
Optimizing FaaS Performance by Merging TLB
Entries across Processes

Context

The modern cloud has introduced various new service paradigms such as Functions-as-
a-Service (FaaS). In FaaS deployments, each function is hosted under its own isolated
environment, often a language runtime process (Node.js, Python, etc.) running in a
Linux container or virtual machine. Consequently, such a deployment will contain
thousands of separate processes running the same binary. Such a high-density de-
ployment causes various issues on the hosting environment: slow startup times [1];
communication inefficiencies [2]; security concerns [3]; etc.
Each function runtime process is given its own page tables for translating its virtual

addresses to physical addresses. As a result, processes’ translations will not be shared
even when running the same program binary. Yet, modern runtimes are large programs
containing lots of code and data. For example, Node v16 is a single binary 80 MB in size.
As a consequence, duplicating translations puts pressure on the CPU’s TLB, responsible
for caching page table translations. Increased TLB miss rates has a damaging effect
when switching between runtime processes, leading to poor performance and hosting
density [4].

Project description

In this project, we aim to improve the performance of FaaS processes by sharing TLB
entries across multiple processes. To elaborate, we plan to utilize the global bit of x86
page tables, where address translations marked with this bit will stay resident in TLB
no matter the process [5]. By making sure that all processes of a binary use the same
(global) mappings, we reduce that binary’s code and data TLB footprint to a constant
figure regardless of the number of runtime processes.
The main objectives of this project are as following:

• Implement a mechanism for managing global memory mappings of some binaries;

• Implement facilities for loading binaries and starting processes using these global
memory mappings;

• Implement protection of mappings and binary contents shared across processes;

• Study the performance impact of address translation overhead with increasing
function density, with and without our system.



Contact information

Boris Teabe, Tu Dinh Ngoc
SEPIA team, Institut de Recherche en Informatique de Toulouse (IRIT)
boris.teabedjomgwe@enseeiht.fr, dinhngoc.tu@irit.fr

References
[1] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qixuan Wu, and Haibo

Chen. Catalyzer: Sub-millisecond startup for serverless computing with initialization-less booting.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 467–481, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450371025. doi:10.1145/3373376.3378512.

[2] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable serverless computing for
latency-sensitive, interactive microservices. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’21, page
152–166, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383172.
doi:10.1145/3445814.3446701.

[3] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, and Michael Swift. Guarding serverless
applications with Kalium. In 32nd USENIX Security Symposium (USENIX Security 23), pages
4087–4104, Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-37-3. URL
https://www.usenix.org/conference/usenixsecurity23/presentation/jegan.

[4] Yufeng Zhou, Alan L. Cox, Sandhya Dwarkadas, and Xiaowan Dong. The impact of page size and
microarchitecture on instruction address translation overhead. ACM Trans. Archit. Code Optim., 20
(3), July 2023. ISSN 1544-3566. doi:10.1145/3600089.

[5] Intel Corp. Intel® 64 and IA-32 Architectures Software Developer’s Manual, volume 3A, page 4-44.
December 2022.

mailto:boris.teabedjomgwe@enseeiht.fr
mailto:dinhngoc.tu@irit.fr
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3445814.3446701
https://www.usenix.org/conference/usenixsecurity23/presentation/jegan
https://doi.org/10.1145/3600089

