
Degradation: an effective
approach to working with

shared objects
Boubacar Kane

Supervisor : Pierre Sutra, Denis Conan



Context

• Since about fifteen years, programmers have been using more and 
more parallel programs.

Transistor

Chip

Processor



Context

P1

P2

P3

P4

x + + read(x): 0 read(x): 1

x - -

read(x): A read(x): A

W_x(B) W_x(A)

• Data consistency
problems (ex: non-
monotonic read)

• Concurrent access
problems (ex: ABA 
problem)

W_x(A)

compute

delayed

Working in parallel can 
bring some issues.



Context

• Weak consistency :
• Pros: Fast execution

• Cons: Difficult to program with

Account balance: 0

Account balance: 0

bank transfer: +100€

Ex: lost update



Context

• Strong consistency
• Pros: Simplicity

• Cons: Slower because we need to synchronize



Outline

• Motivation

• Degradable objects:
• In distributed systems

• In shared memory systems

• Indistinguishability graphs

• Future work



Motivation

• Some programs do not use the whole sequential specification of 
the objects used.

The return value 
is not used

We could replace the 
AtomicInteger



Motivation

• This method is already used in many programs

Main 
memory

Thread 1
CPU 1 
cache

Thread 2
CPU 2 
cache

Main 
memory

Thread 1

Thread 2

C
P

U
 1

C
P

U
 1

C
P

U
 2

C
P

U
 2

CPU 1 
cache

CPU 2 
cache

N
o
rm

al
V
o
la
ti
le

Here, with an intermediate 
variable, we don't need to 

read the main memory each 
time.



Motivation

• Our goal is to provide programmers with a library of degradable 
objects.

Obj1

Obj2

Obj3

DObj1
DObj2
DObj3

DObj1

DObj2

DObj3

Program.java Program.java

To improve the 
performance of a 
program without 

refactoring



Degradable object in distributed systems

• Cassandra is a NoSQL database designed to handle large amounts of 
data

Key

Key

Name

Value

Timestamp

Row

Column

Column Family



Degradable object in distributed systems

• Multiple Row vs Multiple Column

• Cassandra's Counter vs Degradable Counter

We want to know what is the best 
way to parallelize access to 

Cassandra. Then, we degrade 
cassandra's counter and see if we 

have better performance.



Degradable object in shared memory systems

• Counter -> AtomicInteger
• increment() and read()

• List -> ConcurrentLinkedQueue
• add(x), remove(x) and contains(x)

• Set -> ConcurrentSkipListSet
• add(x), remove(x) and contains(x)

We degrade these three 
objects and test their 

performance.



Degradable object in shared memory systems

• We managed to obtain 
a factor of 10² for both 
the counter (a) and the 
list (b).

It was not possible to 
improve the performance of 

the set (c) since the 
ConcurrentSkipListSet object 
of the java library handles the 

contention correctly.



Indistinguishability graphs

• Synchrony power: the less the better

We focused on objects with low 
synchrony power because they 

offer better performance.



Indistinguishability graphs

• Consensus number introduced by Herlihy
• Consensus protocol:

• Consistent

• Wait-free

• Valid

Object 
O

P1 P2

Objects with a consensus 
number of 1 are at the bottom 
of the hierarchy and thus have 

the lowest level of 
synchrony. This is why it is 

interesting to make parallel 
accesses with these objects.



Indistinguishability graphs

• There are objects with consensus numbers of 1 that have different 
complexity:
• Register: O(1)

• Counter: Ω(n²)

The counter object uses a 
snapshot algorithm. It is 

known that the complexity 
of such an algorithm 

is Ω(n²).

This is why we are 
looking for a new way 

to measure the 
synchronie power and 
therefore the level of 

parallelism.



Indistinguishability graphs

{a,b,c}

a b c

B

x

add(1) add(2) read(): 3

add(2) add(1) read(): 3

add(1): a
add(2): b
read(): c

x and x' are 
indistinguishable for c 

because c has the same 
return value and there 

exists a common state in 
both executions.

x

x'



Indistinguishability graphs

Here the increment operations
return the value of the counter
after performing the operation.
It is interesting to note that, if 

no operation has a return 
value, then we have a complete

graph.

G({a,b,c})

Indistinguishability
graph for a counter with
these three operations:
• a = increment(1)
• b = increment(3)
• c = increment(5)



Future work

• Provide an accurate measure of the level of parallelism through the 
indistinguishability graph.

• Test the performance of our objects in an application.

• Carry out this study in a model of lower consistency




