
PowerJoular and JoularJX: Multi-Platform Software
Power Monitoring Tools

Adel Noureddine
Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA

Anglet, France
adel.noureddine@univ-pau.fr

Abstract—Monitoring the power consumption of applications
and source code is an important step in writing green software.
In this paper, we propose PowerJoular and JoularJX, our
software power monitoring tools. We aim to help software devel-
opers in understanding and analyzing the power consumption of
their programs, and help system administrators and automated
tools in monitoring the power consumption of large numbers of
heterogeneous devices.

Index Terms—Power Monitoring, Measurement, Power Con-
sumption, Energy Analysis

I. INTRODUCTION AND RELATED WORK

Writing green software is a major concern for software
developers and practitioners [5]. However, developers lack
tools and knowledge in understanding the energy and power
consumption of software and writing efficient ones [9]. In
addition, the landscape of computing architecture is moving
towards a heterogeneity of CPU and GPU architectures (i.e.,
x86, ARM), and device types (i.e., PCs, servers, single-
board computers, mobile). Therefore, software developers are
more often building multi-platform software. To help bridge
the gap, we present, in this paper, PowerJoular and
JoularJX, our multi-platform software power monitoring
tools. PowerJoular monitors the power consumption of
CPU and GPU for PCs, servers and single-board computers
(such as Raspberry Pi). JoularJX uses the power data pro-
vided by PowerJoular to monitor the power consumption
of methods and source code in Java applications.

In the last decade, multiple power monitoring tools were
released with varying approaches and accuracy. Approaches
range from hardware-based tools (using power meters) to
software-based ones (using power estimation models). The
former [6] uses a physical power meter or multimeter to
measures the energy consumption of the device, and correlates
the data with software-based monitoring. The main limitation
of these approaches is the high installation cost, and the
limited scalability as they require an additional hardware
device. For the latter, earlier software tools used their own
power estimation models, such as the first version of Pow-
erAPI [1], Jolinar [7] or pTop [2]. These models are either
based on CMOS power formulas, or on empirical experiments.
However, newer approaches and tools are based on hardware
manufacturers’ APIs. In particular, most server tools use the

Intel RAPL interface, either directly from the registers or
through the Linux kernel’s implementation (for example, using
powercap interface). For instance, newer PowerAPI versions or
Scaphandre 1 use Intel RAPL for power monitoring. However,
these tools target server and cloud environments and provide
features mostly used by their uses cases, such as monitoring
virtual machines or exposing metrics to hypervisors and cloud
dashboards. In addition, most tools focus on one particu-
lar platform (mainly Intel servers) and are aimed towards
system administrators or automated monitoring platforms. In
contrast, we aim with our approach, to provide a multi-
platform power monitoring tool (starting with x86 64 servers
and ARM single-board devices), and help software developers
with up-to-date and easy-to-use tools to analyze the power
consumption of software.

II. POWERJOULAR DESIGN AND FEATURES

In this section, we present the power design and features of
PowerJoular. Our tool allows runtime power monitoring
of multiple hardware components of different devices and
architectures. In particular, our initial version monitors the
CPU and GPU power consumption in computers and servers,
and the CPU in Raspberry Pi devices. PowerJoular is
written in Ada in order to provide a low-impact tool as Ada is
constantly ranked among the most energy efficient program-
ming languages [8], while also improving code maintainability
and safety in particular as we also target monitoring single-
board computers and embedded devices. PowerJoular is
aimed to software developers, system administrators and to
automated tools, with a goal to help these users understand
the power consumption of their devices and software, and to
build more in-depth tools using our proposed platform.

A. Power Monitoring Approach

PowerJoular power monitoring is based on two mod-
ules:

• for PC/servers: the Intel RAPL through the Linux Power
Capping Framework 2, and, optionally, NVIDIA’s System
Management Interface 3,

1https://github.com/hubblo-org/scaphandre
2https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
3https://developer.nvidia.com/nvidia-system-management-interface978-1-6654-6934-0/22/$31.00 ©2022 IEEE

• for Raspberry Pis: our own empirical regression power
models. 4

PowerJoular automatically detects the computer con-
figuration and supported modules, and provides power data
accordingly. For the GPU, PowerJoular checks if NVIDIA
SMI is installed, then uses it to verify if GPU power monitor-
ing is supported to the specific graphic card, and to read GPU
power consumption every second.

For the CPU, PowerJoular uses the Intel RAPL power
data through the Linux powercap interface by reading the
appropriate system files. It first detects which power domains
are supported by the CPU:

• Pkg: which is supported since Intel Sandy Bridge CPUs,
and provides energy consumption for the CPU cores, inte-
grated graphics, memory controller and last level caches.
PowerJoular also checks if DRAM power domain is
supported (RAM attached to the memory controller) and
adds its power readings to the total.

• Psys: which is supported since Intel Skylake CPUs,
and provides energy consumption for the entire SOC
(including Pkg along with other components, such as
eDRAM, PCH, System Agent [3]). If Psys is supported,
it will be exclusively used by PowerJoular for CPU
power consumption instead of Pkg and DRAM, as it
provides a more comprehensive power reading of the
CPU SOC.

Finally, PowerJoular aggregates power readings from all
supported components to provide an overall power consump-
tion. For instance, if both Intel RAPL and NVIDIA SMI are
supported, the tool will provide an aggregated power value for
both CPU and GPU.

On Raspberry Pi devices, PowerJoular uses our own
power polynomial regression models that maps the CPU
utilization to power consumption. These models are accurate
and have very low error rates, between 0.3% and 3.83%, far
more accurate than the state-of-the-art models. The tool reads
CPU cycles from /proc/stat system file, and calculates
CPU utilization. The latter is then used in the polynomial
models to provide an accurate estimation of the CPU power
consumption. PowerJoular can also update power models
from an online repository if new more accurate models are
available. In addition to monitoring the power consumption
of hardware components (CPU, GPU), PowerJoular can
monitor the CPU power consumption of an individual process
by providing its PID on runtime.

B. Features
We designed PowerJoular to be efficient, low on re-

sources, flexible and intuitive to use. The interaction with
the tool is achieved through a command-line interface. Such
interface offers flexibility for scientific experimentations, head-
less monitoring in server environments, and can be easily
incorporated into external frameworks or dashboards.

4The source code for the power models of Raspberry Pi ARM processors
is soon to be published in the git repository of the tool as the approach and
models are currently under review in a journal.

Fig. 1. Default output of the PowerJoular command-line interface

Runtime power monitoring can be displayed on the terminal
and/or written to CSV files. Figure 1 shows the command-
line interface of PowerJoular. The latter CSV option stores
power data every second and can then be read to retrace the
historical power consumption of a device or a specific process.
If a PID is monitored, its power data will be displayed on the
terminal (cf. Figure 2), and will be stored to a distinct CSV
file, while the device’s power is saved independently. At the
end of each monitoring session, PowerJoular displays the
total energy consumption (in Joules) of the session (and for
the monitored PID).

Fig. 2. Default output of the PowerJoular command-line interface when
monitoring a PID

In addition, writing to a file can also be done in overwrite
mode, i.e., only the last power data is saved to the file.
Therefore, the tool can run for long periods of time without
generating a large CSV file. This mode allows external tools
to connect to PowerJoular’s power data in runtime to build
dashboard or monitoring interfaces. For instance, a centralized
dashboard can read and visualize power data of multiple
servers or Raspberry Pi devices running PowerJoular.

Finally, PowerJoular provides a systemd service 5 that
can be enabled and run automatically on Linux boot. The
service monitors the computer’s power consumption and stores
data in a CSV file (with overwrite mode) in /tmp folder. This
allows continuous and automated monitoring of servers and
devices, and provides accurate runtime power data. Writing
to /tmp while running automatically as a service, allows
to bypass the added restrictions on reading powercap energy
meters to non-privileged users in Intel CPUs 6. The restric-
tion was added due to the recently discovered PLATYPUS
vulnerability [4]. However, the systemd service still requires
privileged access (root/sudo) to be enabled, and the data
provided is the runtime power consumption (every second)
from aggregate sources (CPU and GPU when available).

III. SOURCE CODE ENERGY MONITORING WITH
JOULARJX

The flexibility of PowerJoular allows its integration and
usage by other tools. In this section, we present JoularJX,

5https://systemd.io/
6https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=949dd0104c496fa7c14991a23c03c62e44637e71

our source-code power monitoring tool for Java programs that
uses PowerJoular.

As we focus on monitoring the source code of Java appli-
cations, we build JoularJX as a Java agent that hooks to
the Java Virtual Machine to monitor power consumption, on
runtime, for every method in the monitored software. Java is
among the top 10 of the most energy-efficient languages [8]
with its modern on-the-fly optimizations in the JVM, ranking
even fifth in the normalized global results for energy. The agent
automatically starts PowerJoular with the appropriate pa-
rameters (monitoring the PID of the Java program, and writes
power data to an overwritten CSV file in /tmp folder). CPU
utilization is then monitored every second for every Java thread
and power consumption is allocated accordingly. A second
monitoring loop detects, for every thread, which method
is currently being executed for every 10 milliseconds (by
observing the first method in the thread stacktrace), and then
power consumption is allocated statistically to each method.
As this power monitoring also includes the Java JDK’s own
methods, we also have an option to monitor specific methods
based on their full names. For instance, we can monitor all
methods belonging for a certain package by allocating the
power consumed by the first method of a thread stacktrace
to the method that called it (by analyzing the stacktrace tree).
In both cases, JoularJX will always generate power data
for all methods in a separate file, and the specific methods in
another file. Overall, our source-code statistical approach is
similar to the one we developed in our old Jalen tool [7].

Fig. 3. Snapshot of runtime power consumption of methods with JoularJX,
and a sample runtime Python GUI

However, JoularJX has two main differences with Jalen:
first, it uses an external tool to monitor the software power
consumption (i.e., PowerJoular) and therefore runs on
servers and Raspberry Pi devices. Second, JoularJX pro-
vides the overall energy consumption of methods for the
program duration, but also provides power consumption for
methods every second on runtime (which can be plotted
with a visualization tool, such as a sample Python GUI as
see in Figure 3), unlike Jalen which only provides overall
energy consumption. This allows developers and system tools

to follow power consumption for individual methods live
throughout the execution of software.

IV. MULTI-PLATFORM USE CASE

To showcase the multi-platform capabilities of
PowerJoular, we measure the energy consumed by
three implementations of the Ray-casting algorithm taken
from Rosetta Code 7. We run the Python implementation
in a loop for 10 000 iterations, the C version for 100 000
iterations and the Java version for 5 000 iterations. We
conduct our experiments on three devices: a Dell 5530 laptop
(Intel Core i7-8850H) running Fedora Linux 34 with kernel
5.11.19, GCC 11.1, Java 11, and Python 3.9.5. A Raspberry
Pi 3b+ revision 1.3, running Raspberry Pi OS 32 bits (based
on Debian 10), and a Raspberry Pi 4B revision 1.2, running
Raspberry Pi OS 64 bits, both running with kernel 5.10.17,
GCC 8.3, Java 11, and Python 2.7.16.

Fig. 4. Energy consumption of Ray casting algorithm on different program-
ming languages and platforms

Fig. 5. Energy consumption of the Java implementation of the Ray casting
methods

Figure 4 shows the total energy consumption of all ex-
periments for both platforms. However, each implementation
prints different output to the Linux terminal. In particular, the
Java and Python version prints multiple lines of text, while
the C version prints 3 numbers on each loop. Therefore, the
results should not be used to compare programming languages,
but rather to compare energy distribution across different
platforms. In particular, we observe that the Python program
consumed much more energy, compared to the C program,
on the Intel-based computer, while it consumed less on the
Raspberry Pi devices. This can be partially explained by the
different software stack (Python and GCC versions), and the
execution time of both programs: Python code on Intel took

7https://rosettacode.org/wiki/Ray-casting algorithm

Fig. 6. Runtime power consumption of the Java implementation of the Ray casting methods

3 minutes and 28 seconds (for C: 3 min 14 sec), and on
Raspberry Pi it took 12 min and 32 sec (RPi 3B+) and 7 min
and 38 sec (RPi 4B) (for C: 14 min and 8 sec for RPi 3B+
and 7 min and 23 sec for RPi 4B). PowerJoular allows
such comparisons and studies across multiple platforms. In
this particular example, a software programmer might decide
to use the C version on a server, and the Python version on a
Raspberry Pi, instead of using the C version on both platforms
if the programmer solely relied on energy consumption of only
the Intel computer.

We also run JoularJX on the Java program in order to get
insights on methods’ energy consumption. We use a modified
version of the Ray casting program where we added additional
print commands in each method, and added a loop in the main
method (for 50 000 iterations). We collect the total energy
consumption of all methods (including those from the JDK),
and the ones only from the program, and we collect runtime
power consumption every second for them too. Figure 5
shows the total energy consumption of our Java program.
This in-depth details help developers understand where are the
energy hotspots of their programs [7]. However, JoularJX
introduces power monitoring of methods in real time. Figure 6
outlines the power consumption of the methods for the dura-
tion of the program’s execution. This insight allows developers
and automated tools to detect power variations in real time, and
understand power draws in different scenarios. For example,
a developer might run a program with different input values,
sequentially, and analyze the power draw automatically.

Our tools can, therefore, be incorporated into integrated
development environments (IDEs), testing frameworks, or be
used in pre-production servers, with a goal to help developers
understand power consumption in software and write power-
efficient multi-platform software.

V. CONCLUSION

In this paper, we presented PowerJoular, a mutli-
platform tool that can monitor the power consumption of
PCs, servers, and single-board computers (such as Raspberry
Pi). It uses Intel RAPL interface in Linux for servers, and
our own empirical regression power model for Raspberry Pi
devices. We also presented JoularJX, a Java agent capable
of monitoring, in real time, the power consumption of every
method in a program.

Our tools are aimed towards software developers in helping
them understand and analyze the power footprint of their soft-
ware and source code, across multiple platforms and devices. It
can also be used by system administrators and automated tools
to monitor, in real time, a large number of devices (such as
through a dashboard), and use the power data to take energy-
aware decisions. Currently, an active probe displays energy
information on the screen or in a file, which may incur a small
overhead on the system resources. Although negligible in most
situations, we plan to extend our tools to support on-demand
monitoring, and providing data through OSs’ interfaces such
as D-Bus. We plan to extend PowerJoular to support addi-
tional devices, operating systems, architectures and hardware
components. And we plan to expand JoularJX to support
software written in other programming languages.

REFERENCES

[1] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Sein-
turier. Powerapi: A software library to monitor the energy consumed at
the process-level. ERCIM News, 2013(92), 2013.

[2] Thanh Do, Suhib Rawshdeh, and Weisong Shi. ptop: A process-level
power profiling tool. In in Proceedings of the 2nd Workshop on Power
Aware Computing and Systems (HotPower’09, 2009.

[3] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen,
and Zhonghong Ou. Rapl in action: Experiences in using rapl for power
measurements. ACM Trans. Model. Perform. Eval. Comput. Syst., 3(2),
March 2018.

[4] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. Platypus: Software-based
power side-channel attacks on x86. In IEEE Symposium on Security and
Privacy (SP), 2021.

[5] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan,
Caitlin Sadowski, Lori Pollock, and James Clause. An empirical study of
practitioners’ perspectives on green software engineering. In Proceedings
of the 38th International Conference on Software Engineering, ICSE ’16,
page 237–248, New York, NY, USA, 2016. Association for Computing
Machinery.

[6] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A review
of energy measurement approaches. ACM SIGOPS Operating Systems
Review, 47(3):42–49, 2013.

[7] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Monitoring
energy hotspots in software. Automated Software Engineering, 22(3):291–
332, 2015.

[8] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, and João Saraiva. Ranking programming languages
by energy efficiency. Science of Computer Programming, 205:102609,
2021.

[9] Gustavo Pinto and Fernando Castor. Energy efficiency: A new concern
for application software developers. Commun. ACM, 60(12):68–75,
November 2017.

	Introduction and Related Work
	PowerJoular Design and Features
	Power Monitoring Approach
	Features

	Source Code Energy Monitoring with JoularJX
	Multi-Platform Use Case
	Conclusion
	References

