
Modèles de langage

Julien Romero

1

Introduction

2

Brève histoire de la linguistique
● -6.000 avant J.C.: Invention de l’écriture en Mésopotamie
● -2.000 avant J.C.: Listes lexicales (glossaires, dictionnaires, traductions) en Mésopotamie
● -1.200 avant J.C.: Étude de la morphologie (structure des mots) et de la phonétique pour les textes religieux en Inde
● -600 avant J.C.: Pānini crée les premières règles de grammaire en Inde
● -300 avant J.C.: Aristote étudie la rhétorique
● 18ème : Début de la linguistique moderne (liens avec psychologie, biologie)
● 20ème : La linguistique devient une discipline avec une division en sous-disciplines: phonologie, morphologie, syntaxe,

sémantique, …

3

Traitement automatique du langage naturel
● 1950-1990: approche symbolique, inspirée de la linguistique. On donne des règles, et on laisse l’ordinateur les

exploiter.
● 1990-2010: approche statistique. Nous avons suffisamment de données et de puissance pour utiliser des outils

statistiques et du machine learning.
● 2010-: approche neuronale. Basée sur des réseaux de neurones profonds.

4

Comment représenter un texte ?
● La manière dont nous allons représenter les textes aura un impact sur la modélisation.

○ Nous allons décomposer notre texte en une suite de d’objets (appelés tokens) : c’est la tokenization

○ L’ensemble des tokens possibles est appelé le vocabulaire
● Tokenization naturelle en informatique : les caractères

○ On sépare tous les caractères de la phrase

○ “Le renard” devient [“L”, “e”, “ “, “r”, “e”, “n”, “a”, “r”, “d”]

○ Avantages : Facile, on peut tout représenter

○ Inconvénients : Séquences longues, peu d’informations sémantiques utiles au niveau des lettres

5

Comment représenter un texte ?
● La manière dont nous allons représenter les textes aura un impact sur la modélisation.

○ Nous allons décomposer notre texte en une suite de d’objets (appelés tokens) : c’est la tokenization

○ L’ensemble des tokens possibles est appelé le vocabulaire
● Tokenization naturelle pour les humains : les mots

○ On sépare tous les mots d’une phrase

○ [“Le renard mange la poule”] devient [“Le”, “renard”, “mange”, “la”, “poule”]

○ Avantages : Séquences courtes, chaque token a une signification

○ Inconvénients : Large vocabulaire (on doit le limiter), non flexible avec les fautes, variantes d’un mot, beaucoup de mots
hors du vocabulaire, modèle très larges

6

Comment représenter un texte ?
● La manière dont nous allons représenter les textes aura un impact sur la modélisation.

○ Nous allons décomposer notre texte en une suite de d’objets (appelés tokens) : c’est la tokenization

○ L’ensemble des tokens possibles est appelé le vocabulaire
● À partir de maintenant, nous représenterons un texte comme une succession de tokens w1w2…wn

○ Les wi peuvent représenter des mots, ou des lettres suivant la tokenization choisie

7

Modélisation

8

Qu’est-ce qu’un modèle de langage?
Étant donné une séquence composée de plusieurs mots w1w2…wn, nous voulons savoir à quel point cette phrase est
probable. Autrement dit, nous voulons :

Exemples:
● “Le renard mange la poule.” a une plus forte probabilité que “La renard le poule”
● “Il vient de Paris. Son train est en retard.” a une plus forte probabilité que “Il vient de Paris. Le renard mange la poule.”.

(Le contexte est important).

9

Applications des modèles de langage
● Reconnaissance vocale

○ Les données sont bruitées, un modèle de langage aide à désambiguïser

○ Ex: “La vache mange l’herbe.” et “La hache vange l’air” sont phonétiquement proches, mais la première est plus probable.
● Correction d’orthographe/de grammaire

○ Ex: “Les vaches mangent de l’herbe” vs “Les vaches mange de l’herbe”
● Traduction
● Chatbot

○ Ex: “- Où puis-je manger ce soir? - Il y a un restaurant japonais au bout de la rue.” vs “- Où puis-je manger ce soir? La
capitale de la France est Paris.”

10

Décomposition d’un modèle de langage
P(w1, w2, ..., wn) est trop compliqué à calculer d’un coup. On doit donc la décomposer.

 Décomposition causale:
P(w1, w2, ..., wn) = P(w1)*P(w2|w1)*P(w3|w1w2) ...P(wn|w1...wn-1)

(On cherche la probabilité du mot suivant étant donné les mots précédents)
● Décomposition avec un masque

P(w1, w2, ..., wn) = P(wk|w1…wk-1wk+1…wn) * P(w1…wk-1wk+1…wn)

11

Que représentent ces probabilités ?
● On a la probabilité d’un mot en fonction du context

P(w|Le renard mange la)

poule

souris

graine

paille

tour

si

12

Quand utiliser quelle décomposition?
● Décomposition causale: Marche bien quand on doit générer du texte.

○ Chatbot, résumé de texte, traduction

○ La probabilité des premiers mots prend peu de contexte.
● Décomposition avec un masque: Quand on a besoin d’une représentation contextuelle (avant le mot et après le mot)

pour chaque mot.

○ Assignation d’un label à chaque mot (verbe, nom, adjectif, …), classification de phrases

○ Ne permet pas de générer du texte de manière convenable (on apprend à prédire un mot en ayant déjà tout le reste de la
phrase, pas juste le début).

?

P(w1, w2, ..., wn) = P(wk|w1…wk-1wk+1…wn) * P(w1…wk-1wk+1…wn)

13

Comment calculer les probabilités?
P(w1, w2, ..., wn) = P(w1)*P(w2|w1)*P(w3|w1w2) ...P(wn|w1...wn-1)

On va vouloir estimer chacune des probabilités P(wk|w<k)
Cette décomposition est très utile pour générer du texte. Dans certaines applications comme la traduction, on peut
s’intéresser à d’autres probabilités.

14

Première solution : statistiques pures (1990)

Problème : Plus k est élevé, moins on a d’observations (voire pas du tout).
On doit donc faire des approximations N-grams:

● Bigram:
● Trigram:

Augmenter trop le nombre de mots considérés donne des probabilités imprécises et difficiles à stocker (Google s’est arrêté à
environ 1 milliard de 5-grams).

15

Deuxième solution: Word2Vec, un vecteur par mot, sans
ordre (2013)

● On voudrait un vecteur (appelé embedding) par mot qui “contiendrait” les informations nécessaires pour approximer
nos probabilités.

● Pour faciliter les calculs, on suppose que l’ordre des mots n’est pas important.
● Deux approches principales:

○ Continuous Bag Of Words: À partir du contexte autour d’un mot, on veut prédire le mot ciblé.

○ Skip-gram: À partir d’un mot cible, on veut prédire tous les mots du contexte.

16

Les embeddings
● Embedding = encodage de tokens sous forme de vecteurs de réels
● En pratique :

○ Chaque token du vocabulaire a un indice unique. Tous les indices sont continus en partant de 0.

○ Chaque embedding a une taille E, et tous les embeddings sont stockés dans une matrice de taille VxE où V est la taille du
vocabulaire

○ On transforme les indices en une séquence de one-hot encoding, puis on multiplie avec la matrice des embeddings

17

Deuxième solution: un vecteur par mot - Exemple CBoW

Embedding Je

Embedding une

Embedding pomme

Embedding .

Sentence: Je mange une pomme.

Je

une

pomme

.

982

765

112

1000

Moyenne Lineaire + softmax Probabilité pour
chaque mot

Fonction de coût
avec mange en
one-hot encoding
en label

18

Deuxième solution: un vecteur par mot - Exemple Skip-Gram

Embedding pomme

Embedding pomme

Embedding pomme

Embedding pomme

Sentence: Je mange une pomme.

pomme

112

112

112

112

Lineaire + softmax

pomme

pomme

pomme

Lineaire + softmax

Lineaire + softmax

Lineaire + softmax

Loss pour Je

Loss pour mange

Loss pour une

Loss pour .

19

Interprétation de Word2Vec
On peut faire de l’arithmétique avec les mots : king - man + woman = queen

20

Word2Vec toujours utile ?
● Représentation vectoriel de mots, même hors contexte
● Léger
● Pas besoin de GPU pour l’utiliser
● Nécessite relativement peu de données pour l’entraînement

21

Quelle est la taille de ces modèles ?
● Taille des embeddings : V*E

○ V = taille du vocabulaire, E dimension des embeddings
● Couche linéaire : E * V

22

Quelle est la taille de ces modèles ?
Dans le Word2Vec de Gensim, V = 662109 et E = 300

Taille des embeddings = 2*108 paramètres, soit 1.5Gb
Même chose pour la couche linéaire, et on doit encore rajouter :

● Les résultats intermédiaires du forward pass (proportionnel à la batch size)
● Les calculs intermédiaires de Adam (2 floats par paramètre)
● Les gradients (nombre de paramètre)

Soit au moins environ 3Gb * 5 = 15Gb !
Et nous n’avons qu’une seule couche linéaire !

23

Comment gérer les vocabulaires trop grands ?
● On veut :

○ Suffisamment de tokens pour que chaque token puisse avoir une interprétation sémantique

○ Pas trop de tokens pour ne pas faire exploser la mémoire

○ Pouvoir tout écrire et prévoir les fautes de frappe, les mots rares, les variations des mots, …
● En gros, quelque chose entre que des caractères et que des mots
● Solution : Byte-Pair Encoding (BPE)

24

Byte-Pair Encoding
● Idée : On part des caractères uniques, puis on ajoute petit à petit les paires de tokens les plus fréquentes dans le

vocabulaire
Algorithme :
Input : un corpus de textes, taille de vocabulaire V
Output : une liste des transformations à appliquer pour tokenizer le texte

1. Récupérer les caractères uniques dans le corpus. Ce sont les tokens initiaux.
2. Tokeniser tous les mots du vocabulaire avec ces tokens
3. Tant que le nombre de tokens < V

a. Trouver la paire de tokens t1t2 la plus fréquente dans le corpus. La rajouter aux tokens.

b. Fusionner t1 et t2 dans tous les mots du corpus
4. Retourner la liste de tokens (dans l’ordre)

25

Byte-Pair Encoding - Exemple

Corpus = [("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)]
Au début, tokens = ["b", "g", "h", "n", "p", "s", "u"]
Première tokenization = ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)
Paire la plus fréquente : ("u", "g") -> "ug"
Retokenization = ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

26

Les tokens spéciaux
Souvent, les modèles de langage ajoutent des tokens supplémentaires pour encoder certaines situations :

● [EOS], <|end_of_text|> : fin du texte
● <|begin_of_text|> : début du texte
● <|start_header_id|> : donner un rôle dans un chat (user vs assistant)
● [MASK] : cacher un mot

27

Troisième solution: réseau de neurones récurrents
● On veut prendre en compte l’ordre des mots.

○ On va représenter le contexte précédent avec un vecteur

○ On garde toujours un vecteur par mot

Je
mange .une pomme

mangeJe

28

Troisième solution: réseau de neurones récurrents
● On veut prendre en compte l’ordre des mots.

○ On va représenter le contexte précédent avec un vecteur

○ On garde toujours un vecteur par mot

Je
mange .une pomme

mange uneJe

29

Troisième solution: réseau de neurones récurrents
● On veut prendre en compte l’ordre des mots.

○ On va représenter le contexte précédent avec un vecteur

○ On garde toujours un vecteur par mot

Je
mange .une pomme

mange une pomme .Je

30

Quatrième solution: Transformers (2017)
● Problèmes des réseaux récurrents:

○ Difficile de se “souvenir” des mots très éloignés.

○ Difficile à entraîner dans le cas des grands contextes.

○ Difficile de paralléliser.
● Solution:

○ On donne tous les mots précédents + une indication sur la position

○ On veut que le modèle apprenne à choisir le contexte pertinent (mécanisme d’attention)

31

Quatrième solution: Transformers (2017) - Self-attention
● L’attention est un mécanisme associant un poids à chacune des entrées du réseau

○ Quand le poids est calculé uniquement à partir de l’entrée elle-même, on parle de self-attention.
● Exemple attention: Traduction

○ Neural Machine Translation by Jointly Learning to Align and Translate

○ L’attention utilise l’entrée + le début de la traduction séparément

32

Quatrième solution: Transformers (2017) - Self-attention
● L’attention est un mécanisme associant un poids à chacune des entrées du réseau

○ Quand le poids est calculé uniquement à partir de l’entrée elle-même, on parle de self-attention.
● Exemple self-attention

33

Positional Encoding
● Problème de l’attention : l’ordre de l’entrée n’a pas d’importance

○ Il faut donc encoder la position d’un mot directement dans l’entrée, en plus de l’embedding du mot

○ C’est du positional encoding
● Première solution : utiliser un entier indiquant la position

○ Peut devenir très grand

○ Variations trop petites après la normalisation (comment normaliser si la taille de la séquence d’entrée est variable ?)

34

Absolute Positional Encoding
● Problème de l’attention : l’ordre de l’entrée n’a pas d’importance

○ Il faut donc encoder la position d’un mot directement dans l’entrée, en plus de l’embedding du mot

○ C’est du positional encoding
● Deuxième solution : Utiliser plusieurs dimensions

○ Tous les vecteurs doivent être uniques

○ On doit pouvoir comparer deux positions

○ Chaque dimension est entre -1 et 1 (normalisé naturellement entre -1 et 1)

Dans Transformers :

Avec k la position dans la phrase, 2i et 2i+1 la dimension dans le vecteur de position, et n un hyperparamètre (10k à l’origine),
d = dimension de sortie

35

Absolute Positional Encoding - Example

Je

suis

un

renard

0

1

2

3

sin(0)
= 0

sin(1/1)
= 0.84

sin(2/1)
= 0.91

sin(3/1)
= 0.14

cos(0)
= 1

cos(1/1)
= 0.54

cos(2/1)
= -0.42

cos(3/1)
= -0.99

sin(0)
= 0

sin(1/10)
= 0.10

sin(2/10
)

= 0.20

sin(3/10
)

= 0.30

cos(0)
= 1

cos(1/10)
= 1.0

cos(2/10
) = 0.98

cos(3/10
)

= 0.96

Position k i=0 i=1 i=2 i=3

36

Absolute Positional Encoding - Visualisation

37

Absolute Positional Encoding - Visualisation

38

Rotary Position Embedding (RoPE)
Idée : Au lieu de rajouter des dimensions supplémentaires, on fait tourner l’embedding en fonction de sa position dans la
phrase.

39

Les blocs Transformers

x4x3x2x1

Self Attention

Layer Normalization

Layer Normalization

y4y3y2y1

MLPMLPMLPMLP

+

+

Connexion résiduelle

Un MLP indépendant
par vecteur

Interactions entre les entrées
dans la self attention

Hautement
parallélisable

40

Variantes de la Batch Normalization

41

Wu and He, “Group Normalization”, ECCV 2018

Les blocs Transformers : Variantes

x4x3x2x1

Self Attention

Layer Normalization

Layer Normalization

y4y3y2y1

MLPMLPMLPMLP

+

+

Post-Norm Transformers

42

Les blocs Transformers : Variantes

x4x3x2x1

Self Attention

Layer Normalization

Layer Normalization

y4y3y2y1

MLPMLPMLPMLP

+

+

Pre-Norm Transformers

Entraînement plus stable, utilisé en pratique

43

Transformers
Un Transformers est une suite de blocs Transformers
Dans le papier original :

● 12 blocs, MLP dim = 512, 6 heads

Self Attention

Layer Normalization

Layer Normalization

MLPMLPMLPMLP

+

+

44

Self Attention

Layer Normalization

Layer Normalization

MLPMLPMLPMLP

+

+

Self Attention

Layer Normalization

Layer Normalization

MLPMLPMLPMLP

+

+

Passage à l’échelle de Transformers

45

Modèle Blocs/couches MLP Dimension Heads Paramètres Données Entraînement

Transformer-Base 12 512 8 60M 8xP100 (12h)

Transformer-Large 12 1024 16 213M 8xP100 (3.5j)

BERT-Base 12 768 12 110M 13GB

BERT-Large 24 1024 16 340M 13GB

XLNet-Large 24 1024 16 340M 126GB 512 TPUv3 (2.5j)

RoBERTa 24 1024 16 355M 160GB 1024xV100 (1j)

GPT-2 48 1600 25 1.5B 40GB

Megatron-LM 72 3072 32 8.3B 174GB 512xV100 (9j)

Turing-NLG 78 4256 28 17B 256xV100

GPT-3 96 12,288 96 175B 694GB

Gopher 80 16,384 128 280B 10.55TB 4096 TPUv3 (38j)

GPT4 ~120 1800B?

LLaMa 3 126 16,384 128 405B ~100TB 16k H100 (54j)

DeepSeekV3 61 7168 128 671B ~100TB 2048 H800 (<60j)

Quatrième solution: Transformers (2017) - GPT

Je mange .une pomme

TRANSFORMERS

Embeddings
hors contexte

Embeddings
dans le contexte

mange .pommeune Demain

46

Quatrième solution: Transformers (2017) - BERT

Je mange .une [MASK]

TRANSFORMERS

Embeddings
hors contexte

Embeddings
dans le contexte

Je pommeunemange .

47

Quatrième solution: Transformers (2017)
● Transformers est à la base de tous les modèles populaires aujourd’hui

○ GPT(1, 2, 3, 4), ChatGPT, BERT, CamemBERT, RoBERTa, T5, Bloom, LLaMa, DeepSeek
● Les différences entre ces modèles:

○ La tâche d’entraînement (causal/masked/mix)

○ Les données d’entraînement et la manière de les organiser

○ Le post-training

○ Quelques “tricks”: normalisations intermédiaires, changement de fonctions d’activation, différents encodages de la
position, …

● Problème: un réseau beaucoup plus gros, très dépendants de la taille de l’entrée

○ RNN: Complexité par couche:

○ Self-attention: Complexité par couche:

○ n=taille de l’entrée, d=taille des embeddings

○ Mais la self-attention peut être parallélisée !

48

Génération de texte

49

Comment générer du texte en pratique?
● Avec un modèle comme GPT, on obtient
● Comment trouver le maximal ?

○ Avec des algorithmes d’exploration

50

Comment générer du texte en pratique?

Je

Tu

mange

manges

bois

bois

une

une

un

un

pomme

poire

pomme

poire

0.6

0.4

0.2

0.8

0.7

0.3

0.7

0.3

0.4

0.6

0.5

0.5

0.6

0.4

0.24

0.10

0.048

0.032

51

Comment générer du texte en pratique?
● Avec un modèle comme GPT, on obtient
● Comment trouver le maximal ?

○ Avec des algorithmes d’exploration
● La recherche exhaustive est impossible. On doit utiliser une heuristique.

52

Génération Greedy
À chaque étape, on prend le mot avec la plus haute probabilité
Avantage : Rapidité
Inconvénients : Non optimal, génère toujours la même chose

53

Sampling
Pour favoriser la diversité des générations, on prend au hasard un mot en suivant la probabilité donnée par le modèle.
Si P(poule|Le renard mange une) = 0.5, on a une chance sur deux de générer “poule”.
Variante : La température.

● On va modifier la probabilité en faisant p/T (puis on renormalise avec un softmax)
● Plus T est élevé, plus le modèle est “créatif”, voire aléatoire
● Plus T est faible (>0), plus le modèle est conservateur et favorise la probabilité max.

54

Top-K/Top-P
● L’approche sampling simple peut quand même générer des mots peu probables

○ Si P(poule|Le renard mange une) = 0.5, mais la probabilité des autres mots est <0.01, on a quand même une chance sur
deux de générer un mot non probable

● Solution : Limiter le nombre de mots considérés

○ Top-K : On prend les K mots les plus probables

○ Top-P : On prend les N mots les plus probables jusqu’à atteindre une probabilité cumulée de P
● Avantage : Rapide à calculer, sortie variée
● Inconvénient : Pas assez optimal

(En pratique, c’est ça qu’on utilise car le coût de calcul est limitant)

55

Beam Search
Idée : On garde en permanence les B (beam size) séquences les plus probables (et donc on génère B probabilités différentes
à chaque étape

● Avantage : Solution plus optimale que greedy
● Inconvénient : Long à calculer

À l’époque de GPT-2, on utilisait encore beam search, mais devenu trop coûteux maintenant.

56

Limitations des modèles de langage
● Le contexte est limité et cher à augmenter

○ Nécessaire pour écrire des textes longs et cohérents comme des romans
● On ne peut pas injecter de connaissances dans le modèle

○ On ne peut pas ajouter de manière pérenne des actualités et des faits divers

○ On pourrait énoncer tous les faits au début du texte, mais on est limité par la taille du contexte
● Raisonnements difficiles

○ Très mauvais aux échecs

○ Même des problèmes plus simples sont difficiles pour les modèles de langage
● Les modèles de langage sont biaisés

○ Difficile de les rendre politiquement corrects

57

En résumé
● Modélisation du langage avec des probabilités
● Word2Vec
● Transformers
● Génération de texte

58

