
Multicore Programming Lock implementations

Lock implementations

Master in computer science of IP Paris

Master CHPS of Paris Saclay

Gaël Thomas

1

Multicore Programming Lock implementations

Atomic operation (informal definition)

◼ At high-level, an atomic operation is an operation that seems
to execute instantaneously

◼ pthread_mutex_lock is a typical atomic operation that
executes something like:

2

enum { FREE, BUSY };
typedef struct { int state; } pthread_mutex_t;
#define PTHREAD_MUTEX_INITIALIZER = { FREE };

void pthread_mutex_lock(pthread_mutex_t* mutex) {
 while(mutex->state == FREE) { }

 mutex->state = BUSY;
}

Another thread cannot
take the lock here

because
pthread_mutex_lock

executes atomically

Multicore Programming Lock implementations

How can we build atomic operation?

3

Problem: we cannot implement pthread_mutex_lock
with pthread_mutex_lock since we are implementing
pthread_mutex_lock!

Multicore Programming Lock implementations

Menu

4

1. The Bakery algorithm
a. A first model of machine
b. The algorithm

2. Background

3. Lock algorithms

Multicore Programming Lock implementations

How can we build atomic operation?

5

◼ Before everything, we need a model of machine

◼ At this step, we consider a simple machine model that:
• Atomically reads and writes a machine word (32bits and 64bits)

Here: tmp = 0 or 0x101 (not 0x100 nor 0x001)

int x = 0;

Thread 1

x = 0x101;

Thread 2

tmp = x;

Multicore Programming Lock implementations

How can we build atomic operation?

6

◼ Before everything, we need a model of machine

◼ At this step, we consider a simple machine model that:
• Atomically reads and writes a machine word (32bits and 64bits)

Here: tmp = 0 or 0x101 (not 0x1n00 or 0x001)

int x = 0;

Thread 1

x = 0x101;

Thread 2

tmp = x;

Be careful!

In general, this hypothesis does not hold!

(it’s true with a pentium, but not with all the

possible existing or future processors)

Multicore Programming Lock implementations

How can we build atomic operation?

7

◼ Before everything, we need a model of machine

◼ At this step, we consider a simple abstract machine that:
• Atomically reads and writes a machine word (32bits and 64bits)
• Does not reorder the instructions

Here, t2 = 0x202 => t1 = 0x101

int x = 0;
int y = 0;

Thread 1

x = 0x101;
y = 0x202;

Thread 2

t2 = y;
t1 = x;

Multicore Programming Lock implementations

How can we build atomic operation?

8

◼ Before everything, we need a model of machine

◼ At this step, we consider a simple abstract machine that:
• Atomically reads and writes a machine word (32bits and 64bits)
• Does not reorder the instructions

Here, t1 = 0x101 => t2 = 0x202

int x = 0;
int y = 0;

Thread 1

x = 0x101;
y = 0x202;

Thread 2

t2 = y;
t1 = x;

Be careful!

In general, this hypothesis does not hold!

(for two writes, it’s true with a pentium, but not

for a read that succeeds a write!)

Multicore Programming Lock implementations

Menu

9

1. The Bakery algorithm
a. A first model of machine
b. The algorithm

2. Background

3. Lock algorithms

Multicore Programming Lock implementations

The bakery algorithm (Lamport 1974)

10

◼ Principle
• Simulates a bakery where people are waiting to order
• Each waiter has a number
• A waiter can order if all the waiters with lowest number are

already served

◼ Problem: how can we choose a number?
• Idea: ask to the other waiters and choose the highest one + 1
• New problem: if two waiters asks at the same time, they will have

the same number
• In this case, since we are polite, the oldest is served first (we

suppose that birth dates are unique)

Multicore Programming Lock implementations

The bakery algorithm (Lamport 1974)

11

◼ We suppose our simple machine model
int entering[N]; /* initialized to false */
int num[N]; /* initialized to 0 */

void lock(int self) { /* thread number self calls lock */
 entering[self] = true;
 num[self] = 1 + max(num[0], …, num[N-1]);
 entering[self] = false;

restart:
 for(int i=0; i<N; i++) {
 if(entering[i]) { } /* wait until i receives its number */
 if(num[i] && num[i] < num[self]) goto restart;
 if(num[i] && num[i] == num[self] && i < self) goto restart;
 }
}

void unlock(int self) { num[self] = 0; } /* outside */

Multicore Programming Lock implementations

Why the entering variable

12

◼ Suppose that we don’t have entering
• Processes 2 and 3 enter at the same time
• Process 2 computes the max+1, but is preempted before writing

it to num
• Process 3 executes and computes the same max+1
• Process 3 enters the critical section, but is preempted before

unlock
• Process 2 is elected and enters the critical section since 2 < 3
• => we have two processes in the critical section

◼ Entering prevents the thread 3 to enters the critical section
because thread 3 sees entering[2] = true

Multicore Programming Lock implementations

The bakery algorithm (Lamport 1974)

13

◼ Beautiful algorithm
• Only requires write atomicity

(and no reordering of the instructions)

◼ But the algorithm is slow
• Reads at least 4 memory locations per thread

– One to compute max
– Two for entering
– One to check that the thread has the maximum number

• => (better) complexity in O(N) in term of reads where N is the
number of threads

Multicore Programming Lock implementations

We need help from the hardware

14

◼ We need special instructions to optimize the lock
implementation

◼ But before, we have to understand how a processor behaves
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

Multicore Programming Lock implementations

Menu

15

1. The Bakery algorithm

2. Background
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

3. Lock algorithms

Multicore Programming Lock implementations

The cache protocol

16

◼ A cache of the processor contains copies of memory location
• Cache lines of 64 bytes for most pentium
• Implements a read-write lock

– One writer or multiple readers
– In case of read, the cache line is in the shared state (multiple

readers)
– In case of write, it is in the exclusive state (only one writer)

int tab[2];
Thread 1

tab[0] = 42;

Thread 2

tab[1] = 666;

Cache line: [42 0] Cache line: [0, 666]
If multiple writers at the same time, almost

impossible to not lose one of the writes

Multicore Programming Lock implementations

The cache protocol

17

◼ In case of store, the cache protocol acquires a cache line in
exclusive state in order to ensure consistency

◼ Without exclusion during stores, the processor may lose stores

int tab[2];
Thread 1

tab[0] = 42;

Thread 2

tab[1] = 666;

Cache line: [42 0] Cache line: [0, 666]
If multiple writers at the same time, almost

impossible to not lose one of the stores

Multicore Programming Lock implementations

Implementation of the cache protocol

18

◼ In case of load, if the line is not in the cache
• Loads the line from another core or from the main memory
• Ensures that other cores do not hold the line in exclusive state
• Marks the cache line as shared

◼ In case of store, if the line is not in the cache
• Loads the line from another core or from the main memory
• Invalidates the other copies in the other cores
• Marks the cache line as exclusive

◼ In case of store, if the line is in the cache but is shared
• Invalidates the other copies in the other cores
• Marks the cache line as exclusive

Multicore Programming Lock implementations

The cache protocol

19

◼ Consequence: if many threads running on different cores write
the same cache line, the memory buses saturates

◼ Consequence for lock algorithms
• Try to avoid many threads writing the same memory location

Multicore Programming Lock implementations

Menu

20

1. The Bakery algorithm

2. Background
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

3. Lock algorithms

Multicore Programming Lock implementations

Load and store atomicity

21

◼ A load or a store of a machine word is not necessarily atomic
• It’s the case with a pentium
• But not necessarily with any processor that may appear in the

future!

◼ In order to ensure load and store atomicity in C
• atomic_load(&var): ensures load atomicity
• atomic_store(&var, value) : ensures store atomicity
• In this case, var should be declared as _Atomic,

e.g., int _Atomic var;

◼ Note: these operations have also an effect on ordering

Multicore Programming Lock implementations

Menu

22

1. The Bakery algorithm

2. Background
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

3. Lock algorithms

Multicore Programming Lock implementations

Memory ordering

23

◼ A processor may emit the instructions out-of-order
(as soon as it ensures that a thread reads its own last write)

◼ A processor may reorder
• Two stores on two different memory locations

– store @a1, v1
– store @a2, v2

• Two loads on two different memory locations
– v1 = load @a1
– v2 = load @a2

• A load after a store on two different memory locations
– store @a1, v1
– v2 = load @a2

• A store after a load on two different memory locations

Multicore Programming Lock implementations

Each language and each processor has
its own memory ordering model

24

◼ Pentium: total store order
• Ensure atomicity for 64-bits loads and stores
• Does not reorder a load after a load
• Does not reorder a store after a store
• Does not reorder a store after a load
• But may reorder a load after a store

Correct code (store after store in thread 1 and load after load in thread 2)

int hasMessage = false;
char* message = NULL;

Thread 1

message = "hello";
hasMessage = true;

Thread 2

while(!hasMessage) { }
printf(message);

Multicore Programming Lock implementations

Each language and each processor has
its own memory ordering model

25

◼ Java memory model
• Any ordering is possible

(except around volatile accesses and lock/unlock)

◼ ARM memory model
• Weaker than TSO

Possible segmentation fault in printf in Java or on a ARM

int hasMessage = false;
char* message = NULL;

Thread 1

message = "hello";
hasMessage = true;

Thread 2

while(!hasMessage) { }
printf(message);

Multicore Programming Lock implementations

Preventing reordering with assembly
instructions

26

◼ A processor provides special instructions

◼ For example, with a pentium
• mfence: full memory fence prevents any reordering of loads or

stores before or after the instruction

• lfence: load fence prevents the reordering of the loads before
or after the instruction (useful with special instructions that have
a load semantic, e.g., rdtsc)

• sfence: store fence prevents the reordering of the stores before
or after the instruction (useful with special instructions that have
a store semantic, e.g., clwb)

Multicore Programming Lock implementations

Preventing reordering in C

27

◼ The developer can explicitly specify the ordering semantic with
atomic loads and stores
• value <- atomic_load_explicit(&addr, order)
• atomic_store_explicit(&addr, value, order)

◼ order can have the values
• memory_order_relaxed
• memory_order_consume
• memory_order_acquire
• memory_order_release
• memory_order_acq_rel
• memory_order_seq_cst

(default value with atomic_load and atomic_store)

Multicore Programming Lock implementations

Relaxed semantic

28

◼ Any reordering is possible
• Note that this is the case for the non-atomic operations in C

◼ Possible values: r1 = 0 et r2 = 0x101
• B executed before A => B C D A scheduling
• D executed before C => D A B C scheduling

int _Atomic x = 0;
int _Atomic y = 0;

Thread 1
atomic_store_explicit(&x, 0x101, memory_order_relaxed); // A
atomic_store_explicit(&y, 0x101, memory_order_relaxed); // B

Thread 2
r2 = atomic_load_explicit(&y, memory_order_relaxed); // C
r1 = atomic_load_explicit(&x, memory_order_relaxed); // D

Multicore Programming Lock implementations

Relaxed semantic

29

◼ Any reordering is possible
• Note that this is the case for the non-atomic operations in C

◼ Possible values: r1 = 0 et r2 = 0x101
• B executed before A => B C D A scheduling
• D executed before C => D A B C scheduling

int _Atomic x = 0;
int _Atomic y = 0;

Thread 1
atomic_store_explicit(&x, 0x101, memory_order_relaxed); // A
atomic_store_explicit(&y, 0x101, memory_order_relaxed); // B

Thread 2
r2 = atomic_load_explicit(&y, memory_order_relaxed); // C
r1 = atomic_load_explicit(&x, memory_order_relaxed); // D

Important

Here, r0 and r1 can only have the values 0 or 0x101

 If we don’t use atomic operations, r0 and r1 can

additionally have the values 0x100 or 0x001

Multicore Programming Lock implementations

Release-acquire semantic

30

◼ Principle
• Each visible effect that precedes a store in release is visible

before the corresponding load
• Each visible effect that succeeds a load in acquire is NOT visible

before the correspond store in release
int _Atomic x = 0; int y = 0; int z = 0;

Thread 1
z = 1; // A
y = 17; // B
atomic_store_explicit(x, 42, memory_order_release); // C

Thread 2
r1 = atomic_load_explicit(x, memory_order_acquire); // D
r2 = y; // E
r3 = z; // F

If r1 == 42, then y==17 and z==1

Multicore Programming Lock implementations

Release-consume semantic

31

◼ As release-acquire, but only for variables that “carry” a
dependency
• So confusing that wrongly implemented in many compilers
• The use of release-consume is currently discouraged!

int _Atomic x = 0; int y = 0; int z = 0;

Thread1:
x = 42; // A
y = 42; // B
atomic_store_explicit(&z, x, memory_order_release); // C

Thread2:
r1 = atomic_load_explicit(&z, memory_order_consume); // D
r2 = y; // E
r3 = x; // F

If r1 == 42, then r3 = 42 (because of the dependency
between z and x in C), but r2 may be equal to 0

Multicore Programming Lock implementations

The sequential consistency semantic

32

◼ As release-acquire, but also ensures that all the threads see
the atomic stores in sequential consistency in the same order

int _Atomic x = 0; int _Atomic y = 0;

Thread 1: atomic_store(&x, 1); // A
Thread 2: atomic_store(&y, 1); // B
Thread 3: r1 = atomic_load(&x); r2 = atomic_load(&y);
Thread 4: r3 = atomic_load(&x); r4 = atomic_load(&y);

If r1 = 1 and r2 = 0, then
● A executed before B for thread 3
● Because of sequential consistency, it’s also the case for thread 4
● r3 = 0 and r4 = 1 is thus impossible (B before A for thread 4)

With only release-acquire, we could have r3 = 0 and r4 = 1

Multicore Programming Lock implementations

Note

33

◼ In the remainder of the lectures, in order to simplify the codes
• We don’t explicitly specify atomic loads and stores
x = 0x101 means atomic_store(&x, 0x101)

• We always suppose the sequential consistency semantic (even
when a weaker semantic leads to a correct behavior)

◼ In the labs, you will
• Have to explicitly use atomic_load/atomic_store for the

shared variables
• Have to try to identify if a weaker semantic such as

acquire-release or even relaxed leads to a correct behavior

Multicore Programming Lock implementations

And now...

34

◼ We are now able to implement the bakery algorithm in C 😀

◼ In order to implement efficient lock algorithms, we still need
load-modify-store operations that atomically
• Load a value
• Modify the value
• Store the value

◼ Three important operations
• atomic_exchange
• atomic_fetch_add
• atomic_compare_exchange_strong

• Note: add _explicit to specify the memory order semantic

Multicore Programming Lock implementations

Menu

35

1. The Bakery algorithm

2. Background

3. Lock algorithms
a. The spinlock
b. The ticket lock
c. The MCS lock

Multicore Programming Lock implementations

The tool: atomic_exchange

36

◼ Atomically exchange a value

type atomic_exchange(type _Atomic* addr, type value) {
 type res = *addr;
 *addr = value;
 return res;
}

Executed atomically

Multicore Programming Lock implementations

Implementation of an atomic
load-modify-store operation

37

◼ On a pentium, relies on the cache protocol
• Acquire the cache line in exclusive mode
• And “locks” the cache line in the cache during the execution of

the load-modify-store instruction
• Another core has thus to wait to acquire the cache line in shared

or exclusive state

Multicore Programming Lock implementations

Implementation of an atomic
load-modify-store operation

38

◼ On a pentium, relies on the cache protocol
• Acquire the cache line in exclusive mode
• And “locks” the cache line in the cache during the execution of

the load-modify-store instruction
• Another core has thus to wait to acquire the cache line in shared

or exclusive state

Important

The atomicity of load-modify-store operation does not
require a global consensus with the other cores. It

only consists in locking the cache line in the local L1
cache of the core during few cycles.

As a consequence, an atomic operation does not
have a performance cost because of the

atomicity!

The cost comes from: (i) the write that invalidates the
other copies and (ii) the memory ordering that

prevents out-of-order execution

Multicore Programming Lock implementations

The spinlock

39

◼ The spinlock is the most simple lock implementation
• Principle: spins while a lock is in the BUSY state
• Only requires the atomic_exchange operation

enum { FREE, BUSY };
int _Atomic lock = FREE;

void lock(int _Atomic* lock) {
 while(atomic_exchange(lock, BUSY) != FREE) { }
}

void unlock(int _Atomic* lock) {
 atomic_store(lock, FREE);
}

Note: the acquire-release semantic gives a correct behavior

Multicore Programming Lock implementations

The spinlock

40

◼ The spinlock is the most simple lock implementation
• Principle: spins while a lock is in the BUSY state
• Only requires the atomic_exchange operation

◼ Very efficient if the lock is almost always FREE

◼ Very inefficient in case of contention
• The cache line that holds the lock variable continuously bounces

between the cores

◼ Recall the cache protocol: in case of write, a core acquires a
cache line in the exclusive state and invalidates thus the
copies in the other cores

Multicore Programming Lock implementations

Menu

41

1. The Bakery algorithm

2. Background

3. Lock algorithms
a. The spinlock
b. The ticket lock
c. The MCS lock

Multicore Programming Lock implementations

The tool: atomic_fetch_add

42

◼ Atomically adds a value to a memory location and returns the
original value

type atomic_fetch_add(type _Atomic* addr, type n) {
 type res = *addr;
 *addr += n;
 return res;
}

Executed atomically

Multicore Programming Lock implementations

The ticket lock

43

◼ Very efficient lock implementation used in the Linux kernel
• Based on atomic_fetch_add
• Simulates a ticket with a number such as the one used at a post

office

• A client takes a ticket with a number, which atomically increments
a counter for the next client

• The postman increments another counter on a screen when a
client leaves the post office

• When the counter given by the ticket is equal to the counter
given by the screen, the client is served

◼ Conceptually close to the Bakery algorithm

Multicore Programming Lock implementations

The ticket lock

44

struct ticket_lock {
 int _Atomic ticket;
 int _Atomic screen;
}; /* initialized to (0, 0) */

void lock(struct ticket_lock* t) {
 int my = atomic_fetch_add(&t->ticket, 1);
 while(atomic_load(&t->screen) < my) { }
}

void unlock(struct ticket_lock* t) {
 atomic_fetch_add(&t->screen, 1);
}

Multicore Programming Lock implementations

The ticket lock

45

struct ticket_lock {
 int _Atomic ticket;
 int _Atomic screen;
}; /* initialized to (0, 0) */

void lock(struct ticket_lock* t) {
 int my = atomic_fetch_add(&t->ticket, 1);
 while(atomic_load(&t->screen) < my) { }
}

void unlock(struct ticket_lock* t) {
 atomic_fetch_add(&t->screen, 1);
}

The threads spin with a load operation and not
with a load-modify-store operation, which

avoids the cache line bounces caused by the
cache line invalidations

Multicore Programming Lock implementations

The ticket lock

46

struct ticket_lock {
 int _Atomic ticket;
 int _Atomic screen;
}; /* initialized to (0, 0) */

void lock(struct ticket_lock* t) {
 int my = atomic_fetch_add(&t->ticket, 1);
 while(atomic_load(&t->screen) < my) { }
}

void unlock(struct ticket_lock* t) {
 atomic_fetch_add(&t->screen, 1);
}

The threads spin with a load operation and not
with a load-modify-store operation, which

avoids the cache line bounces caused by the
cache line invalidations

However, all the threads spin while loading the
same memory location

We can probably do better!

Multicore Programming Lock implementations

Menu

47

1. The Bakery algorithm

2. Background

3. Lock algorithms
a. The spinlock
b. The ticket lock
c. The MCS lock

Multicore Programming Lock implementations

The tools:
atomic_compare_exchange_strong

48

◼ Like exchange, but only if the variable has a given value

bool atomic_compare_exchange_string(type _Atomic* addr,
 type* expected,
 type value) {
 if(*addr == *expected) { /* success */
 addr = value; / exchange */
 return true;
 } else { /* fail */
 *expected = *addr;/* replace *expected by actual */
 return false;
 }
}

Multicore Programming Lock implementations

The tools: the _Thread_local storage

49

◼ We often need global per-thread variable
• To store a thread number
• For thread-specific data structures

◼ The _Thread_local storage class specifier
• Define a global variable
• With a per-thread semantic (one variable per thread)

◼ Example
• _Thread_local int myId;

Multicore Programming Lock implementations

The MCS lock [ASPLOS’91]

50

◼ Principle:
• Create a FIFO of processes that waits for the lock
• The lock owner wakes up the next in the list

◼ Advantages
• Totally fair
• Each waiter spins alone on its memory location
• The thread owner only wakes up the next in the FIFO queue

◼ Drawback
• Subject to the convoy effect, especially when the process

contains more threads than the number of cores
John M. Mellor-Crummey, Michael L. Scott: Synchronization without Contention. ASPLOS 1991

Multicore Programming Lock implementations

The MCS lock [ASPLOS’91]

51

struct node { struct node* _Atomic next; bool _Atomic isFree; };

_Thread_local struct node my;

struct node* _Atomic lock = NULL;

void my_lock() {

 my.next = NULL; my.isFree = false;

 struct node* p = atomic_exchange(&lock, &my);

 if(p) {

 atomic_store(&p->next, &my);

 while(!atomic_load(&my.isFree)) { }

 }

}

NULL means that the
lock is free

If the lock is already taken

lock

TRUE

NULL

FALSE

my owner

[...]

add my in the waiting queue

Multicore Programming Lock implementations

The MCS lock [ASPLOS’91]

52

void my_lock() {

 my.next = NULL; my.isFree = false;

 struct node* p = atomic_exchange(&lock, &my);

 if(p) {

 atomic_store(&p->next, &my);

 while(!atomic_load(&my.isFree)) { }

 }

}

void my_unlock() {

 struct node* expected = &my;

 if(!atomic_load(&my.next)

 && atomic_compare_exchange_strong(&lock, &expected, NULL))

 return;

 while(!atomic_load(&my.next)) { }

 atomic_store(&my.next->isFree, true);

}

And if my is still at the
head of the queue

No waiter => return

Wait while the next waiter
has not yet installed the

next pointerRelease the next
waiter

If my.next is still null

Multicore Programming Lock implementations

To take away

53

◼ The Bakery algorithm
◼ atomic_load and atomic_store
◼ Memory ordering

• Relaxed
• Release-acquire
• Release-consume
• Sequential consistency

◼ atomic load-modify-store operations
• Exchange to implement the spinlock
• Fetch and add to implement the ticket lock
• Compare and swap to implement the MCS lock

