
Multicore Programming Non-Uniform Memory Architectures

Non uniform memory architectures

Master in computer science of IP Paris

Master CHPS of Paris Saclay

Gaël Thomas

1

Multicore Programming Non-Uniform Memory Architectures

We need computing power

▪ To analyze large datasets

▪ To perform large computations

▪ To handle many clients

2

Multicore Programming Non-Uniform Memory Architectures

The computing power is in the CPU

3

Multicore Programming Non-Uniform Memory Architectures

(Old) computing power trends

4

transistors (thousands)
Single step Perf (SpecINT)

Frequency (MHz)
⇒ processing power

Typical (electrical) power
(Watts)

Moore’s low: #transistors x2 each 1.5 year

Multicore Programming Non-Uniform Memory Architectures

But frequency increases ⇒ electrical
power increases

5

Typical (electrical) power
(Watts)

Washing machine

Helicopter GEN H-4
(4 passenger)

Multicore Programming Non-Uniform Memory Architectures

Fortunately, the Moore’s law still hold

6

Typical (electrical) power
(Watts)

transistors
(thousands)

Multicore Programming Non-Uniform Memory Architectures

Today: we increase power by increasing
the number of cores

7

transistors
(thousands)

Single step Perf
(SpecINT)
Frequency (MHz)

cores

Typical power
(Watts)

Multicore Programming Non-Uniform Memory Architectures

But programming a multicore is hard

8

#include <stdlib.h>

#define N 100000000

int main(int argc, char **argv) {
 int* a = malloc(sizeof(int) * N);

 for(int i=1; i<N; i++) {
 a[i] = a[i] * a[i-1];
 }
}

$ time ./bip
real 0m0.474s

$ time ./bip
real 0m1.142s

On my laptop at 2k€
(2 cores at 2.2GHz)

On my server at 15k€
(48 cores at 2.2GHz)

Not really what we can expect

Multicore Programming Non-Uniform Memory Architectures

Multicores radically change the way
we design applications

◼ We have to parallelize our applications

9

Multicore Programming Non-Uniform Memory Architectures

Multicores radically change the way
we design applications

◼ We have to parallelize our applications

◼ And our parallel algorithms have to scale

10

Multicore Programming Non-Uniform Memory Architectures

Multicores radically change the way
we design applications

◼ We have to parallelize our applications

◼ And our parallel algorithms have to scale

11

But that’s not enough…

We have to handle complex memory architectures

Multicore Programming Non-Uniform Memory Architectures

But memory access latency varies a lot

12 Benchmark : memal on a 48 cores/4 sockets with 128GB (AMD)

core that accesses
the memory # core that allocates

the memory

Core 0 allocates, core 0 accesses => ~5 cycles
Core 3 allocates, core 0 accesses => ~50 cycles

Core 15 allocates, core 0 accesses => ~275 cycles
Core 20 allocates, core 0 accesses => ~380 cycles

Lozi@internship11

Multicore Programming Non-Uniform Memory Architectures

We have cache effects

13

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L3

~ 5 cycles

~ 15 cycles

~ 50 cycles

Multicore Programming Non-Uniform Memory Architectures

Why 275 or
350 cycles?

And, since a single bus does not
scale...

14

RAM

RAM

Multicore Programming Non-Uniform Memory Architectures

...we have complex architectures

15
Supermicro X11QPH+

4 x Intel Xeon GOLD 6130
16 cores/32 hyperthreads

Total: 64 cores/128 hyperthreads, 256GB
(32x the power of my macbook for 15k€)

16 x 8GB

Multicore Programming Non-Uniform Memory Architectures

...we have complex architectures

16
Supermicro X11QPH+

Multicore Programming Non-Uniform Memory Architectures

and non uniform memory accesses

17

RAM

PCIe

Node

Bus

RAM RAM

Core

PCIe

RAM RAM RAM

Interconnect

Fast
access

Slow
access

Multicore Programming Non-Uniform Memory Architectures

and non uniform memory accesses

18

RAM

PCIe

Domain

Bus

RAM RAM

Core

PCIe

RAM RAM RAM

Interconnect

On our 48-core AMD with 8 nodes (6 cores per node)
- Local memory access : 155 cycles
- One hop = 275 cycles
- Two hops = 380 cycles

x2,5

Multicore Programming Non-Uniform Memory Architectures

Memory access latency can collapse

When all the cores access the same node
(but different cache lines)

19
RAM RAM

RAM RAM

870 cycles
(6 times a local access)

Multicore Programming Non-Uniform Memory Architectures20

On a NUMA architecture, we need
memory placement policies

▪ To avoid the overload of a single NUMA domain

▪ To avoid the overload of interconnect links

▪ To enforce memory access locality

Multicore Programming Non-Uniform Memory Architectures

HowTo: NUMA placement policy

21

RAM

PCIe

RAM RAM

PCIe

RAM RAM RAM

Step 1: choose the physical address of a data

because the physical address space is partitioned among the domains
O n-1 n 2n - 1 2n 3n - 1

3n 4n - 1 4n 5n - 1 5n 6n - 1

Multicore Programming Non-Uniform Memory Architectures

HowTo: NUMA placement policy

Step 2: leverage the page table

22

Virtual address space
of a process

Memory space

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Maps a virtual address to a specific node by
mapping the virtual address to a page that belongs to the node

Multicore Programming Non-Uniform Memory Architectures

HowTo: NUMA placement policy

// reserve a virtual address space
struct x* x = mmap(0, sizeof(*x), …);

23

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Multicore Programming Non-Uniform Memory Architectures

HowTo: NUMA placement policy

// reserve a virtual address space
struct x* x = mmap(0, sizeof(*x), …);
// and requires pages from node 2
mbind(x, sizeof(*x), 2);

24

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Multicore Programming Non-Uniform Memory Architectures

Main questions

▪ Does NUMA effect matters in practice?

▪ If yes, can we mitigate this effect?

25

Multicore Programming Non-Uniform Memory Architectures

In theory, NUMA matters

◼ Abstract cache-unfriendly application
• 50% of the instructions access memory
• 30% of the accesses in L1 cache
• 30% of the accesses in L2 cache
• 30% of the accesses in L3 cache

◼ Comparison between best and worst NUMA placements
• Best: all accesses to local node ⇒ ~ 32 cycles/insn
• Worst: all accesses to an overloaded node ⇒ ~ 156 cycles/insn
⇒ overhead of 385% in the worst case

26

Multicore Programming Non-Uniform Memory Architectures

In theory, NUMA matters

◼ Abstract cache-friendly application
• 50% of the instructions access memory
• 70% of the accesses in L1 cache
• 70% of the accesses in L2 cache
• 70% of the accesses in L3 cache

◼ Comparison between best and worst NUMA placements
• Best: all accesses to local node ⇒ ~ 7 cycles/insn
• Worst: all accesses to an overloaded node ⇒ ~ 17 cycles/insn
⇒ overhead of 137% in the worst case

27

Multicore Programming Non-Uniform Memory Architectures

First study

◼ Goal:
• Understand how Linux manages NUMA
• Understand how applications react to NUMA

◼ How:
• Study a panel of 29 applications from 5 benchmarks

(NPB, Parsec, Mosbench, X-stream, YCSB)
• Evaluate various NUMA management policies

28

Multicore Programming Non-Uniform Memory Architectures

The hand-tuned policy

◼ Manually place the memory address ranges on the nodes

29

Virtual address space
of a process

Memory range 1

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Memory range 2

Multicore Programming Non-Uniform Memory Architectures

The hand-tuned policy

◼ Manually place the memory address ranges on the nodes
+ Tune the memory placement for an application
- A lot of engineering effort for only a single application/hardware

30

Virtual address space
of a process

Memory range 1

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Memory range 2

Multicore Programming Non-Uniform Memory Architectures

The hand-tuned policy on Linux

◼ Hand-tuned thread placement
• setaffinity(set of cores): for all the threads of a process
• pthread_setaffinity(set of cores): for a single thread

◼ Hand-tuned memory placement
• mbind(virtual address range, set of nodes)
(granularity of a 4k-page)

31

Multicore Programming Non-Uniform Memory Architectures

The interleaved policy

◼ Round-robin from all the nodes

32

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Multicore Programming Non-Uniform Memory Architectures

The interleaved policy

◼ Round-robin from all the nodes
+ Balance the load on all the nodes ⇒ no overloaded node
- Many remote accesses ⇒ interconnect can saturate

33

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Multicore Programming Non-Uniform Memory Architectures

The first-touch policy

◼ From the node that triggers the first access
• Relies on the lazy mapping used in Linux

34

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table Not yet mapped

Thread running on node 1

Multicore Programming Non-Uniform Memory Architectures

The first-touch policy

◼ From the node that triggers the first access
• Relies on the lazy mapping used in Linux

35

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Memory access
Thread running on node 1

Multicore Programming Non-Uniform Memory Architectures

The first-touch policy

◼ From the node that triggers the first access
• Relies on the lazy mapping used in Linux

36

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Memory access
Thread running on node 1

Map from node 1

Multicore Programming Non-Uniform Memory Architectures

The first-touch policy

◼ From the node that triggers the first access
+ Perfect locality and no saturation if a thread accesses its

memory
- Overloaded nodes if some threads allocate for the others

37

Virtual address space
of a process

Physical
Address
Space

Node 0 Node 1 Node 2

Page
Table

Map from node 1

Multicore Programming Non-Uniform Memory Architectures

The Carrefour policy

◼ Proposed by Dashti et al. (ASPLOS’15)
• Rebalance the load on all the nodes
• Prevents the contention of the interconnect

◼ Dynamically migrate a page
• From contended to uncontended nodes in case of contented

node
• On the node that uses the page in case of contended

interconnect

38

Multicore Programming Non-Uniform Memory Architectures

The Carrefour policy

◼ Proposed by Dashti et al. (ASPLOS’15)
• Rebalance the load on all the nodes
• Prevents the contention of the interconnect

◼ Dynamically migrate a page
• From contended to uncontended nodes in case of contented

node
• On the node that uses the page in case of contended

interconnect

+ Improves locality and avoid contention in many cases
- Can lead to inefficient placements for applications with different

access patterns during the run
39

Multicore Programming Non-Uniform Memory Architectures

Evaluated policies

◼ Four combinations
• First-touch (Linux FT)
• First-touch with Carrefour (Linux FT/Carrefour)
• Interleaved (Linux 4K)
• Interleaved with Carrefour (Linux 4K/Carrefour)

◼ Only considers pages of 4KiB

40

Multicore Programming Non-Uniform Memory Architectures

Evaluation of the NUMA policies

41

Speedup relative to Linux FT

4K win4K/Carrefour win

FT win
FT/Carrefour win

[presented at Eurosys’17]

Multicore Programming Non-Uniform Memory Architectures

Evaluation of the NUMA policies

42

Speedup relative to Linux FT

4K win4K/Carrefour win

FT win
FT/Carrefour win First conclusion

All the NUMA policies are important

Each application needs its own NUMA policy

Multicore Programming Non-Uniform Memory Architectures

Second study

▪ Predict which NUMA policy is the best for an application

▪ Goal:
• Select the most efficient NUMA policy
• Understand the memory access behavior

43

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

▪ Measure the memory access imbalance with first-touch
Relative standard deviation around the average #accesses per node

44

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

All the accesses
go to a single node

Perfect balance

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

▪ Measure the memory access imbalance with first-touch
Relative standard deviation around the average #accesses per node

45

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

Low imbalance High imbalance
Moderate imbalance

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

46

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

High imbalance
Moderate imbalance

Low imbalance with first-touch
Often because we already have a good locality

Low imbalance

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

47

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

High imbalance
Moderate imbalance

Low imbalance with first-touch
Often because we already have a good locality

=> keep first-touch
(1% slower than best in average)

First-touch

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

48

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

High imbalance

Moderate imbalance with first-touch
First-touch roughly balances the load but locality is not perfect

First-touch
Moderate imbalance

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

49

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

High imbalance

Moderate imbalance with first-touch
First-touch roughly balances the load but locality is not perfect

⇒ use First-touch/Carrefour
(2% slower than best in average)

First-touch
First-touch/Carrefour

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

50

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

Interleaved/Carrefour
First-touch/Carrefour

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality

⇒ use Interleaved/Carrefour

First-touch

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

51

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

Interleaved/Carrefour
First-touch/Carrefour

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality

⇒ use Interleaved/Carrefour
(2% slower than best in average)

First-touch

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

52

Imbalance 0% 40% 62% 83% 107% 138% 185% 283%
of
accessed
nodes

8 7 6 5 4 3 2 1

Interleaved/Carrefour
First-touch/Carrefour

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality

⇒ use First-touch/Carrefour
(2% slower than best in average)

First-touch

Second conclusion

We can reasonably predict the best NUMA policy
of an application

Multicore Programming Non-Uniform Memory Architectures

Third study

▪ How a data analytic application behaves?
• Page rank query on the friendster dataset with Spark
• Heap of 40GB, JVM with the Parallel Scavenge (PS) GC

53

Map()

Map()

Map()

Reduce()

Reduce()

In
pu

t d
at

a

O
ut

pu
t d

at
a

Multicore Programming Non-Uniform Memory Architectures

Application scalability of Spark

54

#cores = #threads

Speedup in term
of completion

time

Bad scalability after 12 cores

PS

Ideal scalability

Performance of Spark (40GB of heap)

Multicore Programming Non-Uniform Memory Architectures

A bottleneck in the garbage collector

55

Time spent in the application
Roughly scales with the

number of cores

Time spent in the garbage collector
Does not seem to scale after 12 cores

#cores = #threads

Completion
Time (s)

Multicore Programming Non-Uniform Memory Architectures

A bottleneck in the garbage collector

56

#cores = #threads used by the GC

GC throughput
(GB collected
per second)

The garbage collector does not scale

Bad scalability after 12 cores

Performance of the GC in Spark (40GB of heap)

Multicore Programming Non-Uniform Memory Architectures

First optimizations: synchronizations

57

▪ Remove useless synchronizations in the garbage collector
• Trades the genericity of the code for better performance

▪ Optimize the locks
• Futex instead of hand tuned

▪ Optimized lock-free queue for the work stealing

Multicore Programming Non-Uniform Memory Architectures

First optimizations: synchronizations

58

▪ Remove useless synchronizations in the garbage collector
• Trades the genericity of the code for better performance

▪ Optimize the locks
• Futex instead of hand tuned

▪ Optimized lock-free queue for the work stealing

GC throughput
(GB collected
per second)

Better performance
but does not solve

the scalability issue

gidra@asplos13

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ The problem: a GC thread accesses any node

59

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ The problem: a GC thread accesses any node

60

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ The problem: a GC thread accesses any node

61

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0

Remote accesses!

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design

62

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design
• Trade remote accesses for messages

63

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0 GC Thread 1

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design
• Trade remote accesses for messages

64

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0 GC Thread 1

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design
• Trade remote accesses for messages

65

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0 GC Thread 1

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design
• Trade remote accesses for messages

66

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0 GC Thread 1

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design
• Trade remote accesses for messages

67

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0 GC Thread 1

Multicore Programming Non-Uniform Memory Architectures

Second optimizations: NUMAGiC

▪ Idea: distributed memory => distributed GC design
• Trade remote accesses for messages

68

M
em

or
y

M
em

or
y

Node 0 Node 1

GC Thread 0 GC Thread 1

Multicore Programming Non-Uniform Memory Architectures

As is, messages degrades performance
☹

▪ Problem: a message is more costly than a remote access

69

Node 0 Node 1

Too many messages

Multicore Programming Non-Uniform Memory Architectures

As is, messages degrades performance
☹

▪ Problem: a message is more costly than a remote access

⇒ Inter-node references must be minimized

70

Node 0 Node 1

Too many messages

Multicore Programming Non-Uniform Memory Architectures

As is, messages degrades performance
☹

▪ Problem: a message is more costly than a remote access

⇒ Inter-node references must be minimized
• Observation: a thread mostly connects objects it has allocated

71

Only 1% of references
between objects allocated

by different threads in Spark

Node 0 Node 1

Too many messages

Multicore Programming Non-Uniform Memory Architectures

As is, messages degrades performance
☹

▪ Problem: a message is more costly than a remote access

⇒ Inter-node references must be minimized
• Observation: a thread mostly connects objects it has allocated
• Heuristics: allocate and let the objects on their allocation nodes

72

Node 0 Node 1

Too many messages

Multicore Programming Non-Uniform Memory Architectures

But few inter-node references degrade
the parallelism! ☹

73

Node 0 Node 1

Node 1 idles while node 0 collects its memory

Multicore Programming Non-Uniform Memory Architectures

But few inter-node references degrade
the parallelism! ☹

▪ Solution: adaptive algorithm
• Local mode: send messages when not idling
• Thief mode: steal and access remote objects when idling

74

Node 0 Node 1

Node 1 idles while node 0 collects its memory

Multicore Programming Non-Uniform Memory Architectures

Performance of NumaGiC

75

#cores = #threads

GC throughput
(GB collected
per second)

PS

synchroPS

Performance of the GC with Spark (40GB of heap)

SynchroPS + interl.

NumaGiC

Multicore Programming Non-Uniform Memory Architectures

Performance of the application

76

#cores = #threads

Application
speedup
in term of

completion time
PS

synchroPS

Performance of Spark (40GB of heap)

synchroPS + interl.

NumaGiC

Completion time divided by two gidra@asplos15

Multicore Programming Non-Uniform Memory Architectures

Third lessons

77

▪ NUMA can have a large impact on performance
• On data analytic applications written in Java

▪ We can design better NUMA policies than the ones proposed
by default in Linux

• Technically inspired by distributed systems

Multicore Programming Non-Uniform Memory Architectures

Fourth study

How a hypervisor behaves on a NUMA machine?
▪ Study of a set of 29 parallel applications

Parsec, NPB, MosBench, X-stream, YCSB (Cassandra, MangoDB)
▪ Hypervisor overhead when we increase the #cores

78

Multicore Programming Non-Uniform Memory Architectures

Fourth study

How a hypervisor behaves on a NUMA machine?
▪ Study of a set of 29 parallel applications

Parsec, NPB, MosBench, X-stream, YCSB (Cassandra, MangoDB)
▪ Hypervisor overhead when we increase the #cores

79

Up to a 9.5 time slowdown in Xen with 48 cores
while overhead is negligible with 1 core

Multicore Programming Non-Uniform Memory Architectures

Memory access latency causes the
overhead

80

Multicore Programming Non-Uniform Memory Architectures

Solution: XenNUMA

▪ Implement generic NUMA policies in Xen
• Interleaved: roughly randomize memory access
• First-touch: allocate from the node that triggers the first access
• Carrefour: dynamic policies proposed by Dashti et al.

▪ Add a new interface between Linux and Xen
• To select a NUMA policy for a process
• To know which pages are allocated to a process

In order to allocate a page from the node that triggers the first access

▪ Rewrite the memory sub-system of Xen

81

Multicore Programming Non-Uniform Memory Architectures

Overhead of Xen with 48 cores/vCPUs

▪ Settings: 48 vCPUs (pined) on the 48 pCPUs
• Xen uses the default (nonexistent) NUMA policy
• XenNUMA uses the best possible NUMA policy

▪ Results:
• Performance improvement of up to 700%
• Virtualization costs less than 50% for

� 12/29 applications with Xen
� 23/29 applications with XenNUMA

82
voron@eurosys17

Multicore Programming Non-Uniform Memory Architectures

XenNUMA is not a satisfactory solution
because XenNUMA hides the topology

Prevents the use System Runtime Libraries (SLR) optimizations:
▪ Impossible to use NumaGiC or other application-specific

NUMA policies
▪ Impossible to use NUMA-aware allocators

• TCMalloc, JEMalloc

=> Bad performance for many applications

83

Multicore Programming Non-Uniform Memory Architectures

Exposing the topology is not more
efficient

vNUMA exposes the initial NUMA topology
▪ But the hypervisor may change the NUMA topology at runtime

=> makes SLR and OS
work with a stale
topology

84

Multicore Programming Non-Uniform Memory Architectures

Exposing the topology is not more
efficient

vNUMA exposes the initial NUMA topology
▪ But the hypervisor may change the NUMA topology at runtime

=> makes SLR and OS
work with a stale
topology

85

Multicore Programming Non-Uniform Memory Architectures

XPV: eXtended ParaVirtualization

▪ Expose the initial NUMA topology
▪ Add notifications when the NUMA topology changes

• Used by the OS and the SLR to update the topology
• Few lines of code changed

86

Multicore Programming Non-Uniform Memory Architectures

XenNUMA
policies

XPV versus XenNUMA (fixed NUMA
topology)

By exposing the NUMA topology: up to 130% improvement

87

Multicore Programming Non-Uniform Memory Architectures

XPV facing topology changes

▪ Xen migrates vCPUs to balance the load
• Three identical VMs
• 48 vCPUs/42 pCPUs

88
Improvement: up to 127%bui@eurosys19

Multicore Programming Non-Uniform Memory Architectures

To take away

▪ NUMA can have a large impact on performance
• On many parallel applications (both native and Java)

▪ We can already significantly improve performances with
generic NUMA policies
• We can predict which generic policy can give the best

performance

▪ For some applications/SLRs, we need specific policies
• JVM, Databases, locks, NUMA-aware allocators…

▪ We can mitigate NUMA effects even in hypervisors

89

