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Atomic operation (informal definition)

◼ At high-level, an atomic operation is an operation that seems 
to execute instantaneously

◼ pthread_mutex_lock is a typical atomic operation that 
executes something like:
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enum { FREE, BUSY };
typedef struct { int state; } pthread_mutex_t;
#define PTHREAD_MUTEX_INITIALIZER = { FREE };

void pthread_mutex_lock(pthread_mutex_t* mutex) {
  while(mutex->state == FREE) { }
    
  mutex->state = BUSY;
}

Another thread cannot 
take the lock here 

because 
pthread_mutex_lock 

executes atomically 
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How can we build atomic operation?
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Problem: we cannot implement pthread_mutex_lock 
with pthread_mutex_lock since we are implementing 
pthread_mutex_lock!
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Menu
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1. The Bakery algorithm
a. A first model of machine
b. The algorithm

2. Background

3. Lock algorithms
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How can we build atomic operation?
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◼ Before everything, we need a model of machine

◼ At this step, we consider a simple machine model that:
• Atomically reads and writes a machine word (32bits and 64bits)

Here: tmp = 0 or 0x101 (not 0x100 nor 0x001)

int x = 0;

Thread 1

x = 0x101;

Thread 2

tmp = x;
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How can we build atomic operation?
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◼ Before everything, we need a model of machine

◼ At this step, we consider a simple machine model that:
• Atomically reads and writes a machine word (32bits and 64bits)

Here: tmp = 0 or 0x101 (not 0x1n00 or 0x001)

int x = 0;

Thread 1

x = 0x101;

Thread 2

tmp = x;

Be careful!

In general, this hypothesis does not hold!

(it’s true with a pentium, but not with all the 

possible existing or future processors)
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How can we build atomic operation?
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◼ Before everything, we need a model of machine

◼ At this step, we consider a simple abstract machine that:
• Atomically reads and writes a machine word (32bits and 64bits)
• Does not reorder the instructions

Here, t2 = 0x202 => t1 = 0x101

int x = 0;
int y = 0;

Thread 1

x = 0x101;
y = 0x202;

Thread 2

t2 = y;
t1 = x;



Multicore Programming Lock implementations

How can we build atomic operation?
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◼ Before everything, we need a model of machine

◼ At this step, we consider a simple abstract machine that:
• Atomically reads and writes a machine word (32bits and 64bits)
• Does not reorder the instructions

Here, t1 = 0x101 => t2 = 0x202

int x = 0;
int y = 0;

Thread 1

x = 0x101;
y = 0x202;

Thread 2

t2 = y;
t1 = x;

Be careful!

In general, this hypothesis does not hold!

(for two writes, it’s true with a pentium, but not 

for a read that succeeds a write!)
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Menu
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1. The Bakery algorithm
a. A first model of machine
b. The algorithm

2. Background

3. Lock algorithms
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The bakery algorithm (Lamport 1974)
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◼ Principle
• Simulates a bakery where people are waiting to order
• Each waiter has a number
• A waiter can order if all the waiters with lowest number are 

already served

◼ Problem: how can we choose a number?
• Idea: ask to the other waiters and choose the highest one + 1
• New problem: if two waiters asks at the same time, they will have 

the same number
• In this case, since we are polite, the oldest is served first (we 

suppose that birth dates are unique)
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The bakery algorithm (Lamport 1974)
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◼ We suppose our simple machine model
int entering[N]; /* initialized to false */
int num[N];      /* initialized to 0 */

void lock(int self) { /* thread number self calls lock */
  entering[self] = true;
  num[self] = 1 + max(num[0], …, num[N-1]);
  entering[self] = false;

restart:
  for(int i=0; i<N; i++) {
    if(entering[i]) { } /* wait until i receives its number */
    if(num[i] && num[i] < num[self]) goto restart;
    if(num[i] && num[i] == num[self] && i < self) goto restart;
  }
}

void unlock(int self) { num[self] = 0; } /* outside */
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Why the entering variable
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◼ Suppose that we don’t have entering
• Processes 2 and 3 enter at the same time
• Process 2 computes the max+1, but is preempted before writing 

it to num
• Process 3 executes and computes the same max+1
• Process 3 enters the critical section, but is preempted before 

unlock
• Process 2 is elected and enters the critical section since 2 < 3
• => we have two processes in the critical section

◼ Entering prevents the thread 3 to enters the critical section 
because thread 3 sees entering[2] = true
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The bakery algorithm (Lamport 1974)
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◼ Beautiful algorithm
• Only requires write atomicity

(and no reordering of the instructions)

◼ But the algorithm is slow
• Reads at least 4 memory locations per thread

– One to compute max
– Two for entering
– One to check that the thread has the maximum number

• => (better) complexity in O(N) in term of reads where N is the 
number of threads
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We need help from the hardware
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◼ We need special instructions to optimize the lock 
implementation

◼ But before, we have to understand how a processor behaves
a. The cache protocol
b. Load and store atomicity
c. Memory ordering
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Menu
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1. The Bakery algorithm

2. Background
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

3. Lock algorithms
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The cache protocol

16

◼ A cache of the processor contains copies of memory location
• Cache lines of 64 bytes for most pentium
• Implements a read-write lock

– One writer or multiple readers
– In case of read, the cache line is in the shared state (multiple 

readers)
– In case of write, it is in the exclusive state (only one writer)

int tab[2];
Thread 1

tab[0] = 42;

Thread 2

tab[1] = 666;

Cache line: [42 0] Cache line: [0, 666]
If multiple writers at the same time, almost 

impossible to not lose one of the writes
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The cache protocol
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◼ In case of store, the cache protocol acquires a cache line in 
exclusive state in order to ensure consistency

◼ Without exclusion during stores, the processor may lose stores

int tab[2];
Thread 1

tab[0] = 42;

Thread 2

tab[1] = 666;

Cache line: [42 0] Cache line: [0, 666]
If multiple writers at the same time, almost 

impossible to not lose one of the stores
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Implementation of the cache protocol
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◼ In case of load, if the line is not in the cache
• Loads the line from another core or from the main memory
• Ensures that other cores do not hold the line in exclusive state
• Marks the cache line as shared 

◼ In case of store, if the line is not in the cache 
• Loads the line from another core or from the main memory
• Invalidates the other copies in the other cores
• Marks the cache line as exclusive

◼ In case of store, if the line is in the cache but is shared
• Invalidates the other copies in the other cores
• Marks the cache line as exclusive
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The cache protocol
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◼ Consequence: if many threads running on different cores write 
the same cache line, the memory buses saturates

◼ Consequence for lock algorithms
• Try to avoid many threads writing the same memory location
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Menu
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1. The Bakery algorithm

2. Background
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

3. Lock algorithms
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Load and store atomicity
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◼ A load or a store of a machine word is not necessarily atomic
• It’s the case with a pentium 
• But not necessarily with any processor that may appear in the 

future!

◼ In order to ensure load and store atomicity in C
• atomic_load(&var): ensures load atomicity
• atomic_store(&var, value) : ensures store atomicity
• In this case, var should be declared as _Atomic, 

e.g., int _Atomic var;

◼ Note: these operations have also an effect on ordering
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Menu
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1. The Bakery algorithm

2. Background
a. The cache protocol
b. Load and store atomicity
c. Memory ordering

3. Lock algorithms
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Memory ordering
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◼ A processor may emit the instructions out-of-order
(as soon as it ensures that a thread reads its own last write)

◼ A processor may reorder 
• Two stores on two different memory locations

– store @a1, v1
– store @a2, v2

• Two loads on two different memory locations
– v1 = load @a1
– v2 = load @a2

• A load after a store on two different memory locations
– store @a1, v1
– v2 = load @a2

• A store after a load on two different memory locations
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Each language and each processor has 
its own memory ordering model
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◼ Pentium: total store order
• Ensure atomicity for 64-bits loads and stores
• Does not reorder a load after a load
• Does not reorder a store after a store
• Does not reorder a store after a load
• But may reorder a load after a store

Correct code (store after store in thread 1 and load after load in thread 2)

int hasMessage = false;
char* message = NULL;

Thread 1

message = "hello";
hasMessage = true;

Thread 2

while(!hasMessage) { }
printf(message);
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Each language and each processor has 
its own memory ordering model
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◼ Java memory model
• Any ordering is possible 

(except around volatile accesses and lock/unlock)

◼ ARM memory model
• Weaker than TSO 

Possible segmentation fault in printf in Java or on a ARM

int hasMessage = false;
char* message = NULL;

Thread 1

message = "hello";
hasMessage = true;

Thread 2

while(!hasMessage) { }
printf(message);
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Preventing reordering with assembly 
instructions
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◼ A processor provides special instructions

◼ For example, with a pentium
• mfence: full memory fence prevents any reordering of loads or 

stores before or after the instruction

• lfence: load fence prevents the reordering of the loads before 
or after the instruction (useful with special instructions that have 
a load semantic, e.g., rdtsc)

• sfence: store fence prevents the reordering of the stores before 
or after the instruction (useful with special instructions that have 
a store semantic, e.g., clwb)
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Preventing reordering in C
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◼ The developer can explicitly specify the ordering semantic with 
atomic loads and stores
• value <- atomic_load_explicit(&addr, order)
• atomic_store_explicit(&addr, value, order)

◼ order can have the values
• memory_order_relaxed
• memory_order_consume
• memory_order_acquire
• memory_order_release
• memory_order_acq_rel
• memory_order_seq_cst 

(default value with atomic_load and atomic_store)
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Relaxed semantic
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◼ Any reordering is possible
• Note that this is the case for the non-atomic operations in C

◼ Possible values: r1 = 0 et r2 = 0x101
• B executed before A => B C D A scheduling
• D executed before C => D A B C scheduling

int _Atomic x = 0;
int _Atomic y = 0;

Thread 1
atomic_store_explicit(&x, 0x101, memory_order_relaxed); // A
atomic_store_explicit(&y, 0x101, memory_order_relaxed); // B

Thread 2
r2 = atomic_load_explicit(&y, memory_order_relaxed); // C
r1 = atomic_load_explicit(&x, memory_order_relaxed); // D
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Relaxed semantic
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◼ Any reordering is possible
• Note that this is the case for the non-atomic operations in C

◼ Possible values: r1 = 0 et r2 = 0x101
• B executed before A => B C D A scheduling
• D executed before C => D A B C scheduling

int _Atomic x = 0;
int _Atomic y = 0;

Thread 1
atomic_store_explicit(&x, 0x101, memory_order_relaxed); // A
atomic_store_explicit(&y, 0x101, memory_order_relaxed); // B

Thread 2
r2 = atomic_load_explicit(&y, memory_order_relaxed); // C
r1 = atomic_load_explicit(&x, memory_order_relaxed); // D

Important

Here, r0 and r1 can only have the values 0 or 0x101

 If we don’t use atomic operations, r0 and r1 can 

additionally have the values 0x100 or 0x001
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Release-acquire semantic
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◼ Principle
• Each visible effect that precedes a store in release is visible 

before the corresponding load
• Each visible effect that succeeds a load in acquire is NOT visible 

before the correspond store in release
int _Atomic x = 0; int y = 0; int z = 0;

Thread 1
z = 1; // A
y = 17; // B
atomic_store_explicit(x, 42, memory_order_release); // C

Thread 2
r1 = atomic_load_explicit(x, memory_order_acquire); // D
r2 = y; // E
r3 = z; // F

If  r1 == 42, then y==17 and z==1
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Release-consume semantic
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◼ As release-acquire, but only for variables that “carry” a 
dependency
• So confusing that wrongly implemented in many compilers
• The use of release-consume is currently discouraged!

int _Atomic x = 0; int y = 0; int z = 0;

Thread1:
x = 42; // A
y = 42; // B
atomic_store_explicit(&z, x, memory_order_release); // C

Thread2:
r1 = atomic_load_explicit(&z, memory_order_consume); // D
r2 = y; // E
r3 = x; // F

If  r1 == 42, then r3 = 42 (because of the dependency 
between z and x in C), but r2 may be equal to 0



Multicore Programming Lock implementations

The sequential consistency semantic
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◼ As release-acquire, but also ensures that all the threads see 
the atomic stores in sequential consistency in the same order

int _Atomic x = 0; int _Atomic y = 0;

Thread 1: atomic_store(&x, 1); // A
Thread 2: atomic_store(&y, 1); // B
Thread 3: r1 = atomic_load(&x); r2 = atomic_load(&y);
Thread 4: r3 = atomic_load(&x); r4 = atomic_load(&y);

If r1 = 1 and r2 = 0, then
● A executed before B for thread 3
● Because of sequential consistency, it’s also the case for thread 4
● r3 = 0 and r4 = 1 is thus impossible (B before A for thread 4)

With only release-acquire, we could have r3 = 0 and r4 = 1
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Note
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◼ In the remainder of the lectures, in order to simplify the codes
• We don’t explicitly specify atomic loads and stores
x = 0x101 means atomic_store(&x, 0x101)

• We always suppose the sequential consistency semantic (even 
when a weaker semantic leads to a correct behavior)

◼ In the labs, you will
• Have to explicitly use atomic_load/atomic_store for the 

shared variables
• Have to try to identify if a weaker semantic such as 

acquire-release or even relaxed leads to a correct behavior
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And now...
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◼ We are now able to implement the bakery algorithm in C 😀

◼ In order to implement efficient lock algorithms, we still need 
load-modify-store operations that atomically
• Load a value
• Modify the value
• Store the value

◼ Three important operations 
• atomic_exchange
• atomic_fetch_add
• atomic_compare_exchange_strong

• Note: add _explicit to specify the memory order semantic



Multicore Programming Lock implementations

Menu

35

1. The Bakery algorithm

2. Background

3. Lock algorithms
a. The spinlock
b. The ticket lock
c. The MCS lock



Multicore Programming Lock implementations

The tool: atomic_exchange 
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◼ Atomically exchange a value

type atomic_exchange(type _Atomic* addr, type value) {
  type res = *addr;
  *addr = value;
  return res;
}

Executed atomically
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Implementation of an atomic 
load-modify-store operation

37

◼ On a pentium, relies on the cache protocol
• Acquire the cache line in exclusive mode
• And “locks” the cache line in the cache during the execution of 

the load-modify-store instruction
• Another core has thus to wait to acquire the cache line in shared 

or exclusive state
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Implementation of an atomic 
load-modify-store operation
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◼ On a pentium, relies on the cache protocol
• Acquire the cache line in exclusive mode
• And “locks” the cache line in the cache during the execution of 

the load-modify-store instruction
• Another core has thus to wait to acquire the cache line in shared 

or exclusive state

Important

The atomicity of load-modify-store operation does not 
require a global consensus with the other cores. It 

only consists in locking the cache line in the local L1 
cache of the core during few cycles.

As a consequence, an atomic operation does not 
have a performance cost because of the 

atomicity!

The cost comes from: (i) the write that invalidates the 
other copies and (ii) the memory ordering that 

prevents out-of-order execution
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The spinlock
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◼ The spinlock is the most simple lock implementation
• Principle: spins while a lock is in the BUSY state
• Only requires the atomic_exchange operation

enum { FREE, BUSY };
int _Atomic lock = FREE;

void lock(int _Atomic* lock) {
  while(atomic_exchange(lock, BUSY) != FREE) { }
}

void unlock(int _Atomic* lock) {
  atomic_store(lock, FREE);
}

Note: the acquire-release semantic gives a correct behavior
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The spinlock
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◼ The spinlock is the most simple lock implementation
• Principle: spins while a lock is in the BUSY state
• Only requires the atomic_exchange operation

◼ Very efficient if the lock is almost always FREE 

◼ Very inefficient in case of contention 
• The cache line that holds the lock variable continuously bounces 

between the cores

◼ Recall the cache protocol: in case of write, a core acquires a 
cache line in the exclusive state and invalidates thus the 
copies in the other cores
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Menu
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1. The Bakery algorithm

2. Background

3. Lock algorithms
a. The spinlock
b. The ticket lock
c. The MCS lock
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The tool: atomic_fetch_add
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◼ Atomically adds a value to a memory location and returns the 
original value

type atomic_fetch_add(type _Atomic* addr, type n) {
  type res = *addr;
  *addr += n;
  return res;
}

Executed atomically
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The ticket lock
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◼ Very efficient lock implementation used in the Linux kernel
• Based on atomic_fetch_add
• Simulates a ticket with a number such as the one used at a post 

office

• A client takes a ticket with a number, which atomically increments 
a counter for the next client

• The postman increments another counter on a screen when a 
client leaves the post office

• When the counter given by the ticket is equal to the counter 
given by the screen, the client is served

◼ Conceptually close to the Bakery algorithm
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The ticket lock
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struct ticket_lock {
  int _Atomic ticket;
  int _Atomic screen;
}; /* initialized to (0, 0) */

void lock(struct ticket_lock* t) {
  int my = atomic_fetch_add(&t->ticket, 1);
  while(atomic_load(&t->screen) < my) { }
}

void unlock(struct ticket_lock* t) {
  atomic_fetch_add(&t->screen, 1);
}
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The ticket lock
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struct ticket_lock {
  int _Atomic ticket;
  int _Atomic screen;
}; /* initialized to (0, 0) */

void lock(struct ticket_lock* t) {
  int my = atomic_fetch_add(&t->ticket, 1);
  while(atomic_load(&t->screen) < my) { }
}

void unlock(struct ticket_lock* t) {
  atomic_fetch_add(&t->screen, 1);
}

The threads spin with a load operation and not 
with a load-modify-store operation, which 

avoids the cache line bounces caused by the 
cache line invalidations
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The ticket lock
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struct ticket_lock {
  int _Atomic ticket;
  int _Atomic screen;
}; /* initialized to (0, 0) */

void lock(struct ticket_lock* t) {
  int my = atomic_fetch_add(&t->ticket, 1);
  while(atomic_load(&t->screen) < my) { }
}

void unlock(struct ticket_lock* t) {
  atomic_fetch_add(&t->screen, 1);
}

The threads spin with a load operation and not 
with a load-modify-store operation, which 

avoids the cache line bounces caused by the 
cache line invalidations

However, all the threads spin while loading the 
same memory location

We can probably do better!
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Menu
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1. The Bakery algorithm

2. Background

3. Lock algorithms
a. The spinlock
b. The ticket lock
c. The MCS lock
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The tools: 
atomic_compare_exchange_strong
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◼ Like exchange, but only if the variable has a given value

bool atomic_compare_exchange_string(type _Atomic* addr,
                                    type* expected,
                                    type value) {
  if(*addr == *expected) { /* success */
    *addr = value;         /* exchange */
    return true;
  } else {                 /* fail */
    *expected = *addr;/* replace *expected by actual */
    return false;
  }
}
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The tools: the _Thread_local storage
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◼ We often need global per-thread variable
• To store a thread number
• For thread-specific data structures

◼ The _Thread_local storage class specifier
• Define a global variable
• With a per-thread semantic (one variable per thread)

◼ Example
• _Thread_local int myId;
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The MCS lock [ASPLOS’91]
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◼ Principle:
• Create a FIFO of processes that waits for the lock
• The lock owner wakes up the next in the list

◼ Advantages
• Totally fair
• Each waiter spins alone on its memory location
• The thread owner only wakes up the next in the FIFO queue

◼ Drawback
• Subject to the convoy effect, especially when the process 

contains more threads than the number of cores
John M. Mellor-Crummey, Michael L. Scott: Synchronization without Contention. ASPLOS 1991
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The MCS lock [ASPLOS’91]
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struct node { struct node* _Atomic next; bool _Atomic isFree; };

_Thread_local struct node my;

struct node* _Atomic lock = NULL;

void my_lock() {

  my.next = NULL;    my.isFree = false;

  struct node* p = atomic_exchange(&lock, &my);

  if(p) {

    atomic_store(&p->next, &my);

    while(!atomic_load(&my.isFree)) { }

  }

}

NULL means that the 
lock is free

If the lock is already taken

lock

TRUE

NULL

FALSE

my owner

[...]

add my in the waiting queue
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The MCS lock [ASPLOS’91]
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void my_lock() {

  my.next = NULL;    my.isFree = false;

  struct node* p = atomic_exchange(&lock, &my);

  if(p) {

    atomic_store(&p->next, &my);

    while(!atomic_load(&my.isFree)) { }

  }

}

void my_unlock() {

  struct node* expected = &my;

  if(!atomic_load(&my.next) 

     && atomic_compare_exchange_strong(&lock, &expected, NULL))

    return;

  while(!atomic_load(&my.next)) { }

  atomic_store(&my.next->isFree, true);

}

And if my is still at the 
head of the queue

No waiter => return

Wait while the next waiter 
has not yet installed the 

next pointerRelease the next 
waiter

If my.next is still null 
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To take away
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◼ The Bakery algorithm
◼ atomic_load and atomic_store
◼ Memory ordering

• Relaxed
• Release-acquire
• Release-consume
• Sequential consistency

◼ atomic load-modify-store operations
• Exchange to implement the spinlock
• Fetch and add to implement the ticket lock
• Compare and swap to implement the MCS lock


