How to give good talks

François Trahay

Very much inspired by F. Suchanek soft skills seminar
https://suchanek.name/work/teaching/topics/good-talks/index.html
What kind of talk?

- This talk focuses on academic talk, including:
 - Presenting your research work during a seminar/conference/project defense
 - Presenting someone else's work during a reading group
Overview

- Know why you talk
- Identifying the audience
- Identifying the key elements of the talk
- Talk structure
- Presenting an idea/concept
- Experiments

Not in this talk:

- Overcoming shyness/stress
- Creating beautiful slideshows
- Improving your body language

More info on these topics in Fabian Suchanek’s softskills seminar
https://suchanek.name/work/teaching/topics/good-talks/index.html
Know why you talk

- Do you want to
 - Teach or explain?
 → The audience understands the key ideas
 - Make people interested?
 → The audience wants to read the paper
 - Sell an approach?
 → The audience wants to collaborate with you
 - Show your capacities?
 → The audience wants to give you a grant/promotion
Identifying the audience

- What does the audience probably know?
 - PDS seminar: knows about distributed systems, machine learning, operating systems
 - May need to explain what MPI is
 - At a HPC conference: knows HPC
 - Everybody knows what MPI is
 - At a conference/workshop on MPI:
 - Everybody knows how MPI is implemented
Identifying the key elements of the talk

The scientific method

- A method for acquiring knowledge
 - Can be applied to CS too
- Presenting the key elements of the method is **crucial**
 - What is the problem?
 - What is the proposed solution?
 - Does the evaluation show that the solution fixes the problem?
Structure of a research presentation
The Double funnel scheme

- **Goal of this scheme**
 - Everybody gets the key ideas
 - Experts get technical details
 - Non-experts don’t get too many details
The **Double funnel** scheme: example

Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations (EuroMPI'20)

- Simulation is increasingly costly
 - Need to parallelize application and distribute them
 - Computer topology requires to mix programming models

- Asynchronous programing model mess with MPI

- Proposal: introduction asynchronous tasks into MPI
 - Add a continuation feature to MPI
 - Description of the continuation API
 - Use a common task scheduler for both MPI and the application

- Evaluation:
 - Tasks don't regrade MPI performance in the worst case
 - Tasks improve MPI performance in case of high concurrence

- Conclusion:
 - Coupling MPI and tasks improves performance of asynchronous programing models
 - Rethink how programming models interact
Presenting an idea/concept

- **The Big picture approach**
 - First sketch the idea
 - A *car is a big box with wheels*
 - Then refine and add details
 - *A steering wheel allows to choose the direction. The wheels are propelled by a motor*

- **The flow approach**
 - First describe
 - *Wheels are efficient for moving things and they can be propelled by motor*
 - Then summarize
 - *Combining wheels with a large box result in a vehicle*
Running experiments
SIGPLAN Empirical Evaluation Checklist

- Evaluation is here to validate the proposed solution
 - Show that it solved the problem
- Each experiment validates one of the claims
- Adequate data analysis
 - Fair comparison with state of the art (eg. same level of optimization)
 - Repeat experiments and report variability

Example of (possible) unfair comparison: Comparing a matlab implementation with a highly tuned CUDA implementation

Accelerating leukocyte tracking using CUDA: A case study in leveraging manycore coprocessors. In IPDPS 2009
Describing experiments

SIGPLAN Empirical Evaluation Checklist

- Experimental setup
 - Hardware/software configuration
 - Dual-socket 12C Intel Haswell, ConnectX-3, OpenMPI 3.1.4
 - What data is reported?
 - mean duration over 10 runs + standard deviation (or min/max)
- Visualize data correctly
- Describe, then analyze
 - For small messages, X latency is 20% lower than Y
 - This is due to X that batches messages which reduce the number of system calls
- Experiments should be reproducible
 - Some conferences require Artifacts

Reproducible Research in Computer Science https://hal.inria.fr/hal-0110206/
Conclusion

• Make sure the audience identifies
 – The problem you try to solve
 – The proposed solution

• As part of the reading group, you are evaluated on
 – Your understanding of the paper
 – Your ability to show the key points of the paper
 – Your communication skills

• This applies to other research presentations