
FAASIN: Bringing UNIX pipes to
serverless cloud function pipelines

Mathieu Bacou (mathieu.bacou@telecom-sudparis.eu), ACMES
Keywords: cloud, Function-as-a-Service, systems programming, containers, performance

Context
Cloud computing, or in other words, renting remote computing resources, is the mainstream way of
deploying any application. This deployment model had a feedback effect on the applications’
architectures: they are more and more “cloud native”. The newest paradigm in cloud applications is
Function-as-a-Service (FaaS): an application’s features are served by chaining and replicating
elementary functions. However, chaining function executions in a pipeline is not efficient, because
passing output data is extremely slow. Indeed, the Serverless nature implies that all data, in order to
persist beyond the execution of one function, must be copied out of the function that produced it,
and written to an external service (be it block or object storage, message queue, etc.). Data
movement between the FaaS platform and this remote service is slow by nature, and constitutes a
big drawback to porting many applications to the FaaS model.

Goals
The goal of the internship is to explore the following novel way of passing data to the next function
in line: to transfer data between functions by streaming through a local in-memory pipe.

This is very similar to UNIX pipelines of commands: when a command line such as grep
pattern | wc -l is executed, the standard output stream (stdout) of the command grep is
piped (i.e., sent through a pipe located in local memory) to the standard input stream (stdin) of the
command wc. The implementation will provide functions with new file descriptors that correspond
to the input and the output of their step in the pipeline. The input stream from the function chain is
called Function-as-a-Service input (faasin), and the output stream is called Function-as-a-Service
output (faasout); thus the name of the project: FAASIN (pronounce “phase in”).

The advantage of this method are:

• actual pipelining of functions: all steps of the pipeline can run in parallel, without waiting
for the output of the previous one;

• huge performance boost: data is no longer marshaled, and remains in-memory;
• easy for the developer: pipes are a well-known and well-integrated way of passing data.

For now, the steps and goals of the internship to implement FAASIN are:

• implement the general mechanism of opening faasin and faasout at a low level (in
Docker containers, as commonly used by FaaS platforms);

• implement it in a FaaS platform: integrate FaasIn in the pipelining of functions;
• implement it at the function runtime and at the function programming language level (i.e., at

the actual programming level of FaaS);
• demonstrate the performance and programmability gains on real-world applications.

mailto:mathieu.bacou@telecom-sudparis.eu

	Context
	Goals

