

Vers une analyse de cycle de vie d'un service de type IT for Green

ENV 4101 -TD

Chantal Taconet, Hind Castel, Sophie Chabridon, Paul Gibson

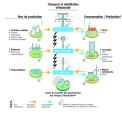
Télécom SudParis

Novembre 2023

Outline

- 1. Quelques définitions pour ce TD
- 2. Modèle STERM pour analyse de la pertinence énergétique d'un smart système

IT for Green


Systèmes numériques contribuant à :

Réduire l'empreinte environnementale d'un système dans un domaine donné

IT for Green - Exemples

Smart Grid

https://www.cre.fr/content/download/7050/file/RA2009.pdfp77

Objectif

- Ajuster les flux d'électricité entre les productions et les consommations
- Particulièrement important en présence d'énergies renouvelables intermittentes

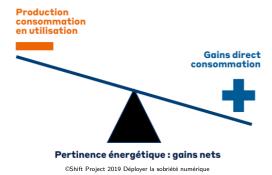
Bâtiments intelligents

- Système d'éclairage
- Système de chauffage

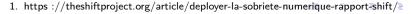
©MOF

Objectif

Réduire la consommation d'énergie

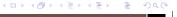

IT for Green - Exemples (cont.)

Question


IT for Green - Exemples (cont.)

- Le système permet-il vraiment de réduire l'impact environnemental?
- Dans ce TP nous allons nous demander si les systèmes intelligents permettent de réduire la consommation énergétique

Objectifs de la séance


- Utilisation d'un modèle pour analyser la pertinence énergétique d'un système de type IT for green avant sa mise en place
 - Smart city, bâtiment intelligent, Smart Grid (réseau électrique intelligent)
 ...
 - Utilisation du modèle STERM¹ (Smart Technologies Energy Relevance Model) proposé par le Shift project

Outline

- 1. Quelques définitions pour ce TD
- 1.1 Énergie grise ou énergie cachée
- 1.2 Analyse de cycle de vie (ACV)
- 2. Modèle STERM pour analyse de la pertinence énergétique d'un smart système

8/20

Énergie grise (ou énergie cachée ou embodied energy)

Définition

- L'énergie grise : somme des énergies nécessaires au cycle de vie d'un objet (hors utilisation)
 - la production, l'extraction, la transformation, la fabrication, le transport, la mise en œuvre, l'entretien et enfin le recyclage.
- S'exprime en joules, souvent rapporté à une unité de masse (kilogramme) pour un matériau produit.

https://www.picbleu.fr/page/ energie-grise-utilisee-cycle-vie-materiau-produit

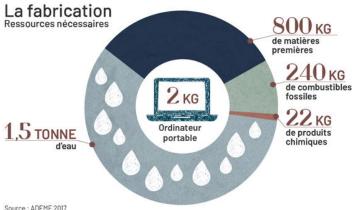
◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 める○

Analyse de cycle de vie

- Analyse du cycle de vie : Méthode normalisée d'évaluation globale et multicritère des impacts environnementaux d'un système (ISO14040, ISO14044, numérique L.1410)
- Multicritère

	Enjeux environnementaux	Indicateurs d'impact
Epuisement des ressources	Epuisement des ressources NR	Consommation d'énergie Non
1	-	Renouvelable (NR)
		Consommation de Ressources
		abiotiques
		Consommation d'eau
Effets nocifs	Réchauffement climatique	Effet de serre additionnel
	Diminution de la couche d'ozone	Concentration d'ozone
		stratosphérique
	Pollution de l'air	Acidification
		Pollution photochimique
	Pollution de l'eau	Eutrophisation
	Toxicité	Ecotoxicité aquatique
		Toxicité humaine
		écotoxicité terrestre
	Production de déchets	Déchets solides

Multi-étapes : les différentes phases du cycle de vie sont prises en compte (extraction et transport des matières premières, fabrication, transport, utilisation, fin de vie)


http://stockage.univ-valenciennes.fr/
MenetACVBAT20120704/acvbat/chap03/co/ch03_170_
3-2-2_1.html

CEN

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

TELEC SusP.

Ressources nécessaires à la fabrication

Source : ADENE 2017

https://www.inoxia.com/entreprise-rse/le-numerique-responsable

11/20 TSP CEN TSIM

Où trouver les chiffres pour réaliser une ACV dans le numérique?

- Base Négaoctet spécialisée dans le numérique (payante) negaoctet.org
 - Environ 500 entrées dont 50 en accès libre via l'ADEME Extrait libre NegaOctet1.4.xlsx
- Base Empreinte®ADEME base-empreinte.ademe.fr
 - Fusion de deux bases gérées par l'ADEME
 - Base Carbone® pour réaliser les bilans carbone
 BaseCarbone23.1.xlsx (documentation de la base carbone)
 - Base Impacts® (pour réaliser des ACV multicritères)
- Base dataviz de Boavitza (impact CO₂eq des équipements informatiques, données extraites à partir des fiches produit des constructeurs) dataviz.boavizta.org
 - Fiche produit : exemple ACV du Dell R740 www.delltechnologies.com
- D'autres bases payantes : exemple Base ecoinvent ecoinvent.org

◆□ > ◆□ > ◆重 > ◆重 > 重 の < ○

12/20 TSP CEN ILLEGAL

Outline

- 1. Quelques définitions pour ce TD
- 2. Modèle STERM pour analyse de la pertinence énergétique d'un smart système
- 2.1 Énergie primaire / énergie finale

13/20

TSP CEN

Objectifs du TP

- Dans ce TP, nous utilisons le modèle STERM (Smart Technologies Energy Relevance Model) du Shift Project
 - Ce modèle évalue le temps d'utilisation minimum pour qu'un système intelligent économise de l'énergie.
 Il prend en compte :
 - L'énergie consommée par la couche intelligente à l'utilisation;
 - L'énergie grise consommée dans la phase de production de la couche connectée;
 - L'effet rebond, lorsqu'une augmentation de l'efficacité d'un système fait que ce système est de plus en plus utilisé.
 - Évaluation de deux systèmes intelligents
 - Éclairage
 - Chauffage

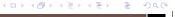
14/20 TSP

CEN

Énergie primaire / énergie finale

Définition

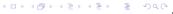
- Énergie primaire : énergie « potentielle » contenue dans les ressources naturelles (bois, gaz, pétrole, vent, soleil, etc) avant transformation
- Énergie finale : énergie consommée et facturée


https://www.precarite-energie.org/energie-primaire-et-energie-finale-le-coefficient-energetique-ou-facteur-d/

15/20 TSP CEN TALEON

Énergie primaire / énergie finale (cont.)

Formule


- EnergiePrimaire = EnergieFinale * C
- C: tient compte des pertes lors de la production, du transport et de la transformation du combustible
- C = 3 (dans le modèle STERM par défaut)

16/20

Données en entrée du modèle

- Puissance à l'utilisation, issu de campagnes de mesures (limite basse, moyenne, limite haute) $\leadsto E_{ini}(t)$
- eta pourcentage d'utilisation des équipements (par exemple 8h/jour \leadsto 0,33)
- Durée de vie des équipements
- \blacksquare α coefficient d'économie d'énergie attendue en utilisant le système intelligent

CEN

TELECOM SusPara

Ne sont pas considérés dans le modèle

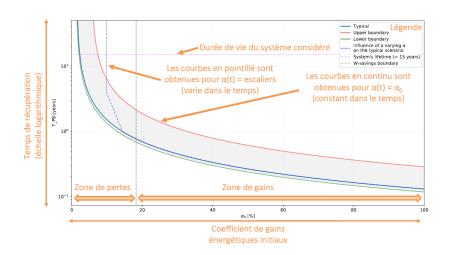
- Échange/stockage avec un cloud externe
- Recyclage des équipements

18/20

TSP

Formalisation mathématique

- Gain : $G(t) = C * E_{savings}(t) E_{smart}(t)$
 - (C, coefficient énergie finale ~ énergie primaire)
- \blacksquare $E_{savings}(t) = E_{initial}(t) * \alpha$
 - lacktriangle $E_{initial}$: énergie consommée en fonctionnement \leadsto sans la couche smart
- \blacksquare $E_{smart}(t) = E_{smart,embodied} + C * E_{smart,funct}(t)$


TSP

Point de neutralité énergétique (payback time) T_{PB} tel que $G(T_{PB})=0$

CEN TELECON

$$T_{BT} = f(\alpha)$$

CEN

TELECON SurParie

20/20

TSP