

Page 38

Département INFormatiqu

Modèle relationnel

Produit cartésien

■ Définition

• Le produit cartésien de D_1 ,, D_n est l'ensemble des n-uplets (tuples) < V_1 ,, V_n > tel que $V_i \in D_i$

■ Notation

• D₁ X X D_n

Exemple:

- D₁ = {'BD', 'IO'} (codeUV)
- D₂ = {'Lecocq', 'Conan'} (coord)

D ₁ X D ₂	D ₁	D ₂
	BD	Lecocq
	BD	Conan
	Ю	Lecocq
	Ю	Conan

Page 39

Département INFormatiqu

TELECOM SudParis

Modèle relationnel

Relation (2)

- Plus simplement, une relation est un tableau à deux dimensions
- Une **ligne** est un *n-uplet* ou *tuple*
- Nom associé à chaque **colonne** afin de la repérer indépendamment de l'ordre = *attribut*
 - · Prend ses valeurs dans un domaine
 - Exemple : codeUV prend ses valeurs dans D_1

UV	codeUV	nbH	coord
	Ю	45	Conan
	BD	21	Lecocq

Page 41

Département INFormatique

Relation

■ Définition

- Sous-ensemble du produit cartésien d'une liste de domaines
- · Caractérisée par un nom

■ Exemple

- $D_1 = codeUV$
- $D_2 = coord$
- D_3 = entiers de 0 à 150
- $UV \subseteq D_1 \times D_2 \times D_3$

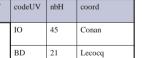
UV	D ₁	D ₃	D ₂
	Ю	45	Conan
	BD	21	Lecocq

Page 40

Département INFormatique

Modèle relationnel

Modèle relationnel


Exemples de relations

Étudiant	num	nom	adresse	age
	1	Bélaïd	Maisel	20
	2	Millot	CROUS	20
	3	Silber	Maisel	21

Inscrit	numÉtudiant	codeUV	note
	2	BD	10
	1	BD	20
	2	IO	17
	3	Ю	18

Page 42

Département INFormatique

TELE Sud Modèle relationnel

Elé

■ Définition

 Une clé est un groupe minimum d'attributs qui détermine un nuplet unique dans une relation (à tout instant)

■ Exemple

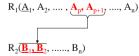
- Clé de Étudiant ?
- · Clé de UV ?
- Clé de Inscrit ?

■ Contrainte d'intégrité

 Toute relation doit posséder une clé renseignée (sans valeur inconnue)

Page 43

Département INFormatique



Modèle relationnel

Clé étrangère

■ Définition

• Une *clé étrangère* est un groupe d'attributs qui apparaît comme clé dans une autre relation

■ Rôle

 Les clés étrangères définissent des contraintes d'intégrité référentielle entre relations

Page 45

Département INFormatique

Schéma de relation

■ Définition

- · Le schéma d'une relation décrit :
 - Son nom
 - La liste des attributs qu'elle comporte et des domaines associés
 - La liste des attributs composant la clé (la clé est soulignée)

■ Exemple

• Étudiant(<u>num : entier</u>, nom : chaîne, adresse : chaîne, age : entier de 18 à 35)

■ Intention vs. Extension

- · Schéma de relation : intention de la relation
- · Table: extension
- · Schéma d'une BD relationnelle : ensemble des schémas des relations

Page 44

Département INFormatique

Modèle relationnel

Modèle relationnel

Clé étrangère (2)

■ Mises à jour et clés étrangères

- Insertion : la valeur des attributs doit exister dans la relation référencée.
- Insertion de (4, 'BD', 15) dans Inscrit?
- Suppression dans la relation référencée; les n-uplets référençant doivent disparaître.
 - Suppression de l'étudiant 2 dans Étudiant ?

Page 46

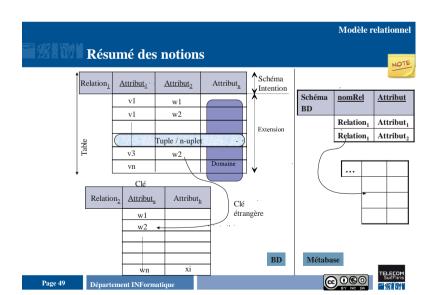
Département INFormatiqu

■ Exemples

Étudiant(<u>num</u>, nom, adresse, age)

UV(codeUV, nbH, coord)

Inscrit(numÉtudiant, codeUV, note)


Livre(côte, titre, numÉtudiant, datePrêt)

Chambre(no, prix, numÉtudiant)

Page 47

Département INFormatique

Métabase

■ Définition

 Base de données contenant l'ensemble des schémas et des règles de correspondances associées à une base de données

Principe

- Une base décrivant les autres bases, c'est-à-dire :
- les relations
- les attributs
- les domaines
- les clés
- · Notion de dictionnaire de données
- Base particulière, système, gérée par l'administrateur de BD

Page 48

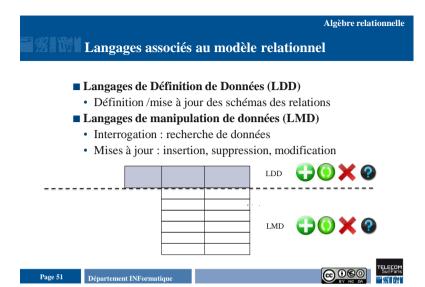
Département INFormatique

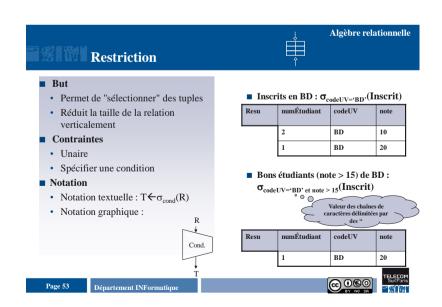
Modèle relationnel

Plan du document

■ Modèle relationnel

■ Opérateurs de l'Algèbre Relationnelle


- · Langages associés au modèle relationnel
- · Opérateurs de l'algèbre relationnelle
 - Restriction
 - Projection
- Union
- Intersection
- Différence
- Produit cartésien
- Jointure
- Division
- **■** Exemples de requêtes
- Optimisation
- Et moi que dois-je faire ?


Page 50

Département INFormatiqu

Algèbre relationnelle

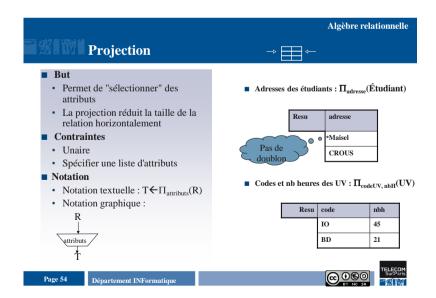
Opérateurs de manipulation

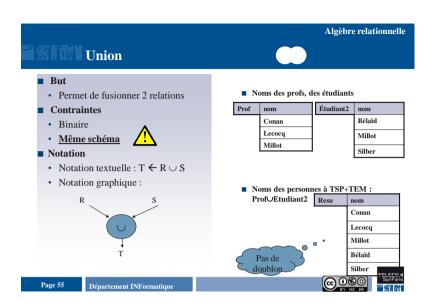
- Tout résultat d'une opération est une relation
 - peut être réutilisée en entrée d'un nouvel opérateur
- composer les opérateurs

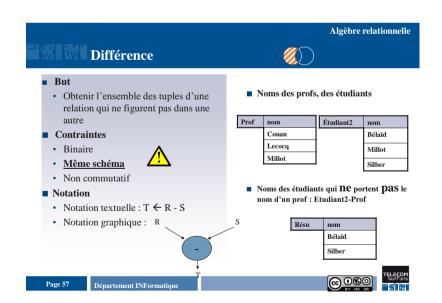
■ Bon niveau de réflexion

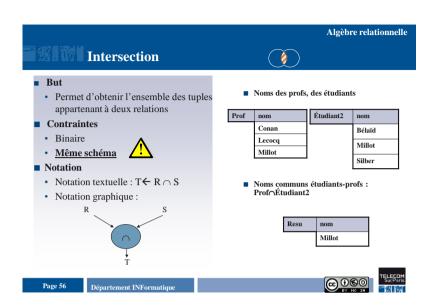
- Faire un programme = élaborer un algorithme puis le traduire dans un langage de programmation
- Faire une requête = élaborer une composition d'opérateurs algébriques puis la traduire en SQL

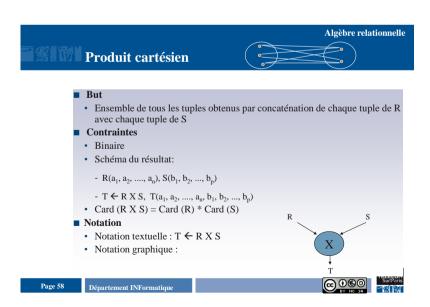
■ Les opérateurs peuvent être classifiés en :

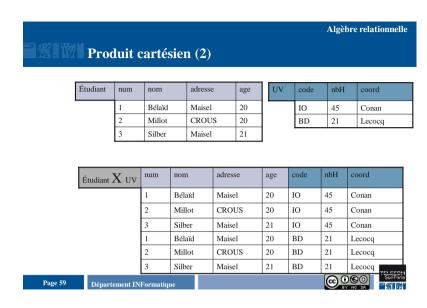

- · opérateurs ensemblistes / opérateurs relationnels
- · opérateurs de base / opérateurs dérivés
- · opérateurs unaires / opérateurs binaires
- Unaires: sélection (restriction), projection,
- Binaires : union, intersection, différence, produit cartésien, jointure, division

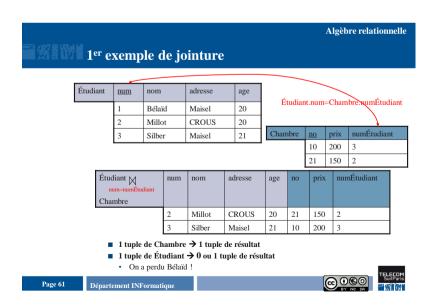

Page 52

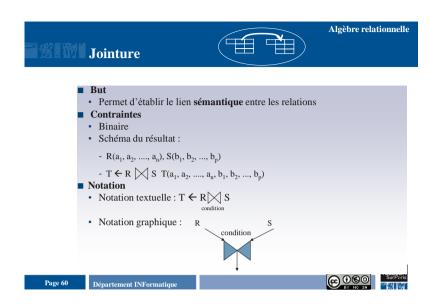

Département INFormatique

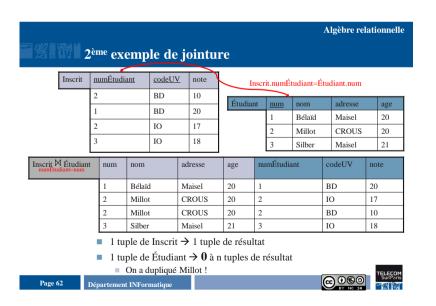


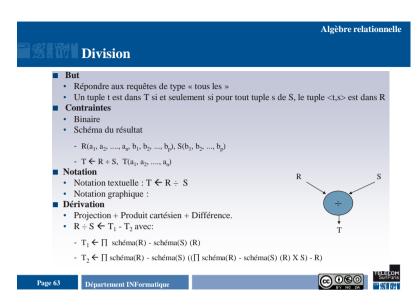


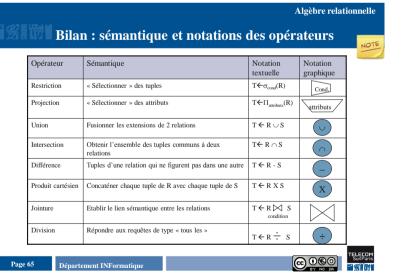


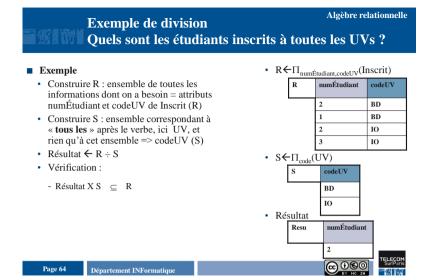












- Modèle relationnel
- Opérateurs de l'Algèbre Relationnelle
- **■** Exemples de requêtes
- **■** Optimisation
- Et moi que dois-je faire?

Page 67

Département INFormatique

Exemples

Composition des opérateurs

■ Ecriture textuelle :

 $\begin{cases} \text{Temp} \leftarrow \sigma_{\text{annee}=1995} \text{ (Vins)} \\ \text{Resultat} \leftarrow \Pi_{\text{num}} \text{(Temp)} \end{cases}$

Resultat $\leftarrow \Pi_{num}(\sigma_{annee=1995} (Vins))$

■ Arbre algébrique :

annee=1995

■ Base de données exemple : les vins

Vins(num, cru, annee, degre)

Recoltes(nvin, nprod, quantite)

Producteurs(num, nom, prenom, region)

Clients(num, nom, prenom, ville)

Commandes(ncde, date, ncli, nvin, qte)

Livraisons(ncde, no ordre, qteLivree)

V

R

Cl

Cl

Livraisons(ncde, no ordre, qteLivree)

L

• Quels « liens » entre ces informations ?

age 68 Dépar

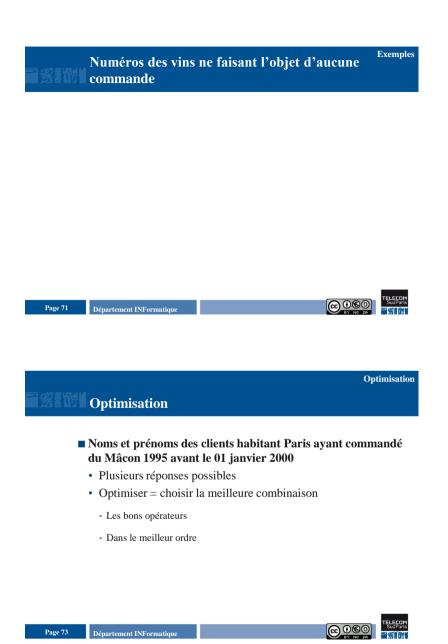
Département INFormatique

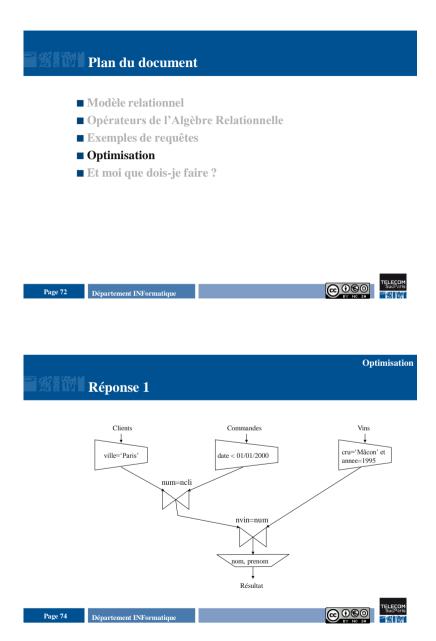
Exemples

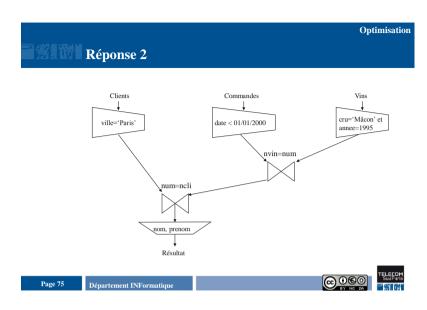
Noms des producteurs de Muscadet

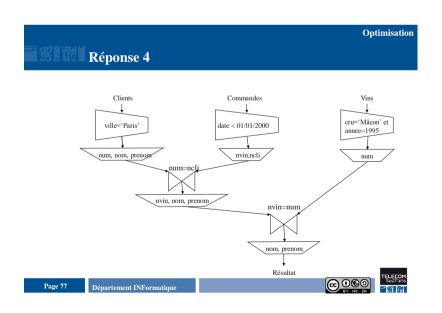
Exemples

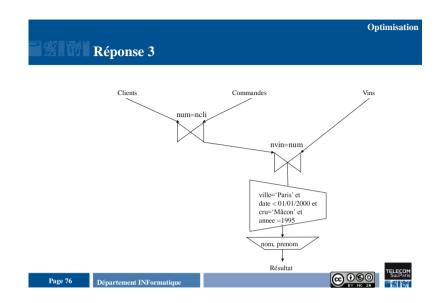
Page 69

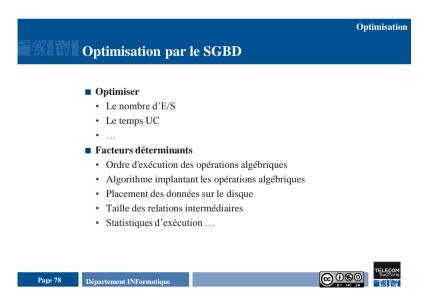

Département INFormatique


Page 70


Département INFormatique


© 0 © 0 EY NC 5A





Optimisation

Restructuration

■ Heuristique la plus employée

- Remonter les opérateurs unaires (restriction, projection) => diminution de la taille des relations
- · Descendre les jointures
- Propriétés utilisées
 - · Associativité des jointures
 - · Commutativité restriction / projection
 - · Commutativité restriction / jointure
 - · Commutativité projection / jointure

Page 79

Département INFormatique

Plan du document

- **■** Modèle relationnel
- Opérateurs de l'Algèbre Relationnelle
- **■** Exemples de requêtes
- **■** Optimisation
- Et moi que dois-je faire ?

Page 81

Département INFormatique

Quelle répartition des responsabilités ?

■ Libérer l'utilisateur des problèmes d'optimisation

- Exprimer une question sans préciser l'enchaînement des opérations algébriques
- → langage non procédural
- · → langage déclaratif

■ Responsabilités du SGBD

- · Traduction sous la forme d'un arbre algébrique
- · Optimisation de l'arbre
- · Exécution de l'arbre optimisé

Page 80

Page 82

Département INForm

Département INFormatique

Optimisation

