
Post-training LLMs and
Parameter-Efficient Fine-tuning

Luca Benedetto

1

Introduction

2

In the previous session
● Data pre-processing

○ How to collect data and clean it for training purposes.
● Pre-training

○ How to train the model so that it has a text-based understanding of the world.

○ How to evaluate pre-training.
● Fine-tuning of pre-trained models for supervised tasks (i.e., turn a base model into a classifier for a specific task).
● Knowledge distillation (i.e., transfer the knowledge of a big model into a smaller, cheaper one).

3

In the previous session

4Source: https://magazine.sebastianraschka.com/p/new-llm-pre-training-and-post-training/

Motivation
● A pre-trained LLM is powerful but can produce unwanted outputs: irrelevant, toxic, or contrary to user expectations.
● Post-training aims to align the model with human instructions and preferences (hence the term alignment).
● Ethical issues:

○ Alignment also serves to reduce bias and undesirable behavior.

○ It is during post-training that rules are integrated via data (e.g., do not give illegal advice, avoid hate speech).

○ Approaches such as Constitutional AI (Anthropic) use a set of principles to guide the model without direct human
intervention in each example.

● These are referred to as Instruct or Chat models.

5

Supervised Fine-Tuning (SFT)

6

● SFT for Instruction Following (also referred to as Instruction Tuning) is typically the first step in alignment.
○ It consists of fine-tuning the model using examples of conversations/instructions with desired responses.

○ <prompt, ideal response> pairs are used, either written by humans or generated by a model (and verified).

○ This supervised fine-tuning teaches the LLM to follow instructions and adopt a helpful tone.

Source: https://youssefh.substack.com/p/visual-guide-to-llm-preference-tuning

Supervised Fine-Tuning (SFT)

7

Supervised Fine-Tuning (SFT)
● Instruction fine-tuning enables smaller models to perform on par with larger ones.

○ E.g., OpenAI: instruction fine-tuned InstructGPT 1.3B was preferred by humans over unaligned GPT-3 175B (100x larger).

○ This highlights the importance of instruction tuning.

○ Note: “better” according to human preference, does not mean that it is more accurate in performing specific tasks.

8

About the data.
● A few tens of thousands of high-quality examples can be sufficient (in pre-training you need trillions of tokens).

○ Example: LLaMA 2 Chat used ~27k pairs from the ShareGPT project.
● But some models are fine-tuned on much more data.

○ E.g., for LLaMA 3 they used synthetic data generation to obtain 2.7M examples. For coding knowledge:

i. Feedback execution mode:
● An LLM generates a coding problem and a solution.
● The pipeline immediately tries to compile and run that code.
● It runs specific tests (unit tests) or static analysis (checking for syntax errors) against the code.

○ If the code fails the tests, it is discarded or sent back to be corrected. If it passes, it is added to the training set.
ii. Machine translation between programming languages.
iii. Back-translation: starts from a piece of good code → ask a model to generate documentation for it → ask a model to

generate code from the documentation/description → test whether new code is equal (or equivalent) to the original → if so,
add {Prompt: Documentation, Answer: Code} as a high-quality training example.

Supervised Fine-Tuning (SFT)

9

Supervised Fine-Tuning (SFT)
About the data.

● Another fundamental difference with respect to pre-training is the type of data:
○ Pre-training: Unstructured raw text (books, websites, code) → goal: widely absorb world knowledge.

○ SFT Data: Structured demonstrations (<prompt, ideal response> pairs) → goal: learn the format of helpful interactions.

10

Supervised Fine-Tuning (SFT)
Loss function.

● Even though the goal is instruction following, the model is still being fundamentally trained on the objective of
predicting the next token in a sequence.

● The loss is the standard Cross-Entropy Loss (over the vocabulary of tokens) used in pre-training.
● However, we use loss masking → this ensures that only the tokens corresponding to the desired response contribute

to the loss computation (not the tokens of the prompt).
○ Not to burn GPU resources teaching the model how to write our own questions; we only want to penalize it for how well it

writes the answers.

11

Distribution of SFT data in InstructGPT

12

Distribution of SFT data in LLaMa 3

13

Supervised Fine-Tuning (SFT)
● Constitutional AI: Anthropic partially replaces human data with AI feedback (to get <prompt, ideal response> pairs).

○ They defined a “constitution” of ethical principles, then used the model itself to critique/rewrite its responses according to
these principles. This reduces the need for human supervisors while guiding the model toward safer responses.

14Source

https://www.anthropic.com/research/constitutional-ai-harmlessness-from-ai-feedback

RHLF and PPO

15

● RLHF combines LLM with a reward model trained from human feedback (or from models).
● It starts from the instruction-aligned model, and further updates it to obtain the aligned model.

Reinforcement Learning from Human Feedback (RLHF)

16Source: https://youssefh.substack.com/p/visual-guide-to-llm-preference-tuning

● To target limitations of SFT.
● The averaging problem:

○ SFT: Minimizes error on all training examples, pulling the model toward the "center" of the dataset's quality.

○ RLHF: Pushes the model toward the upper bound of quality.
● The negative constraints:

○ It is very hard to show the model what NOT to do using only SFT (you would technically need to show it toxic text and
mathematically tell it "don't predict this"). → Inefficient.

○ RLHF: You can simply give the model a massive negative reward (penalty) whenever it generates toxic text/hallucinates.
● The strictness of the loss function:

○ SFT uses Cross-Entropy Loss, which is very strict: it checks if the model predict the exact next token from training data.

○ But for many prompts, there is no single "correct" next token →SFT loss function is less meaningful.

○ RLHF relaxes this, by focusing on a wider context (the whole response).

Why RLHF

17

RLHF Pipeline
1. Humans are asked to compare several responses from an LLM to the same question.
2. A reward model is trained to predict these preferences.
3. The LLM is adjusted to maximize this “reward” through RL.

18Source: https://youssefh.substack.com/p/visual-guide-to-llm-preference-tuning

RLHF Pipeline

19

Training of Reward
Model (RM) to
predict rewards

Adjustment of LLM
weights using RL

and RM

Response
comparison

(preference) data

Creation of a dataset
(text, reward)

RL = reinforcement learning
RM = reward model.

RLHF Pipeline – Reward Model training

20Source: https://huggingface.co/blog/rlhf

RLHF Pipeline – Fine-tuning with RL

21Source: https://huggingface.co/blog/rlhf

Proximal Policy Optimization (PPO)
● A RL algorithm that allows the model to be updated “gently” by preventing it from straying too far from its initial

knowledge (KL divergence).
● PPO is known to be more stable on large networks and has been used for InstructGPT and ChatGPT.

22

Pros and Cons
Advantages:

● RLHF dramatically improves perceived quality.
○ InstructGPT (OpenAI) saw its aligned models produce fewer toxic outputs and more truth compared to the pre-trained

model, while retaining basic skills.
○ Human evaluators greatly preferred the responses after RLHF.

Limits:
● RLHF is complex (requires training a reward model and RL).
● In addition, it can introduce new biases (or over-correct existing ones) depending on annotators’ preferences.

○ This motivates the search for simpler alternatives, but RLHF remains the state of the art for obtaining assistants such as
ChatGPT, Claude, etc.

23

Direct Preference Optimization (DPO)

24

Direct Preference Optimization (DPO)

25Source (NeurIPS’23)

https://proceedings.neurips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html

Direct Preference Optimization (DPO)
Motivation:

● Proposed in 2023 (NeurIPS’23) as a (simpler) alternative to classical RLHF.
● Idea: avoid training an RL agent, and instead model the alignment problem as a supervised optimization.

How it works:
● DPO starts with the same preference data (e.g., for a given prompt, response A is preferred over B).
● Instead of going through a separate reward model and RL, we directly adjust the LLM to give a higher probability to the

preferred response than to the rejected response, via a classification loss on p(preferred) vs p(rejected).

26

DPO: schema

27

Prompt +
preferred response

Prompt +
Non-preferred

response

Tuned LLM

Original LLM

Weight update

Advantages of DPO
● DPO is much more stable and easier to implement.
● There is no RL sampling phase and fewer hyperparameters to adjust. Experiments show that DPO achieves alignment

quality comparable to or superior to PPO-RLHF on several criteria (style control, response quality).
● LLaMA 2 and LLaMA 3 have adopted DPO for the final fine-tuning of their chat models. Specifically, they did not train

the model via RL, but directly optimized it based on preferences (while retaining a reward model to filter out
poor-quality synthetic samples). Other work (OpenAI, 2024) has also explored preference fine-tuning in the same way.

28

Role of human vs. synthetic data
● Humans in the loop: Historically, alignment has required a lot of human annotation (demonstrations, preferences).
● OpenAI employed dozens of annotators for InstructGPT.
● This human data is valuable but costly and potentially limited (annotator bias, need for well-defined instructions).
● There are also ethical concerns associated with it (as in any industry…).

29

Role of human vs. synthetic data
● Synthetic generation: A recent trend is to generate alignment data via models.

○ LLaMA 3: most of the instruction set comes from an instruct model (smaller in size) that produced a variety of questions
and answers. Once filtered, this synthetic data makes it possible to partially overcome the bottleneck of human
annotation without compromising quality.

○ Note: it overcomes the cost-bottleneck, but not necessarily the others (bias, and need for well-defined instructions).
Models are after all reproducing the biases of the people/data that trained them.

30

Role of human vs. synthetic data
● Hybrid approach : A combination of the two is often used.

○ LLaMa 3 did include humans to review certain responses or for the preference phase. They added a task: annotators had
to edit the best response in addition to choosing it, thus providing an improved “ideal” response. This triple response
(edited, chosen, rejected) enriches the learning signal.

● Trends: We are moving towards pipelines where humans define the broad outlines (e.g., alignment principles,
constitution), generate a small seed dataset, and models do the rest of the work of fleshing out the dataset. This
democratizes alignment: even open-source teams (HuggingFace, etc.) can align a model using published or low-cost
synthetic data.

31

Stanford Alpaca
With ~$500 in API credits, they created a dataset of 52k synthetic instructions (via Text-Davinci) to fine-tune LLaMA 7B into a
ChatGPT-type model.
Caution! It is crucial to check the quality! There is a risk of amplifying errors if the model generating the instructions is
incorrect. Hence the idea of filtering with a reward model or keeping a human eye on a sample.

32

LLM Evaluation

33

Why Evaluate?
● To measure the capabilities of an LLM and guide its improvement.
● Since LLMs are versatile, we cannot rely on a single metric, and multiple evaluation criteria are used.
● Types of evaluation:

○ Internal metrics such as perplexity on a secret text corpus (indicator of the model's quality as a language model).

○ External benchmarks on standardized tasks (Q&A, reasoning, code, etc.), allowing models to be compared with each
other.

○ Human evaluation or evaluation via other models on aspects such as response preference and usefulness in
conversation.

○ Safety checks and other evaluations: bias, toxicity, hallucinations, robustness to rephrasing.

34

Why Evaluate?
● Pre- vs. post-training evaluation: a pre-trained (unaligned) model is often evaluated using perplexity and a few closed

tasks, whereas a conversational model must be evaluated on the quality of its free responses. This sometimes
requires chatbot arenas or qualitative ratings.

● Challenges:

○ Ensure that the evaluation is fair and unbiased (avoid contamination where the model has seen the test responses during
training).

○ Cover a wide range of areas (to avoid over-optimizing on a few popular benchmarks).

○ Take ethical criteria into account (a technically high-performing model may still be unusable if it generates biased or
dangerous responses).

35

Perplexity and linguistic quality
● Perplexity is a basic metric for language models.
● It measures how well the model predicts text it has not seen (the lower the perplexity, the better the model).
● Interpretation: level of surprise upon seeing a sequence (in other words, how unexpected it was).

36

Benchmarks et competitions
Benchmarks: standard test suites that are available to quantitatively measure performance.

● Many benchmarks exist, such as:

○ MMLU (57 subjects, multiple-choice knowledge test).

○ HellaSwag (choosing the most plausible text to end a story).

○ TriviaQA (factual questions).

○ MBPP/HumanEval (solving coding exercises).
● These scores allow for objective comparison between models.

37

MMLU
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

38https://paperswithcode.com/task/language-modelling

HuggingFace Open LLM Leaderboard
Now deprecated, but gives an idea of how older models performed.

39https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

● The ARC-AGI (Abstraction and Reasoning Corpus for Artificial General Intelligence) is a benchmark designed to
measure “general intelligence”, rather than just memorized knowledge.

● Task Format:
○ Input: A grid of colored squares (pixels).

○ Demonstrations: 2 to 5 pairs of Input Grid → Output Grid that implicitly define a rule (e.g., "turn all blue squares red," or
"move the object until it hits a wall").

○ Test: A single Input Grid for which the model must generate the pixel-perfect Output Grid.
● Several versions:

○ ARC-AGI-1:
■ Very difficulty for early LLMs (GPT-4 scored <10%), but "reasoning" models (like o3/o1) basically solved it (>85%).

○ ARC-AGI-2:
■ Extremely Hard, due to problems requiring different type of reasoning. Designed because ARC-1 became saturated.
■ “Top AI models currently score <5%” (May 2025, source)

○ ARC-AGI-3 (in development).

ARC-AGI

40Source: https://arcprize.org/arc-agi

https://arcprize.org/blog/arc-agi-2-technical-report

ARC-AGI

41

Psychometric evaluation of LLMs
● Idea is to treat models as participants: instead of evaluating performance (is the answer right?), we evaluate

disposition (how does the model behave?).
● Methodology: Administering standardized human tests to LLMs:

○ Psychological tests or standardized educational MCQ tests.

○ Different traits are studied for different types of tests.
● Some Domains of Evaluation:

○ Skill and Knowledge: measure the skill of models, as if they were human students.

○ Alignment and Values: testing for "Dark Triad" traits (Machiavellianism, Narcissism, Psychopathy) or bias.

○ Personality: Assessing "Digital Temperament", e.g.: via the OCEAN model (Openness, Conscientiousness, Extraversion,
Agreeableness, Neuroticism).

● The "Persona" Paradox might severely hinder these analyses:
○ Unlike humans, LLMs do not have a stable "self." Their "personality" is fluid and highly sensitive to the prompt.

○ Contamination: Most standard psychological tests are in the training data.

○ Order Sensitivity: Shuffling the order of MCQ can swing LLM psychometric scores by 20-30%, not human scores.

42

Beyond the scores
● Benchmark scores should always be taken with a pinch of salt.

○ There is the risk is overfitting models to public benchmarks, e.g. by unintentionally including them in the training data (see
contamination).

○ Model developers could also artificially boost performance of a model on specific benchmarks (e.g., to claim that their
model is better than the competitors’), by selecting specific configurations which are particularly well-performing on those
benchmarks.

○ Goodhart's law: "When a measure becomes a target, it ceases to be a good measure".
● Model developers (usually) take care to isolate these test sets, to better understand how their models perform.

○ e.g., LLaMA 3 explicitly verified that its corpus did not contain the solutions to the evaluation benchmarks in order to
ensure an honest measurement (according to the report).

43

Bias and fairness
● LLMs can reproduce or amplify biases present in their training data (gender stereotypes, racial discrimination, etc.).
● This is assessed through targeted tests: for example, BBQ (Bias Benchmark), which asks questions about different

social groups to see if the model's responses are biased.

○ Examples of bias: A model may systematically associate certain professions with a gender (e.g., “nurse” with females) or
produce less positive descriptions for a given ethnic group. These biases have been observed even in GPT-3 and require
conscious mitigation.

○ “Non-stereotypical” biases: optimism bias (the model may be overly confident), length bias (tendency to produce long
responses if long=good is evaluated), confirmation bias (the model may be an over engineered Yes-man).

44

Bias assessment strategies
● Biased prompting: the model is given sensitive prompts to see if it responds differently depending on identity (e.g., “A

doctor <M/F> is...”);
● Statistical analysis of outputs on balanced sets (e.g., generating descriptions of people with different first names and

analyzing the adjectives used);
● Tools such as HolisticBias or CrowS-Pairs that quantify the bias of responses.

45

BBQ on GPT

46

Bias mitigation
● Evaluation is only useful if it is followed by adjustments to the model or its outputs.
● Through alignment, instructions can be included that promote neutrality.
● For example, Anthropic Claude is trained to reject generalizations about protected groups.
● However, there is also the risk of alignment overcorrection.

47

Bias mitigation in GPT-4

48

A famous example of overcorrection
● Gemini, 2024 (it has been quickly fixed).

49Example images from twitter/X & reddit / Google blog post: link.

http://blog.google/products-and-platforms/products/gemini/gemini-image-generation-issue/

A famous example of overcorrection
● Gemini, 2024.

○ Forcing diversity even if historically inaccurate.

50

A famous example of overcorrection
● Gemini, 2024.

○ Forcing diversity even if historically inaccurate.

○ Inconsistently rejecting to perform a given task.

51

Sensitivity to prompts and robustness
● Prompt sensitivity: The same model can give very different answers depending on how the query is worded or the

order of information in the prompt.
○ LLaMA 3 has highlighted this sensitivity to input variations and insists that it must be evaluated.

○ For example, changing a word to a synonym or rephrasing it as an indirect question can alter the response.
● Robustness tests: To quantify this, the model is evaluated on paraphrased versions of the same questions.

○ A robust model should maintain its performance.

○ If a slight rephrasing causes the score to drop (or changes the model's opinion on a moral question), this is a sign of
instability.

52

Robustness in LLaMa 3

53

Adversarial prompts
● Resistance to prompt attacks (e.g., prompt injection, jailbreaks) should also be evaluated.
● Prompt attacks = the user attempts to circumvent the model's safeguards.
● A well-aligned model should resist instructions that violate its rules (not revealing its secrets, etc.).
● This is tested this by trying known attacks and measuring whether the model “is broken”.

○ As in cybersecurity, it is a constant arms race between attackers and model developers.
● System prompt leakage: https://github.com/jujumilk3/leaked-system-prompts?tab=readme-ov-file
● “Ignore previous instructions...” in GPT 3.5

54

https://github.com/jujumilk3/leaked-system-prompts?tab=readme-ov-file

Adversarial prompts

55

Adversarial prompts

56

Contradictory content
● By providing contradictory information in the prompt, one can see if the model becomes confused.
● For example, provide a statement with inconsistent data and ask for a conclusion.
● An LLM should ideally point out the inconsistency rather than forcing an answer.

57

Test data contamination
Contamination:

● Contamination happens when evaluation data is found (even partially) in the model's training corpus.
● The model may then know it by heart, distorting the test results (artificially high performance).
● Examples:

○ If a MCQ dataset such as MMLU or a TriviaQA question is available on the internet and the model has ingested this
content, it can answer correctly not through reasoning but through memorization.

○ Famous cases: GPT-2 had probably seen most of the TriviaQA questions in Common Crawl, making its score less
meaningful.

● Modern models are trained on most of the internet, so data contamination is a serious problem when evaluating them.

58

Test data contamination
● Measures taken: Teams can actively filter the training corpus against known test sets. LLaMA 3 performed this

verification for more than 100 benchmarks and identified certain overlaps that were excluded in order to ensure the
reliability of the evaluation.

● Continuous evaluation: With each new version of a model, caution must be exercised. For example, once GPT-4 was
released, many benchmark solutions circulated on the Internet. A model trained in 2024 could have “seen” the official
answers that GPT-4 had produced for X or Y benchmark. The community is trying to create new, fresh benchmarks to
avoid this (HELМ initiative, etc.).

59

Evaluation of data contamination in LLaMa 3

60

Parameter-Efficient Fine-tuning

61

Motivation
● The problem with full fine-tuning:

○ Fully fine-tuning a multi-billion parameter LLM on a new task requires enormous resources.

○ Bottlenecks: Storing gradients for every single parameter, high computational cost, and risks of overfitting (catastrophic
forgetting).

● To adapt an LLM to a specific domain or application, we seek methods that are more parameter-efficient (PEFT).
● Memory Context (The "5x-10x" Rule):

○ Reminder: Training a full model requires storing 5 to 10 times the memory of the actual parameters alone.

○ Why? You need space for the forward pass (activations), backward pass (gradients), and optimizer states (e.g., Adam
keeps momentum statistics).

● The PEFT Solution:
○ We want to fine-tune a 7B or 70B parameter model by training only a few million added parameters (typically <1% of the

total count).
○ This allows us to adapt an LLM on a laptop or a single high-memory GPU, rather than requiring a massive GPU cluster.

62

Parameter-Efficient Fine-tuning

63

Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA); 2021
● Core Concept: LoRA works by freezing the original model weights and injecting low-rank matrices that are trained

during fine-tuning.
● How it works:

○ For a given weight matrix W in a layer, the weights are updated as W + ΔW.

○ Instead of training the full matrix, we define ΔW = A✕B, where A and B are matrices of very small dimension (e.g., rank
r=8).

● The original W never changes (frozen); only the small matrices A and B are learned, which drastically reduces the
parameter count.

64

LoRA: Overview

65Source: https://www.ml6.eu/en/blog/low-rank-adaptation-a-technical-deep-dive

LoRA vs. Full Fine-Tuning

66Source: https://blog.dailydoseofds.com/p/full-model-fine-tuning-vs-lora-vs

LoRA: Drastic Reduction of Trainable Parameters
● The Math:

○ If the original weight matrix W is of size (d✕d), then the low-rank matrices are:
■ A: size (d✕r)
■ B: size (r✕d)

● Example:
○ With rank r=8 and dimension d=1,000:

○ We train only a tiny fraction of the parameters: 16,000 parameters (LoRA) instead of 1,000,000 (Full Fine-Tuning).
● Impact: Reductions of up to 10,000x fewer trainable parameters have been reported, while still maintaining the

model's original performance levels.

67

LoRA: Performance
● LoRA achieves results comparable to full fine-tuning on numerous tasks, with no notable degradation in performance.
● Example: GPT-3 175B.

○ On standard benchmarks, LoRA matches the quality of classic fine-tuning.

○ Memory Efficiency: It requires 3 times less GPU memory during training.
● Inference Advantage.

○ Zero additional latency at inference time.

○ Reason: The learned update matrices (ΔW) can be mathematically merged into the original weights (W) once training is
complete (Wfinal = Wfrozen + A ✕ B)

68

LoRA: Sharing and Modularity
● Modular Adapters:

○ It is possible to train multiple specific LoRA adapters (e.g., a "Medical" adapter, a "Legal" adapter).
● On-the-fly Switching:

○ These adapters can be combined or swapped on the fly as needed, without reloading the base model.
● Lightweight Distribution:

○ Sharing is efficient: these adapter weights are extremely light (typically just a few MBs).
● Efficiency:

○ LoRA is compatible with low-precision training (8-bit) to further maximize efficiency.

69

Parameter-Efficient Fine-tuning

70

QLoRA (4-bit Low-Rank Adaptation)

QLoRA (4-bit Low-Rank Adaptation); 2023
● Core Idea: quantizing the base model to 4-bit (down from 32-bit) during fine-tuning, to push efficiency even further.
● The Mechanism:

○ The pre-trained model is converted to 4-bit precision, allowing it to fit entirely within the VRAM of a single GPU.

○ LoRA adapters are applied on top. Crucially, the LoRA matrices are trained via backpropagation without de-quantizing the
base model.

● Key Results:
○ The authors successfully fine-tuned a 65B parameter model on a single 48GB A100 GPU in just 24 hours.

○ This resulted in Guanaco, a model achieving 99.3% of ChatGPT's performance on the Vicuna benchmark.

71

Quantization
● By default, models typically operate using Float32 (32-bit single-precision floating point).
● Quantization is the process of reducing the number of bits used to encode these floating-point numbers.

72

Quantization
● Moving from 32-bit to 16-bit inevitably leads to a loss of precision.

○ Note: in practice, standard float8 is rarely used directly due to quality loss.
● QLoRA utilizes a custom data type called NF4 (NormalFloat4).
● How to Quantize (Binning Strategy):

○ 1) Uniform Quantization: dividing the range into regular intervals. Inefficient because neural network weights are not
uniformly distributed (they usually cluster around zero).

○ 2) Normal Distribution (NF4): Quantization bins are spaced based on the assumption that weights follow a Normal
(Gaussian) distribution.

● The Encoding: Weights are mapped to a 4-bit integer (values 0 to 15) corresponding to the nearest bin.
● Warning:

○ You cannot perform mathematical operations directly in NF4!

○ The system must de-quantize on the fly back to 16-bit (e.g., BFloat16) to perform the actual computations.

73

QLoRA: Overview

74Source: https://docs.nvidia.com/nemo-framework/user-guide/24.07/sft_peft/qlora.html

QLoRA (4-bit Low-Rank Adaptation)
● Technical Innovations:

○ NF4 (NormalFloat4): QLoRA introduced an optimized 4-bit data type. Unlike naive Int4, NF4 is designed around the normal
distribution of neural network weights, allowing it to retain significantly higher precision.

○ Double Quantization: A method to "quantize the quantization constants," shaving off extra memory overhead.

○ Paged Optimizers: Uses NVIDIA Unified Memory to manage memory spikes. If the GPU runs out of memory, the optimizer
states are temporarily offloaded to the CPU RAM to prevent crashes (OOM).

● Impact:
○ Democratization: QLoRA proved that very large models (30B+) can be customized on modest hardware (consumer GPUs)

without significant performance loss.
○ Accessibility: It opened access to state-of-the-art research for academia and small businesses (SMEs) that lack massive

compute clusters.
○ Rapid Adoption: The publication triggered a wave of community iterations, such as the immediate release of 4-bit

fine-tuned versions of Llama 2 70B.

75

Parameter-Efficient Fine-tuning

76

Other Methods and Conclusions

Other PEFT Methods
Prefix Tuning: Instead of modifying weights, we learn a sequence of continuous vectors (the prefix) that is inserted at the
input of every Transformer layer.

● These vectors condition the model's generation, as learning a "virtual prompt" that the model is forced to follow.
● Extremely efficient – only requires training a few thousand parameters.

Adapter Modules (initially introduced for BERT-style models): small intermediate layers inserted within the architecture.
● Ex: A dense layer with a reduced size (bottleneck) is added after the MLP (Feed-Forward) of each Transformer block.

This bottleneck layer is trained, while the rest of the block remains frozen.
● Pro: Very effective for domain specialization.
● Con: Unlike LoRA, it adds a slight inference latency because the data must pass through the extra layers sequentially.

77

Other PEFT Methods
Partial fine-tuning:

● Idea: Selectively training only specific parts of the model (e.g., fine-tuning only the last few layers or just the
embedding layer).

● Pro: Very simple to implement.
● Con: Often yields lower performance compared to LoRA or Prefix Tuning.
● Issue: It creates an unbalanced adaptation. The modified layers become over-specialized (over-adjusted) while the

rest of the network remains frozen, breaking the internal coherence of the model.

78

Comparison of PEFT Methods

79

Method Core Mechanism Trainable
Params

Pros Cons

LoRA (Low-Rank
Adaptation)

Injects low-rank matrices
(A✕B) into frozen layers.

Low (<1%) No added inference latency
(can be merged); high
performance.

None significant compared to
others.

QLoRA LoRA + 4-bit quantization
(NF4) of the base model.

Low (<1%) Enables tuning huge models
(e.g., 65B) on consumer GPUs.

Slightly slower training due to
on-the-fly de-quantization.

Prefix Tuning Prepends trainable "virtual
prompt" vectors to input.

Very Low
(<0.1%)

Extremely lightweight storage. Slightly harder to optimize; reduces
usable context window size.

Adapter Modules Inserts small "bottleneck"
layers inside Transformer
blocks.

Low (~1-3%) Good performance; effective for
domain adaptation.

Adds inference latency (cannot be
merged); slower forward pass.

Partial Fine-tuning Unfreezes specific existing
layers (e.g., last layer only).

Variable Simple to implement (no new
architecture needed).

Often lower performance due to
unbalanced learning; prone to
forgetting.

Conclusion
● Post-training

○ SFT

○ RLHF et PPO

○ DPO
● Model evaluation

○ Metrics

○ Benchmarks

○ Other measures (bias, robustness)
● PEFT

○ LoRA

○ QLoRA

○ Prefix Tuning

○ Adapter Modules

○ Partial fine-tuning

80

