
Performance Evaluation of in situ Applications

through Simulation using SimGrid

Context

Numerical simulations are widely used in many scientific domains to reproduce
and understand complex real-life phenomenon that are difficult or impossible
to study in laboratory conditions. For instance, the domain of Molecular Dy-
namics uses very sophisticated numerical simulations to study the behavior and
interactions between molecules in a particular environment (specific tempera-
tures etc). A numerical simulation is a complex application composed of two
main phases: i) a simulation component, usually a large-scale MPI code and ii)
an analysis component, a data-intensive post-processing of the simulation data
to generate the final results of the application.

With modern architectures, the amount of data generated by numerical sim-
ulations led to a fundamental redesign of application workflows. The throughput
and the capacity of storage subsystems have not evolved as fast as the comput-
ing power in extreme-scale supercomputers. As a result, the classical post-hoc
analysis of simulation outputs (store all simulation data on disks before the
analysis) became highly inefficient. In situ workflows have then emerged as a
solution in which simulation and data analytics are intertwined through shared
computing resources, thus resulting in lower latencies and better resource usage.
A Data Transport Layer (DTL) is in charge of data exchange between simula-
tion and analysis components. Only the analysis outputs have to be written on
disks, avoiding the intermediate storage of massive volumes of data.

Determining the best allocation, i.e., how many resources to allocate to each
component of an in situ workflow; and mapping, i.e., where and at which fre-
quency to run the data analytics component, is a complex task whose perfor-
mance assessment is crucial to the efficient execution of in situ applications.
However, such a performance evaluation of different allocation and mapping
strategies usually relies either on directly running them on the targeted exe-
cution environments, which can rapidly become extremely time- and resource-
consuming, or on resorting to the simulation of simplified models of the com-
ponents of an in situ application, which can lack of realism. In both cases, the
validity of the performance evaluation is limited.

1



Goal of the project

Recently, we introduced Sim-Situ [1], a framework for the faithful performance
evaluation of in situ processing systems. Sim-Situ builds on the popular Sim-
Grid toolkit [2] and benefits of several key features of this versatile framework.
SimGrid enables the simulation of large-scale distributed applications in a way
that is accurate (via validated performance models), scalable (ability to run
large scale instances on a single computer with low compute, memory, and
energy footprints), and expressive (ability to simulate arbitrary platform, appli-
cation, and execution scenarios). We designed Sim-Situ to reflect the typical
structure of in situ applications with three distinct modules that respectively, (i)
simulate the unmodified simulation component of the application; (ii) mimic the
behavior of an underlying Data Transport Layer (DTL) that shares the data
between simulation and analysis; and (iii) abstract the analysis/visualization
component. Thanks to this modular design, Sim-Situ has the necessary flexi-
bility to easily and faithfully evaluate the behavior and performance of various
combinations of in situ processing system features [3].

So far, Sim-Situ is a library and is tested on a proxy-app, ExaMiniMD, that
demonstrates the capabilities of Sim-Situ. Minor changes on the original code
of ExaMiniMD are applied through a patch to transform the application into a
in-situ framework that keeps the original simulation component and emulates
the analytics one through a DTL.

The goal of this project is to further extend the expressivity and capabil-
ities of the Sim-Situ framework. A long-term objective is to consolidate the
framework in order to be a reference for the performance evaluation of in situ
applications. In order to do so, we propose the following road-map for the
research project:

• Create a Git repository with Continuous Integration: we would
like to put the code of Sim-Situ in a public Git repository that would allow
automatic tests of Sim-Situ with possibly different use-case applications
(so far, only ExaMiniMD). This work will be the first step in the project,
and allow a good understanding of Sim-Situ and its interactions with
SimGrid and the underlying application.

• Test Sim-Situ with different applications: we would like to test
Sim-Situ with other proxy-applications such as CabanaMD or QuickSil-
ver. In a next effort, we expect to test the framework on more complex
simulation codes (such as Gromacs [4], LAMMPS [5] etc), that are widely
used in in situ processing. This requires to analyze the code of these appli-
cations and create a patch to add the Sim-Situ library to the application
and build an in situ workflow.

• Code refinement: many works remain to introduce generic descrip-
tions of simulation and analysis components. What are their common
structures? How to provide a generic model in Sim-Situ?

2



• Externalize the application description: one of the envisionned
evolution in Sim-Situ is to offer the possibility to users to describe in
a dedicated file the application parameters (simulation setup, analysis
component etc). This point can be closely related to the above one.

• Add new features: The evaluation of more mapping and allocation
strategies needs to be investigated, especially strategies with off-node pro-
cessing. Studying such strategies would be a first step in evaluating the
impact of data transfers and network performance on in situ processing.
Implementing state-of-the-art DTLs such as ADIOS [6], DataSpaces [7],
or Dimes [8] is also crucial to offer flexibility to users.
Parallel analysis are also expected to be implemented and added to the
framework catalog. Only few tests have been done in this direction. The
setup of the demonstration in [1] mainly relies on independent analysis
workers.
Overall, adding such features to Sim-Situ will be considered as a great
asset to the framework.

Profile of the prospective student

No specific requirements are expected. A curious mind and a will to put the
hands into codes would be very suitable for this topic. Knowledge on SimGrid is
a plus but not mandatory. A complete tutorial [2] is available to get familiar with
the toolkit. Sim-Situ is developed in C++, a good command of the langage is
an advantage, especially for the aspects around code refinement. A certain taste
for compilation will probably help when dealing with large-scale applications.
The project can be adapted to the will and taste of the candidate.

The SimGrid framework has many developers and offers a very reactive
support, with a dedicated Framateam instance. The student will be strongly
encouraged to register and exchange with the community.

Regular meetings will be scheduled during the project, either on-site or re-
motely. We will provide access to computing resources to the student in order
to ease development and tests.

Contact

Valentin Honoré valentin.honore@ensiie.fr
Associate Professor ENSIIE, Evry
Member of thze Parallel & Disitributed Systems group, Samovar

3

mailto:valentin.honore@ensiie.fr


References

[1] V. Honoré, T. M. A. Do, L. Pottier, R. Ferreira da Silva, E. Deelman, and
F. Suter, “SIM-SITU: A Framework for the Faithful Simulation of in situ
Processing,” in eScience 2022, Salt Lake City, United States, Oct. 2022.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-03504863

[2] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications and
Platforms,” JPDC, vol. 74, no. 10, pp. 2899 – 2917, 2014.

[3] H. Childs, S. Ahern, J. Ahrens, A. Bauer, J. Bennett, E. W. Bethel, P.-
T. Bremer, E. Brugger, J. Cottam, M. Dorier, S. Dutta, J. Favre, T. Fo-
gal, S. Frey, C. Garth, B. Geveci, W. Godoy, C. Hansen, C. Harrison,
B. Hentschel, J. Insley, C. Johnson, S. Klasky, A. Knoll, J. Kress, M. Larsen,
J. Lofstead, K.-L. Ma, P. Malakar, J. Meredith, K. Moreland, P. Navrátil,
P. O’Leary, M. Parashar, V. Pascucci, J. Patchett, T. Peterka, S. Petruzza,
N. Podhorszki, D. Pugmire, M. Rasquin, S. Rizzi, D. Rogers, S. Sane,
F. Sauer, R. Sisneros, H.-W. Shen, W. Usher, R. Vickery, V. Vishwanath,
I. Wald, R. Wang, G. Weber, B. Whitlock, M. Wolf, H. Yu, and S. Ziegeler,
“A Terminology for in situ Visualization and Analysis Systems,” IJHPCA,
vol. 34, no. 6, pp. 676–691, 2020.

[4] P. Bauer, B. Hess, and E. Lindahl, “Gromacs 2022.3 manual,” Tech. Rep.,
Sep. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.7037337

[5] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynam-
ics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19, 1995.

[6] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress,
T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov, M. Parashar,
F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi, N. Thompson, S. Tsut-
sumi, L. Wan, M. Wolf, K. Wu, and S. Klasky, “ADIOS 2: The Adaptable In-
put Output System. A framework for high-performance data management,”
SoftwareX, vol. 12, p. 100561, 2020.

[7] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Interaction and
Coordination Framework for Coupled Simulation Workflows,” Cluster Com-
puting, vol. 15, no. 2, pp. 163–181, 2012.

[8] F. Zhang, T. Jin, Q. Sun, M. Romanus, H. Bui, S. Klasky, and M. Parashar,
“In-memory Staging and Data-Centric Task Placement for Coupled Scien-
tific Simulation Workflows,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 12, p. e4147, 2017.

4

https://hal.archives-ouvertes.fr/hal-03504863
https://doi.org/10.5281/zenodo.7037337

