
Leveraging a user-land page table to implement a
concurrent garbage collector

• Supervisor: Gaël Thomas

1 Context

A garbage collector [3–5,8] is a system component that automatically and trans-
parently reclaims the unused memory of an application. Using a garbage collector
increases productivity. A garbage collector avoids first many bugs caused by explicit
memory management (e.g., double free or use after free). Using a garbage collector
also avoids the use of direct pointers in the code, which allows the language runtime
to enforce the type safety at runtime.

Today, many language runtimes use a garbage collector. This is for example the
case of Java, Go or python. These languages are commonly used to perform large
data analysis. For these applications, the garbage collector has to manage very large
heaps of hundreds of gigabytes. Unfortunately, garbage collectors do not scale well
with such large heap sizes.

The problem is that a garbage collector has to inspect the memory in order to find
the dead objects while the application modifies the memory. Running the garbage
collector in parallel of the application leads thus to concurrent read/write accesses to
the heap from both the collector and the application. These concurrent read/write
accesses lead to inconsistencies. In order to avoid these inconsistencies, we have
to finely synchronize the garbage collector and the application. Unfortunately, the
current techniques used to synchronize the garbage collector and the application leads
to performance degradation, which becomes high when the heap is large [1, 2, 6, 7].

1



2 REFERENCES

2 Subject

As part of the DiVA project, the Benagil team is implementing a large scale
garbage collector. The implementation consists in two components implemented
by two PhD students. The first one is a new GC algorithm implemented inside
the Hotspot Java virtual machine. The second one is an infrastructure that allows
a process to leverage a userland page table. In order to make the GC algorithm
efficient, we propose to use the page table in user land in order to implement the
Java heap as a cache for a large memory located on different machines. By managing
the Java heap as a cache, we eliminate the risk of inconcistencies when the application
and the collector executes concurrently. For that, we have to ensure that, during a
collection, the Java virtual machine do not evict data from its cache. By preventing
eviction, the memory is only modified by the collector during a collection, which
avoids concurrent read/write accesses.

The master student will join the team in order to help porting the GC algorithm
on the infrastructure that exposes a userland page table. This implementation will
be carried on by the two PhD students, and the master student will come in support
to the team. He will help identify bugs, ensure the maintainability of the code,
implement regression tests and implement simple features.

3 Expected skills

The candidate must have a good background in system programming, C and
Java.

References

[1] Maria Carpen-Amarie, Patrick Marlier, Pascal Felber, and Gaël Thomas. A per-
formance study of java garbage collectors on multicore architectures. In Proceed-
ings of the International Workshop on Programming Models and Applications for
Multicores and Manycores, PMAM’15, page 10, San Francisco Bay Area, USA,
2015. ACM.

[2] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation. Communica-
tions of the ACM, 21(11):966–975, nov 1978.



3 REFERENCES

[3] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study of the
scalability of stop-the-world garbage collectors on multicores. In Proceedings of
the conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS’13, pages 229–240, Houston, Texas, USA, 2013. ACM.

[4] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen.
NumaGiC: a garbage collector for big data on big NUMA machines. In Proceed-
ings of the conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’15, page 14, Istanbul, Turkey, 2015. ACM.

[5] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Hand-
book: The Art of Automatic Memory Management. Chapman & Hall/CRC, 1st
edition, 2011.

[6] Anatole Lefort, Yohan Pipereau, Kwabena Amponsem, Pierre Sutra, and Gaël
Thomas. J-NVM: Off-heap persistent objects in java. In Proceedings of the
Symposium on Operating Systems Principles, SOSP’21, page 16, online, 2021.
ACM.

[7] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The continuously concurrent
compacting collector. In Proceedings of the International Symposium on Memory
Management, ISMM’11, page 79–88. ACM, 2011.

[8] Gaël Thomas. Improving the design and the performance of managed runtime
environments. PhD thesis, UPMC Sorbonne Université, Paris, France, 2012.


