and outputs and
underlying types.

• Its main purpose is to define a set of
functionalities that are independent of their
respective implementation

JEE APIs

• JEE APIs can be divided into two broad
categories:

– Components

• Business logic components

• Presentation logic components

– Services

• Infrastructure services

• Communication services

JEE APIs - Components

• Business logic components:

– Enterprise JavaBeans

• Presentation logic components

– Servlets

– JSP

• These components are:

– Configured via Deployment Descriptors

– Deployed into containers

JEE APIs - Infrastructure Services

• JDBC (Java DataBase Connectivity) is an API for accessing
relational databases.

• JNDI (Java Naming and Directory Interface) is an API to
access naming services and business directories such as
DNS, NIS, LDAP, etc.

• JTA / JTS (Java Transaction API / Java Transaction Services)
is an API that defines standard interfaces with a
transaction manager.

• JCA (Java EE Connector Architecture) is an API to connect
to the enterprise information system (and Legacy systems)

• JMX (Java Management Extension) provides tools for
managing and monitoring applications, system objects,
devices (e.g. printers) and service oriented networks.

JEE APIs - Communication Services

• JAAS (Java Authentication and Authorization Service)
is an API for the managing authentication and access
rights.

• JavaMail is an API for sending email.

• JMS (Java Message Service) provides asynchronous
communication capabilities (called MOM Middleware
Message Object) between applications.

• RMI-IIOP (Remote Method Invocation over Internet
Inter-ORB Protocol) is an API that allows synchronous
communication between objects.

Lecture 1 - JEE Overview

1. Multilayer architecture

2. Transaction Processing

3. 1-Tier, 2-Tier, 3-Tier & N-Tier architecture

4. JEE Containers

5. JEE architecture

6. JEE APIs

7. JEE Packaging

JEE Packaging

• Client application
– jar archive

• Web
– Gathers servlets and JSP and the resources required to

execute them (classes, tag libraries, images, ...)
– war archive + web.xml (optional in some cases)

• EJB
– Gathers EJBs and their components (classes)
– jar archive + ejb-jar.xml

• Enterprise Application
– ear archive (includes several jar and war modules) +

application.xml

JEE Packaging

Types of clients

• Fat client (Thick client) means a graphical client
application running on the operating system of the user. A
thick client generally has advanced processing capabilities
and can have a sophisticated graphical interface.

• Thin client refers to an application accessible via a web
interface (HTML) can be viewed using a web browser,
where all the business logic is processed on the server
side.

• Rich client (smart client) provide a graphical interface,
described with a grammar description based on XML
syntax, that allows a user's local applications to interact
with server-based applications through the use of Web
services.

Application Servers

• An application server is a server-side application
execution environment

• It supports all the features that allow multiple
clients to use the same application

• Application servers can provide:
– Only a web container (eg Tomcat)
– Only an EJB container (eg JBoss, Jonas, ...)
– Both these containers (eg Websphere, Weblogic, …)

