4 GRENOBLE

INP

UCA

UGA

Universite
Grenoble Alpes

LIG’s PDS/HPDA research projects

Alain Tchana (Grenoble INP, France),
Renaud Lachaize (Univ. Grenoble Alpes, France)

alain.tchana@grenoble-inp.fr

September 2023

e

mailto:alain.tchana@grenoble-inp.fr

Micro-Linux Kernel: Building a Message-Oriented Middleware for Kernel space — User space communication

Custorm OS policies, no machine
reboot, no kernel programing, in
Python:),

B A

™

Process Process ¢8Ch‘ed ,MemgM /ngaster IPParis
| |

project
|

core OS
Sched i, int, ..)

N

Scheé
|

Monolithic Linux Microkernalization of Linux

Scheduler : ghOSt SOSP’21
FS: uFS SOSP’21, Bento, FAST21
IO : Snap, SOSP’19

MemMgr + holistic approach : In progress, ERODS (Grenoble)

sOS: OS's memory manager is actually a scheduler, so let's treat it this way for greater efficiency and
velocity

Process Process

| N
core OS Policies core OS
Sched 1pc nt, ...) (IPC, Int, ...)
UniSched
Currently

The similarity between processor management and memory management:
* RAM is a collection of physical page (PP) frames <-> The CPU package is a collection of cores.

* Virtual pages (VP) virtualize physical pages <-> Threads virtualize physical cores.

* Memory allocator maps VP to PP <-> The scheduler maps threads to cores.

* Swapping in/out <-> Context switching.

* A thread can release memory (e.g., madvise MADV_DONTNEED) <-> A process can yield.
» Page fault <-> Tick timer.

* VP pinning to a NUMA node <-> CPU affinity.

XOS: the end of the reign of the process-
thread duo

e Existing mainstream OS abstractions for separation (threads,
processes+IPC) are insufficient for modern applications.

e Newer research proposals for first-class OS abstractions are
proliferating but are not converging and do not compose well.

e The rigid abstractions exported by OS APIs are leaking into
application/library code, which impedes their potential for (static and
dynamic) adaptation.

XOS Alain Tchana et al. - alain.tchana@grenoble-inp.fr 4

x0S: Goals & approach

We aim at designing and building an OS prototype (“xOS”), through the
following steps:

e Define central “pivot” OS abstractions for expressing separation concerns +
communication model.

e Refine & optimize mapping of existing abstractions to the pivot model, with
appropriate toolchain and OS support.

e Support assisted/automated choice of adequate isolation abstraction based
on high-level guidelines and constraints.

e Support fully dynamic switch between different separation abstractions and
communication channels.

XOS Alain Tchana et al. - alain.tchana@grenoble-inp.fr

x0S: The VIC architecture

VFS analogy
A

1
I | concumrent
I | application Scone
1
| Process | I libc + libef libvicuser
User 0 read, write, ... 1 A ic_create, ... 1
\<—|
‘ VFS \ ‘ VIC Scheduler
Kemel — Memory
management

B Y B2 IES I =

A T A A A A

Hardware

(block devices | MMU [eEpT | [vMFUNC] [CHERI] SGX

XOS Alain Tchana et al. - alain.tchana@grenoble-inp.fr

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6

