!?’oms\%% INSTITUT TELECOM
;'0 : POLYTECHNIQUE
’ DE PARIS S0 |

Modeéles de langage

Julien Romero

Introduction

Breve histoire de la linguistique

e -6.000 avant J.C.: Invention de I'écriture en Mésopotamie

e -2.000 avant J.C.: Listes lexicales (glossaires, dictionnaires, traductions) en Mésopotamie

e -1.200 avant J.C.: Etude de la morphologie (structure des mots) et de la phonétique pour les textes religieux en Inde

e -600 avant J.C.: Panini crée les premieres regles de grammaire en Inde

e -300avant J.C.: Aristote étudie la rhétorique

e 18eme : Début de la linguistique moderne (liens avec psychologie, biologie)

e 20eme: Lalinguistique devient une discipline avec une division en sous-disciplines: phonologie, morphologie, syntaxe,
sémantique, ...

Traitement automatique du langage naturel

e 1950-1990: approche symbolique, inspirée de la linguistique. On donne des regles, et on laisse l'ordinateur les
exploiter.

e 1990-2010: approche statistique. Nous avons suffisamment de données et de puissance pour utiliser des outils
statistiques et du machine learning.

e 2010-: approche neuronale. Basée sur des réseaux de neurones profonds.

Comment représenter un texte ?

e La maniere dont nous allons représenter les textes aura un impact sur la modélisation.
O Nous allons décomposer notre texte en une suite de d'objets (appelés tokens) : c’est la tokenization

O L'ensemble des tokens possibles est appelé le vocabulaire
e Tokenization naturelle en informatique : les caractéres

O On sépare tous les caracteres de la phrase

O “Lerenard” devient [‘L", “e”, “ “, “", “e", “n”, “a", “r", “d"]

O Avantages : Facile, on peut tout représenter

O Inconvénients : Séquences longues, peu d’informations sémantiques utiles au niveau des lettres

Comment représenter un texte ?

e La maniere dont nous allons représenter les textes aura un impact sur la modélisation.
O Nous allons décomposer notre texte en une suite de d'objets (appelés tokens) : c’est la tokenization

O L'ensemble des tokens possibles est appelé le vocabulaire
e Tokenization naturelle pour les humains : les mots

O On sépare tous les mots d'une phrase

n o ou nou nouyn ou

O [“Lerenard mange la poule”] devient [‘Le”, “renard”, “mange”, “la”, “poule”]
O Avantages : Séquences courtes, chaque token a une signification

O Inconvénients : Large vocabulaire (on doit le limiter), non flexible avec les fautes, variantes d’'un mot, beaucoup de mots
hors du vocabulaire, modéle tres larges

Comment représenter un texte ?

e La maniere dont nous allons représenter les textes aura un impact sur la modélisation.
O Nous allons décomposer notre texte en une suite de d'objets (appelés tokens) : c’est la tokenization

O L'ensemble des tokens possibles est appelé le vocabulaire
o A partir de maintenant, nous représenterons un texte comme une succession de tokens W W, W

O Lesw, peuvent représenter des mots, ou des lettres suivant la tokenization choisie

Modélisation

Qu’est-ce qu’'un modele de langage?

Etant donné une séquence composée de plusieurs mots W, W,..W_, nous voulons savoir a quel point cette phrase est
probable. Autrement dit, nous voulons :

P(wi,ws, ..., wy,)

Exemples:
e ‘“Lerenard mange la poule.” a une plus forte probabilité que “La renard le poule”
e ‘“ll vient de Paris. Son train est en retard.” a une plus forte probabilité que “Il vient de Paris. Le renard mange la poule.”.

(Le contexte est important).

Applications des modeles de langage

e Reconnaissance vocale
O Les données sont bruitées, un modele de langage aide a désambiguiser

O Ex: “Lavache mange I'herbe.” et “La hache vange I'air” sont phonétiquement proches, mais la premiére est plus probable.
e Correction d'orthographe/de grammaire

O Ex: “Les vaches mangent de I'herbe” vs “Les vaches mange de I'herbe”
e Traduction
e Chatbot

O Ex:“- Ou puis-je manger ce soir? - Il y a un restaurant japonais au bout de la rue.” vs “- OU puis-je manger ce soir? La
capitale de la France est Paris.”

10

Décomposition d’'un modele de langage

P(w,, w,, ..., W) est trop compliqué a calculer d'un coup. On doit donc la décomposer.
Décomposition causale:
P(W,, W, ..y W) = P(W)*P(W, W) *P(W,lw.w,) ...P(W [W,..W_)
(On cherche la probabilité du mot suivant étant donné les mots précédents)
e Décomposition avec un masque
PW,, W, ..., W) = P(W,IW..W, W, ...W) *P(W..W,_W,_..W)

11

Que représentent ces probabilités ?

On a la probabilité d’'un mot en fonction du context

P(w|Le renard mange la)

poule

souris
graine
paille
tour

Si

12

Quand utiliser quelle décomposition?

e Décomposition causale: Marche bien quand on doit générer du texte.
O Chatbot, résumé de texte, traduction

O La probabilité des premiers mots prend peu de contexte.
e Décomposition avec un masque: Quand on a besoin d'une représentation contextuelle (avant le mot et aprés le mot)
pour chaque mot.

O Assignation d’'un label a chaque mot (verbe, nom, adjectif, ...), classification de phrases

O Ne permet pas de générer du texte de maniére convenable (on apprend a prédire un mot en ayant déja tout le reste de la
phrase, pas juste le début).

P(wl,w2 w)—P(wIw “W, W w) P(w W w)

k+1"" k-1 k+l

¢

13

Comment calculer les probabilites?

P(W,, W, .. W) = P(W)*P(W, W) *P(W,lw.w,) ...P(W [W,..W_)

On va vouloir estimer chacune des probabilités P(w,|w_,)
Cette décomposition est tres utile pour générer du texte. Dans certaines applications comme la traduction, on peut
s'intéresser a d’'autres probabilités.

14

Premiére solution : statistiques pures (1990)

Nbr observations wiws. . . W

P(wy | weg) = :
Nbr observations wiws. .. Wr_1
Probléeme : Plus k est élevé, moins on a d'observations (voire pas du tout).
On doit donc faire des approximations N-grams:

e Bigram:

e Trigram:
Augmenter trop le nombre de mots considérés donne des probabilités imprécises et difficiles a stocker (Google s’est arrété a
environ 1 milliard de 5-grams).

P(wk ‘ w<k) ~ P(wk ‘ wk_l)
P(wy | wer) = P(wy, | wip—1, wi—2)

15

Deuxieme solution: Word2Vec, un vecteur par mot, sans
ordre (2013)

e Onvoudrait un vecteur (appelé embedding) par mot qui “contiendrait” les informations nécessaires pour approximer
nos probabilités.

e Pour faciliter les calculs, on suppose que l'ordre des mots n'est pas important.

e Deux approches principales:

O Continuous Bag Of Words: A partir du contexte autour d’'un mot, on veut prédire le mot ciblé.
1 n
T E P(wk:‘wla'“)wk—l)wkﬁ-f—h'")wn)
k=1
o Skip-gram: A partir d’'un mot cible, on veut prédire tous les mots du contexte.

L3S Py | w)

i=1 j#i

16

Les embeddings

e Embedding = encodage de tokens sous forme de vecteurs de réels
e Enpratique:

O Chaque token du vocabulaire a un indice unique. Tous les indices sont continus en partant de 0.

O Chaque embedding a une taille E, et tous les embeddings sont stockés dans une matrice de taille VXE ou V est la taille du
vocabulaire

O Ontransforme les indices en une séquence de one-hot encoding, puis on multiplie avec la matrice des embeddings

17

Deuxieme solution: un vecteur par mot - Exemple CBoW

Sentence: Je mange une pomme.

Je =P 982 —Pp»

Embedding Je

une =P 765 —P»

Embedding une

pomme > 112 —P

Embedding pomme

— 1000 —P»

Embedding .

Moyenne

>

Lineaire + softmax

Probabilité pour
chaque mot

v

Fonction de colt
avec mange en
one-hot encoding
en label

18

Deuxieme solution: un vecteur par mot - Exemple Skip-Gram

Sentence: Je mange une pomme.

pomme $ 112 —P»

Embedding pomme

Lineaire + softmax

pomme > 112 —P»

Embedding pomme

Loss pour Je

Lineaire + softmax

Loss pour mange

pomme > 112 —P

Embedding pomme

Lineaire + softmax

Loss pour une

pomme $ 112 —»

Embedding pomme

Lineaire + softmax

Loss pour .

19

Interpretation de Word2Vec

On peut faire de I'arithmétique avec les mots : king - man + woman = queen

woman .
|
man gir slower
\ father <‘ son slow
cat king u€e" boy

dog \ mother &‘ faster slowest
\ cats daughter fast
d France
08s England longer
/ / fastest
Paris

he
Italy \ she long
London \
himself

longest
herself 8

Rome

Word2Vec toujours utile ?

e Représentation vectoriel de mots, méme hors contexte

e Léger

e Pas besoin de GPU pour l'utiliser

e Nécessite relativement peu de données pour I'entrainement

21

Quelle est Ia taille de ces modeles ?

e Taille des embeddings : V*E

OV =taille du vocabulaire, E dimension des embeddings
e Couche linéaire :E*V

22

Quelle est Ia taille de ces modeles ?

Dans le Word2Vec de Gensim, V = 662109 et E = 300
Taille des embeddings = 2*108 parameétres, soit 1.5Gb
Méme chose pour la couche linéaire, et on doit encore rajouter :
e Lesrésultats intermédiaires du forward pass (proportionnel a la batch size)
e Les calculs intermédiaires de Adam (2 floats par parametre)
e Les gradients (nombre de paramétre)
Soit au moins environ 3Gb * 5=15Gb !
Et nous n'avons qu’une seule couche linéaire !

23

Comment gérer les vocabulaires trop grands ?

e Onveut:
o Suffisamment de tokens pour que chaque token puisse avoir une interprétation sémantique
O Pas trop de tokens pour ne pas faire exploser la mémoire

O Pouvoir tout écrire et prévoir les fautes de frappe, les mots rares, les variations des mots, ...
e Engros, quelque chose entre que des caracteres et que des mots
e Solution : Byte-Pair Encoding (BPE)

24

Byte-Pair Encoding

e Idée: On part des caracteres uniques, puis on ajoute petit a petit les paires de tokens les plus fréquentes dans le
vocabulaire
Algorithme :
Input : un corpus de textes, taille de vocabulaire V
Output : une liste des transformations a appliquer pour tokenizer le texte
1. Récupérer les caracteres uniques dans le corpus. Ce sont les tokens initiaux.
2. Tokeniser tous les mots du vocabulaire avec ces tokens
3. Tant que le nombre de tokens <V

a. Trouver la paire de tokens t.t, la plus fréquente dans le corpus. La rajouter aux tokens.

b. Fusionner t, ett, dans tous les mots du corpus
4. Retourner la liste de tokens (dans l'ordre)

25

Byte-Pair Encoding - Exemple

Corpus = [("hug", 10), ("pug", 5), ("pun’, 12), ("bun", 4), ("hugs", 5)]

Au début, tokens = ['b", "g", "h", "n", "p", "s", "u']

Premiére tokenization = ("h" "u""g" 10) (" ""u""g", 5), ("p" "u" "n",12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)
Paire la plus fréquente : ("u", "g") -> "ug"

Retokenization = ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

26

Les tokens spéciaux

Souvent, les modeles de langage ajoutent des tokens supplémentaires pour encoder certaines situations :
e [EOS], <|lend_of_text|> : fin du texte
e <|begin_of_text|>: début du texte
e <|start_header_id|>: donner un réle dans un chat (user vs assistant)
e [MASK]: cacher un mot

27

Troisieme solution: réseau de neurones récurrents

e Onveut prendre en compte l'ordre des mots.
O Onva représenter le contexte précédent avec un vecteur

O On garde toujours un vecteur par mot

Je mange

*

hy —»

hi

*

mange

pomme

P(wy | weg) ~ P(wg | w1, hx-1)

28

Troisieme solution: réseau de neurones récurrents

e Onveut prendre en compte l'ordre des mots.

O Onva représenter le contexte précédent avec un vecteur

O On garde toujours un vecteur par mot

Je mange une

S S

hy 9 hi F—| ho

1

mange

pomme

P(wy | weg) ~ P(wg | w1, hx-1)

29

Troisieme solution: réseau de neurones récurrents

e Onveut prendre en compte l'ordre des mots.

O Onva représenter le contexte précédent avec un vecteur

O On garde toujours un vecteur par mot

Je mange une

S S

hy 9 hi F—| ho

1

mange

hy

pomme

P(wy | weg) ~ P(wg | w1, hx-1)

30

Quatriéme solution: Transformers (2017)

e Problemes des réseaux récurrents:
o Difficile de se “souvenir” des mots trés éloignés.
o Difficile a entrainer dans le cas des grands contextes.

o Difficile de paralléliser.
e Solution:

O Ondonne tous les mots précédents + une indication sur la position

O Onveut que le modeéle apprenne a choisir le contexte pertinent (mécanisme d’attention)

31

Quatriéme solution: Transformers (2017) - Self-attention

L'attention est un mécanisme associant un poids a chacune des entrées du réseau

O

O

O

Quand le poids est calculé uniguement a partir de I'entrée elle-méme, on parle de self-attention.
Exemple attention: Traduction

Neural Machine Translation by Jointly Learning to Align and Translat

L'attention utilise I'entrée + le début de la traduction séparément

agreement

on
European
Economic
Area

was
signed

in
August
1992
<end>

(]
<
[

L

the

accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

32

Quatriéme solution: Transformers (2017) - Self-attention

e L'attention est un mécanisme associant un poids a chacune des entrées du réseau

O Quand le poids est calculé uniquement a partir de I'entrée elle-méme, on parle de self-attention.
o Exemple self-attention

The The The The
animal animal animal

didn't didn't didn’t didn't

Cross Cross cross Cross

the the the the

street street street

because because because because

it it

was was was was

too too too too

tired tired wide wide

Positional Encoding

e Probleme de I'attention : I'ordre de I'entrée n'a pas d’'importance
O Il faut donc encoder la position d'un mot directement dans I'entrée, en plus de 'embedding du mot

O C'est du positional encoding
e Premiere solution : utiliser un entier indiquant la position

O Peut devenir tres grand

O Variations trop petites aprés la normalisation (comment normaliser si la taille de la séquence d’'entrée est variable ?)

34

Absolute Positional Encoding

e Probleme de I'attention : I'ordre de I'entrée n'a pas d’'importance
O Il faut donc encoder la position d'un mot directement dans I'entrée, en plus de 'embedding du mot

O C'est du positional encoding
e Deuxiéme solution : Utiliser plusieurs dimensions

O Tous les vecteurs doivent étre uniques
O On doit pouvoir comparer deux positions

O Chaque dimension est entre -1 et 1 (normalisé naturellement entre -1 et 1)

Dans Transformers: P(k, 27) = sin(K) P(k,2i+ 1) = cos(L)

n2i/d n2i/d

Avec k la position dans la phrase, 2i et 2i+1 la dimension dans le vecteur de position, et n un hyperparamétre (10k a l'origine),
d = dimension de sortie

35

Absolute Positional Encoding - Example

Position k

=0 i=l i=2 = i=3
Je —» 0 I Si:((?) co=s(10) Si:((?) co=s(10)
e e T W e B B B B
e 2 e S e | T g
renard ——%» 3 ——P S:l((fl/i) ° S(()sgg) Si:(())z/(l)o CZS(())Z:)

36

Absolute Positional Encoding - Visualisation

0.04

0.02 4

0.00 1

-0.02

-0.04 1

k=0 k=4

100 - 100 -
0.75 1 0.75
— 0.50
0.25 1

025
0.00 1

0.00 1
-0.25 1
-0.25 L 0.50 4
0.50 1 -0.75 1
-0.75 1 -1.00 1

20 4 6 8 100 20 4 & 8 100 '

100 -
0.75 1
0.50 +
0.25 1
0.00 1
-0.25 1
~0.50

~0.75 1

20

40 60 80

100

~1.00

20

40 60 80

100

37

Absolute Positional Encoding - Visualisation

0 100

""""""'”'"lllll u’;|[|’|'l','|‘”"f”"""'”'N|||||H||H\||H]"H H‘"m

Iln|
L I”
l|l

|‘II| I
1 ”M “ ||
I h ||,"j”|]|’ | | ' ’I

i

f™ |
W w; lwll
i '|’u 'I'

200

I
\ I

400

o

100
075
050
025
0.00
-0.25
-0.50
-0.75

38

Rotary Position Embedding (RoPE)

Idée : Au lieu de rajouter des dimensions supplémentaires, on fait tourner 'embedding en fonction de sa position dans la
phrase.

Rlo;:ary Encoding of a Vector for Different Token Positions

1.0 | : 4

0.5 %<

=05 [Initial Vector ~

]
Il Position 0 (Token Index 0) \
[Position 1 (Token Index 1)
—1.01 | Position 2 (Token Index 2)

Position 3 (Token Index 3)
B Position 4 (Token Index 4)

-1.5 T T + T T
=15 -1.0 -0.5 0.0 0.5 1.0 1.5

X

Les blocs Transformers

Un MLP indépendant
par vecteur

Interactions entre les entrées
dans la self attention

N

Connexion résiduelle
Hautement

parallélisable

yl Y2 Y3 y4
I I I I
Layer Normalization
@

MLP MLP MLP MLP
t t ¢t t
|
Layer Normalization
é—)

Self Attention
! I I f
i 1 t t
X, X, X, X,

40

Variantes de la Batch Normalization

TR
NEXEERENE
A AN N\ N\Z
NAVAVAVAVA

Group Norm

A A A A
VAR A 4

M 'H
NERORTAT NG

SNBSS
ANN N NN\Z

Instance Norm

A AN\ \\Z

Layer Norm

Batch Norm

Wu and He, “Group Normalization”, ECCV 2018

41

Les blocs Transformers : Variantes

Post-Norm Transformers

Y1 YZ Y3 y4
I I I I
Layer Normalization
=®
MLP MLP MLP MLP
t t ¢ t
|
Layer Normalization
=®
Self Attention
! I I f
i 1 t t
X % X3 X,

42

Les blocs Transformers : Variantes

Pre-Norm Transformers

Entrainement plus stable, utilisé en pratique

Y1 YZ Y3 y4
t f f f
é:

MLP MLP MLP MLP
A A | A)
Layer Normalization
=é
Self Attention
?

Layer Normalization
T T T f
i 1 t t
X % X3 X,

43

Transformers

Un Transformers est une suite de blocs Transformers

Dans le papier original :

e 12blocs, MLP dim = 512, 6 heads

[# T Y T 1
(e | e | [wee || e |
t t | 1 I}

‘ Layer Normalization ‘

Self Attention ‘

t ! f t

N

Layer Normalization ‘

L T T 1
|MLP| |MLP| |MLP| |MLP|

e ————
‘ Layer Normalization ‘

Self Attention ‘

’ f i f t
— |
|

ot

Layer Normalization ‘

L T T 1
|MLP| |MLP| |MLP| |MLP|

‘ Layer Normalization ‘

’ Self Attention ‘

44

Passage a I'échelle de Transformers

Transformer-Base |12 512 8 60M 8xP100 (12h)
Transformer-Large |12 1024 16 213M 8xP100 (3.5j)
BERT-Base 12 768 12 110M 13GB

BERT-Large 24 1024 16 340M 13GB

XLNet-Large 24 1024 16 340M 126GB 512 TPUv3 (2.5j)
RoBERTa 24 1024 16 355M 160GB 1024xV100 (1j)
GPT-2 48 1600 25 1.5B 40GB

Megatron-LM 72 3072 32 8.3B 174GB 512xV100 (9j)
Turing-NLG 78 4256 28 17B 256xV100

GPT-3 96 12,288 96 175B 694GB

Gopher 80 16,384 128 280B 10.55TB 4096 TPUv3 (38))
GPT4 ~120 1800B7?

LLaMa 3 126 16,384 128 405B ~100TB 16k H100 (54j)
DeepSeekV3 61 7168 128 671B ~100TB 2048 H800 (<60j)

Quatriéme solution: Transformers (2017) - GPT ~ Plwe|w<)

mange une pomme . Demain

b4 + b4

Embeddings
dans le contexte

F 1 t F 1

TRANSFORMERS

1 ; 1

Embeddings

hors contexte

Je mange une pomme

P(wy | wy, ..

Quatriéme solution: Transformers (2017) - BERT

Embeddings
dans le contexte

Embeddings

hors contexte

Je

*

mange

*

une

*

f

pomme

*

TRANSFORMERS

Je

mange

oy Wg—1y Wk+15 - - - 7wn)

47

Quatriéme solution: Transformers (2017)

e Transformers est a la base de tous les modeéles populaires aujourd’hui

@) GPT(1, 2, 3, 4), ChatGPT, BERT, CamemBERT, RoBERTa, T5, Bloom, LLaMa, DeepSeek
e Les différences entre ces modeéles:

O Latache d’entrainement (causal/masked/mix)
O Les données d'entrainement et la maniéere de les organiser
O Le post-training

O Quelques “tricks”: normalisations intermédiaires, changement de fonctions d’activation, différents encodages de la
position, ...
e Probleme: un réseau beaucoup plus gros, trés dépendants de la taille de I'entrée
O RNN: Complexité par couche:
O(n - d*)
O Self-attention: Complexité par couche: C’)(n2 . d)
O n=taille de I'entrée, d=taille des embeddings

O Mais la self-attention peut étre parallélisée !

48

Genération de texte

49

Comment générer du texte en pratique?

e Avec un modéle comme GPT, on obtient P(wk | ’w<k)
e Comment trouver le P('wl, w9, ..., Wy) maximal?

O Avec des algorithmes d'exploration

50

Comment générer du texte en pratique?

02 bois 0.7
Je une
0.7
03
0.6
<

pomme

poire

0.6 0.8
mange

03 un pomme

0.5 une
04
0.4

Tu P manges
poire

/

0.6 0.
bois > i

0.24

0.10

0.048

0.032

o1

Comment générer du texte en pratique?

e Avec un modele comme GPT, on obtient P(”wk | w<k)
e Comment trouver le P('U)l, W, ... ,’wn) maximal ?

O Avec des algorithmes d'exploration

e Larecherche exhaustive est impossible. On doit utiliser une heuristique.

52

Génération Greedy

A chaque étape, on prend le mot avec la plus haute probabilité
Avantage : Rapidité
Inconvénients : Non optimal, génere toujours la méme chose

53

Sampling

Pour favoriser la diversité des générations, on prend au hasard un mot en suivant la probabilité donnée par le modele.

Si P(poule|Le renard mange une) = 0.5, on a une chance sur deux de générer “poule”.
Variante : La température.

e Onva modifier la probabilité en faisant p/T (puis on renormalise avec un softmax)

e Plus T est élevé, plus le modele est “créatif”, voire aléatoire

e Plus T est faible (>0), plus le modele est conservateur et favorise la probabilité max.

54

Top-K/Top-P

e L'approche sampling simple peut quand méme générer des mots peu probables

O SiP(poule|Le renard mange une) = 0.5, mais la probabilité des autres mots est <0.01, on a quand méme une chance sur
deux de générer un mot non probable
e Solution : Limiter le nombre de mots considérés

O Top-K:On prend les K mots les plus probables

O Top-P:On prend les N mots les plus probables jusqu’a atteindre une probabilité cumulée de P
e Avantage : Rapide a calculer, sortie variée
e Inconvénient : Pas assez optimal
(En pratique, c’'est ¢a qu'on utilise car le co(t de calcul est limitant)

55

Beam Search

Idée : On garde en permanence les B (beam size) séquences les plus probables (et donc on génere B probabilités différentes
a chaque étape

e Avantage : Solution plus optimale que greedy

e Inconvénient : Long a calculer

A I'époque de GPT-2, on utilisait encore beam search, mais devenu trop colteux maintenant.

56

Limitations des modeles de langage

Le contexte est limité et cher a augmenter

O Nécessaire pour écrire des textes longs et cohérents comme des romans
On ne peut pas injecter de connaissances dans le modele

O On ne peut pas ajouter de maniére pérenne des actualités et des faits divers

O On pourrait énoncer tous les faits au début du texte, mais on est limité par la taille du contexte
Raisonnements difficiles

0 Trés mauvais aux échecs

O Méme des problemes plus simples sont difficiles pour les modeéles de langage
Les modéeles de langage sont biaisés

O Difficile de les rendre politiquement corrects

57

En réesumeé

e Modélisation du langage avec des probabilités
e Word2Vec

e Transformers

e Génération de texte

58

