
INF 4401 Julien Romero 2022/2023

NoSQL
Julien Romero - Télécom SudParis

INF 4401 Julien Romero 2022/2023

Previously…

INF 4401 Julien Romero 2022/2023

The World of Relational Data - Client Needs

Client

I need an application to
manager the employee of my
company. Each employee
belongs to a department…

INF 4401 Julien Romero 2022/2023

The World of Relational Data - E/R Diagram

Client

INF 4401 Julien Romero 2022/2023

The World of Relational Data - Database Schema

Client

Employees(employeeID: String, name: String, …)
Mission(missionID: String, city: String, …)
Contract(contratID: String, type: String, …)
….

INF 4401 Julien Romero 2022/2023

The World of Relational Data - Schema Implementation

Client

Employees(employeeID: String, name: String, …)
Mission(missionID: String, city: String, …)
Contract(contratID: String, type: String, …)
….

RDBMS

INF 4401 Julien Romero 2022/2023

The World of Relational Data - Data Update

Client

Employees(employeeID: String, name: String, …)
Mission(missionID: String, city: String, …)
Contract(contratID: String, type: String, …)
….

RDBMS

employ
eeID

name address birthdat
e

E1 Kim Paris 01/01/9
5

E3 John Lyon 10/10/8
8

Update

INF 4401 Julien Romero 2022/2023

The World of Relational Data - Querying

Client

Employees(employeeID: String, name: String, …)
Mission(missionID: String, city: String, …)
Contract(contratID: String, type: String, …)
….

RDBMS

employ
eeID

name address birthdat
e

E1 Kim Paris 01/01/9
5

E3 John Lyon 10/10/8
8

Update

Query

INF 4401 Julien Romero 2022/2023

Why Limit Ourselves To Relational Data?

INF 4401 Julien Romero 2022/2023

Why Do We Use Relational Databases So Much?
● Intuitive representation, with a mathematical support (relational algebra).
● Very optimized softwares: They have matured over years and are widely used.
● Most RDBMS follow the ACID properties…

INF 4401 Julien Romero 2022/2023

ACID

INF 4401 Julien Romero 2022/2023

General Problems - Atomicity
An operation (also called transaction) on a database (like read and write) is often
composed of many sub-operations. For example:

● Give me the list of my friends who live in Paris =
○ Get my list of friends
○ Get the address of all my friends
○ Keep only the ones who live in Paris

The atomicity ensure that my transaction is treated as a single “unit” that either
succeeds entirely or fails entirely.

INF 4401 Julien Romero 2022/2023

General Problems - Atomicity
Send 100€ on my friend =

● Check if I have 100€ on the first account
● If so, remove 100€ on the first account
● Add 100€ to the account of my friend.

What if the third operation fails? (e.g. my friend gave me a wrong account ID or
the servers shutdown)

Atomicity guarantees that the entire transaction fails: No money was actually
withdrawn from my account.

INF 4401 Julien Romero 2022/2023

General Problems - Consistency
The state of the database before and after a transaction remains consistent, i.e. it
respects some integrity constraints.

Example: Internal operations in a bank do not create or destroy money.

In a bank, we do not want to allow queries that remove 100€ from an account and add
200€ in another account.

INF 4401 Julien Romero 2022/2023

General Problems - Isolation
If two transactions happen at the same time, it is like they happen sequentially.

We might have a lot of troubles if many transactions try to access/write the same data
at the same time.

INF 4401 Julien Romero 2022/2023

General Problems - Isolation - Example
Pay 100€ from my account = Read the total amount of money + set the new value if possible

100€

Pay 100€

Get money amount
100€

INF 4401 Julien Romero 2022/2023

General Problems - Isolation - Example

100€

Get money amount
100€

Pay 100€

Pay 100€ from my account = Read the total amount of money + set the new value if possible

INF 4401 Julien Romero 2022/2023

General Problems - Isolation - Example

0€

Set account to 0€
Success

Pay 100€ from my account = Read the total amount of money + set the new value if possible

INF 4401 Julien Romero 2022/2023

General Problems - Isolation - Example

0€

Set account to 0€
Success

Pay 100€ from my account = Read the total amount of money + set the new value if possible

INF 4401 Julien Romero 2022/2023

General Problems - Durability
If a transaction is successful, its effects are permanent even if the system fails.

Example: I send 100€ to my friend and the operation is successful. Even if the servers
of the bank crash, I will still have 100€ less and my friend 100€ more after the servers
are back.

INF 4401 Julien Romero 2022/2023

General Problems - ACID
ACID (Atomicity, Consistency, Integrity, Durability) is a set of properties that
guarantee the quality of the database in case of errors, power failures or other kinds of
mishaps.

INF 4401 Julien Romero 2022/2023

Limitations of ACID
● ACID has a cost = Systems are slower.
● Poor scalability

○ Hard to parallelize.
○ Big data companies have to use several computers to collect their data.
○ ACID can be VERY expensive on several computers

INF 4401 Julien Romero 2022/2023

What is Scalability?
“Scalability is the property of a system to handle a growing amount of work by adding
resources to the system.” [Wikipedia]

It means that your application can grow smoothly and adapt to the usage.

INF 4401 Julien Romero 2022/2023

How To Scale?
● Horizontal vs vertical scaling
● Vertical scaling (“scaling up”): Improve the computers you currently have.

○ More processing power
○ More memory

INF 4401 Julien Romero 2022/2023

How To Scale?
● Horizontal vs vertical scaling
● Vertical scaling (“scaling up”): Improve the computers you currently have.

○ More processing power
○ More memory

● Horizontal scaling (“scaling out”): Add more (cheap) machines

INF 4401 Julien Romero 2022/2023

Why Is Scaling Out Better?
● Adding resources on a single computer is harder and harder, and more and

expensive.
● Resources on a single machine are limited. By scaling out, I can add as many

machines as I want.
● If your single computer dies, all your system dies if you have a single machine.
● Changing the single computer takes time. With many computers, you can have a

smooth transition
● …

Take a lecture about the cloud to learn more!

INF 4401 Julien Romero 2022/2023

NoSQL

INF 4401 Julien Romero 2022/2023

What is NoSQL?
● A NoSQL database is a database that does not follow the relational model
● NoSQL does not mean Not SQL

○ NoSQL is a database kind, not a programming language
○ NoSQL databases often allow the usage of SQL
○ NoSQL = Not Only SQL

● In general, a NoSQL database is:
○ Non-relational: Not only tables
○ Distributed: Can be on several machines, all around the world
○ Scalable: Store and query large amount of data
○ Available: Even if a machines crashes, continues working

INF 4401 Julien Romero 2022/2023

Availability And Duplication
● We have data stored on several machines. How can we protect the data if one or

several machines crash?

INF 4401 Julien Romero 2022/2023

Availability And Duplication
● We have data stored on several machines. How can we protect the data if one or

several machines crash?
● We use duplication!

○ Instead of storing the data only once, we store it several times.

Grades Grades Grades

INF 4401 Julien Romero 2022/2023

Availability And Duplication
● We have data stored on several machines. How can we protect the data if one or

several machines crash?
● We use duplication!

○ Instead of storing the data only once, we store it several times.

Grades Grades Grades

Even if a machine crashes, the
data is still available

INF 4401 Julien Romero 2022/2023

Why Do We Want To Use NoSQL?
● Application development productivity

○ Organizing relational data can take a lot of time
○ NoSQL is less structured, allowing for flexibility, easier changes, and faster prototyping.

● Large Data Scale
○ Storing large amount of data using a relational database is expensive.
○ Typically less expensive to have a database on several small machines rather than a sing big one.

INF 4401 Julien Romero 2022/2023

NoSQL vs SQL
NoSQL Database

● Uses SQL, or not
● Not only tables
● Flexible schema = can change
● Scales out = can add more machines

Relational

● Uses SQL
● Tables with predefined columns and

rows
● Fixed schema = hard to change
● Scales up = need more powerful

machines

INF 4401 Julien Romero 2022/2023

The Four Types of NoSQL Databases
● Tabular
● Key-Value
● Document
● Graph

INF 4401 Julien Romero 2022/2023

Tabular Data

INF 4401 Julien Romero 2022/2023

Very Similar To Relation Model
● Many NoSQL databases allow to have tables with columns and rows
● Very similar to the relation model we saw in previous lectures.

INF 4401 Julien Romero 2022/2023

Key-Value Data

INF 4401 Julien Romero 2022/2023

Key-Value Data
● Very simple. Basically a table with two columns:

○ A unique key
○ A value associated to each key

● Example:

Key Value

France Paris

Germany Berlin

Spain Madrid

INF 4401 Julien Romero 2022/2023

Key-Value Data - Advantages
● Simplicity: Almost no structure and type constraints.
● Speed: Very fast

○ Very good for cache

INF 4401 Julien Romero 2022/2023

Key-Value Data - Disadvantages
● Cannot search by value

○ I cannot find what is the country with Paris as a capital
● Cannot easily associate several values to a single key

○ StudentID and multiple grades
● Cannot modify partially the value, we have to modify everything

INF 4401 Julien Romero 2022/2023

Document Data

INF 4401 Julien Romero 2022/2023

The JSON Format
JSON is a very popular file type that structures information. A JSON document can be:

● A value (String, integer, float).
○ E.g: 1, “Paris”, 3.14

● A list of values.
○ E.g.: [1, 2, “France”, 99.2]

● An association of keys and values.
○ Eg. {“France”: “Paris”, “Germany”: “Berlin”, “Spain”: “Madrid”}

● Values can also be JSON documents !
○ We can compose the JSON documents.

INF 4401 Julien Romero 2022/2023

The JSON Format - Example
group = {
 “groupname”: “Beatles”,
 “members”: [
 {“firstname”: “John”, “lastname”: “Lennon”, “age”: 42,
 “instrument”: [“guitare”, “voice”]},
 {“firstname”: “Paul”, “lastname”: “Mccartney”, “age”: 75,
 “instrument”: [“guitare”, “voice”]}
]
 “albums”: [
 {“name”: “Sgt. Pepper's Lonely Hearts Club Band”, “year”: 1967},
 {“name”: “Yellow Submarine”, “year”: 1969}
]
}

INF 4401 Julien Romero 2022/2023

The JSON Format - Getting data
● To get a partial data in a JSON file, we use the notation myJSON[i] where i is the

index of the element in the list (we traditionally start at 0), or the key for an
association.
○ With names=[“Paul”, “Jack”, “Alice”, Roxanne”], names[2] is “Alice”
○ With student={“name”: “John”, “age”: 18, “studentID”: “S12”}, student[“name”] is “John”

● As a JSON document can also contain a JSON document, we can chain the partial
accesses.
○ myJSON[2][“student”][15][1]

INF 4401 Julien Romero 2022/2023

The JSON Format - Example
group = {
 “groupname”: “Beatles”,
 “members”: [
 {“firstname”: “John”, “lastname”: “Lennon”, “age”: 42,
 “instrument”: [“guitare”, “voice”]},
 {“firstname”: “Paul”, “lastname”: “Mccartney”, “age”: 75,
 “instrument”: [“guitare”, “voice”]}
]
 “albums”: [
 {“name”: “Sgt. Pepper's Lonely Hearts Club Band”, “year”: 1967},
 {“name”: “Yellow Submarine”, “year”: 1969}
]
}

group[“members”][1][“instrument”][0]

INF 4401 Julien Romero 2022/2023

The JSON Format - Example
group = {
 “groupname”: “Beatles”,
 “members”: [
 {“firstname”: “John”, “lastname”: “Lennon”, “age”: 42,
 “instrument”: [“guitare”, “voice”]},
 {“firstname”: “Paul”, “lastname”: “Mccartney”, “age”: 75,
 “instrument”: [“guitare”, “voice”]}
]
 “albums”: [
 {“name”: “Sgt. Pepper's Lonely Hearts Club Band”, “year”: 1967},
 {“name”: “Yellow Submarine”, “year”: 1969}
]
}

group[“members”][1][“instrument”][0]

INF 4401 Julien Romero 2022/2023

The JSON Format - Example
group = {
 “groupname”: “Beatles”,
 “members”: [
 {“firstname”: “John”, “lastname”: “Lennon”, “age”: 42,
 “instrument”: [“guitare”, “voice”]},
 {“firstname”: “Paul”, “lastname”: “Mccartney”, “age”: 75,
 “instrument”: [“guitare”, “voice”]}
]
 “albums”: [
 {“name”: “Sgt. Pepper's Lonely Hearts Club Band”, “year”: 1967},
 {“name”: “Yellow Submarine”, “year”: 1969}
]
}

group[“members”][1][“instrument”][0]

INF 4401 Julien Romero 2022/2023

The JSON Format - Example
group = {
 “groupname”: “Beatles”,
 “members”: [
 {“firstname”: “John”, “lastname”: “Lennon”, “age”: 42,
 “instrument”: [“guitare”, “voice”]},
 {“firstname”: “Paul”, “lastname”: “Mccartney”, “age”: 75,
 “instrument”: [“guitare”, “voice”]}
]
 “albums”: [
 {“name”: “Sgt. Pepper's Lonely Hearts Club Band”, “year”: 1967},
 {“name”: “Yellow Submarine”, “year”: 1969}
]
}

group[“members”][1][“instrument”][0]

INF 4401 Julien Romero 2022/2023

The JSON Format - Example
group = {
 “groupname”: “Beatles”,
 “members”: [
 {“firstname”: “John”, “lastname”: “Lennon”, “age”: 42,
 “instrument”: [“guitare”, “voice”]},
 {“firstname”: “Paul”, “lastname”: “Mccartney”, “age”: 75,
 “instrument”: [“guitare”, “voice”]}
]
 “albums”: [
 {“name”: “Sgt. Pepper's Lonely Hearts Club Band”, “year”: 1967},
 {“name”: “Yellow Submarine”, “year”: 1969}
]
}

group[“members”][1][“instrument”][0]

INF 4401 Julien Romero 2022/2023

Document Database
● A document database stores documents in a predefined format like JSON.
● The documents do not have to follow any structure.

INF 4401 Julien Romero 2022/2023

Document Database - Advantages
● No schema: The documents can take any form. This is good for changing

applications.
● Easy to update: We can update parts of a document.
● Fast as a document does not rely on additional information like in relational

tables.

INF 4401 Julien Romero 2022/2023

Document Database - Disadvantages
● Hard to check consistency: Because documents are independent, they might carry

similar information, sometimes inconsistent.
● Atomicity issue: Cannot modify two documents in a single transaction.

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
We want to turn the following database into one document for each wine:

● Wines(WineID: String, vineyard: String, year: Integer, degree: Float)
● Harvests(WineID: String, ProducerID: String, weight: Float)
● Producers(ProducerID: String, name: String, city: String)
● Clients(ClientID: String, name: String, city: String)
● Orders(orderID: String, date: Date, ClientID: String, WineID: String, quantity:

Float)

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
1. Create the fields for the main relation schema.

● Wines(WineID: String, vineyard: String, year: Integer, degree: Float)

wine = {
 "wineID": "W12",
 "vineyard": "Chinon",
 "year": 2015,
 "degree": 13.5,
}

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
2. For each relation involving a wine, add a new field. The new value will be a list where each
element is a row matching the wineID.

(you do not need to repeat the wineID).

● Harvests(WineID: String, ProducerID: String, weight: Float)

wine = {
 "wineID": "W12",
 "vineyard": "Chinon",
 "year": 2015,
 "degree": 13.5,
 “harvests”: [{“producerID”: “P159”, “weight”: 17}, {“producerID”: “P789”, “weight”: 98}]
}

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
3. If you key primary keys, we can decide to replace it by the full row associated with this key.

Note: this creates a lot of redundancy!

● Producers(ProducerID: String, name: String, city: String)

wine = {
 "wineID": "W12",
 "vineyard": "Chinon",
 "year": 2015,
 "degree": 13.5,
 “harvests”: [
 {“producer”:
 {“producerID”: “P159”, “name”: “Luke Soin”, “city”: “Bordeaux”},
 “weight”: 17},
 …]
}

INF 4401 Julien Romero 2022/2023

Graph Data

INF 4401 Julien Romero 2022/2023

What Is a Graph?
A graph is a set of nodes representing entities that are connected with edges.

Example: The friendship graph of Facebook. The nodes are the users, and there is a
link between two users if they are friends.

Alice

Bob

John

Luc

Elvis

Peter

INF 4401 Julien Romero 2022/2023

Graph Databases
● We can store graphs into graph databases
● We can exploit the structure of the graph with the queries

○ E.g.: Find a path between two nodes, count the number of friends.
● We can also attach properties to nodes and edges.

○ E.g.: name, birthdate to a node representing a friendship
○ E.g.: The start of the relationship for an edge

INF 4401 Julien Romero 2022/2023

Graph Databases - Advantages
● Flexible structure
● Easy to understand

INF 4401 Julien Romero 2022/2023

Graph Databases - Disadvantages
● Not all data can be easily expressed with a graph.
● Longer to query than tables in some cases.

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
When we want to turn a relational database into a graph database, we have to think in
terms of E/R diagrams. The entities are the nodes, and the relationships are edges. The
additional properties can be attached to the nodes and edges (not seen in this lecture).

● Pilots(pilotID: String, name: String, birthdate: Date)
● Planes(planeID: String, buildDate: Date, numberOfSeats: Integer)
● usePlane(flightID: String, planeID: String)
● hasPilot(flightID: String, pilotID: String)
● departureAirportFlight(flightID: String, airportID: String, gate: String)
● Airports(airportID: String, name: String, city: String)
● canPilot(pilotID: String, planeID: String)

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
1. Identify the entities.
● Pilots(pilotID: String, name: String, birthdate: Date)
● Planes(planeID: String, buildDate: Date, numberOfSeats: Integer)
● usePlane(flightID: String, planeID: String)
● hasPilot(flightID: String, pilotID: String)
● departureAirportFlight(flightID: String, airportID: String, gate: String)
● Airports(airportID: String, name: String, city: String)
● canPilot(pilotID: String, planeID: String)

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
2. Identify the relationships.

● Pilots(pilotID: String, name: String, birthdate: Date)
● Planes(planeID: String, buildDate: Date, numberOfSeats: Integer)
● usePlane(flightID: String, planeID: String)
● hasPilot(flightID: String, pilotID: String)
● departureAirportFlight(flightID: String, airportID: String, gate: String)
● Airports(airportID: String, name: String, city: String)
● canPilot(pilotID: String, planeID: String)

INF 4401 Julien Romero 2022/2023

Turning A Relation Database Into A Document Database
3. Connect everything.

Pilot1

Pilot2

Pilot3

Plane
1

Plane
2

Flight
2

Flight
1

Flight
3

INF 4401 Julien Romero 2022/2023

Summary

INF 4401 Julien Romero 2022/2023

Summary
● Most RDBMS follow ACID.
● The relational model is very rigid.
● NoSQL (=Not Only SQL) brings flexibility, allows data distribution, and is more

scalable.
● Four types of NoSQL databases:

○ Tabular
○ Key-Value
○ Document
○ Graph

