
Training of 
Large Language Models (LLMs)

Luca Benedetto
(based on slides by Julien Romero)

1



Introduction

2



Context and objectives
● Large Language Models (LLMs) have achieved impressive capabilities thanks to massive datasets and sophisticated 

training techniques.

3Source: https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/



4



Context and objectives
● Current LLMs are the result of complex training procedures, often detailed in lengthy reports (e.g., the LLaMA 3 paper 

is 92 pages long).
● In the next two sessions, we will see the training stages of modern (large) language models, from pre-training to 

post-training alignment, including evaluation and Parameter-Efficient Fine-Tuning.
● To illustrate current trends, we will sometimes refer to recent technical reports from:

○ LLaMA 3 (Meta, 2024), 

○ Qwen (Alibaba, 2023–2025), 

○ Mistral 7B (2023), 

○ Claude 3 (Anthropic, 2024), 

○ Google Gemini 1.5 (2024), 

○ DeepSeek-VL (2024), and others.

5



Overview

6Source: https://magazine.sebastianraschka.com/p/new-llm-pre-training-and-post-training/



Overview
● The individual steps are not “rigid”, and you can use different combinations.

7



Overview
● The individual steps are not “rigid”, and you can use different combinations.

8



Overview
● The individual steps are not “rigid”, and you can use different combinations.

9



Overview
● The individual steps are not “rigid”, and you can use different combinations.

10



Pre-training
(and pre-processing)

11



Overview of pre-training
Definition:
● Pre-training consists of training a large language model on an extremely large text corpus in a self-supervised manner, 

by predicting masked or next words (or tokens).
Objective:
● Learning a general text-based representation of the world. After pre-training, an LLM is a foundation model capable of 

generating coherent text but not yet aligned with human instructions nor with specific tasks.
● The aim is to minimise the perplexity of a text (see evaluation).

12



Overview of pre-training
Basic architecture: 
● Almost all LLMs use the Transformer architecture (autoregressive decoder) introduced in 2017.
● Even most recent models confirm that the strengths of LLMs come less from architectural innovations than from a 

huge volume of high-quality data, careful iterative training, and scaling.

○ Scaling → model size, inference time, (high-quality) training data.
Challenges: 
● Collecting diverse data.
● Filter noisy content.
● Manage vocabulary size and context length (e.g., the context window has increased from 2k tokens to 100k+ in the 

2024 models).
● Optimise computing costs.

13



Web-wide corpora
Modern LLMs are trained on colossal corpora (web text, books, scientific articles, source code, etc.).
One could basically say that these models have “seen” the whole internet.

14

First Transformer



Web-wide corpora

15



Datasets

16



Linguistic and thematic diversity
● Size is not enough, a diverse corpus is crucial for robustness.
● Mistral 7B (2023) has been trained on a vast and diverse dataset covering multiple domains and languages, enabling it 

to excel at a variety of tasks despite its smaller size.
● LLaMA 3 focused on collecting high-quality web text in multiple languages and domains.
● Different data sources to have this diversity in the training data: 

○ Common Crawl, 

○ Wikipedia, 

○ GitHub, 

○ arXiv, 

○ books (sometimes illegally), 

○ etc.

17



Linguistic and thematic diversity

18

● The legality of using data for training purposes is a serious issue.



Linguistic and thematic diversity

19

● The legality of using data for training purposes is a serious issue.
● For Generative AI in general, not only Language Models.

Source: https://www.billboard.com/pro/ai-firms-steal-music-scrape-copyright-icmp-investigation



Linguistic and thematic diversity

20

● The legality of using data for training purposes is a serious issue.
● For Generative AI in general, not only Language Models.

Sources (L): https://www.forbes.com/sites/torconstantino/2025/05/06/the-studio-ghibli-dilemma--copyright-in-the-age-of-generative-ai/
Sources (R): https://www.businessinsider.com/openai-studio-ghibli-image-generator-copyright-debate-sam-altman-2025-3



Linguistic and thematic diversity

21

● Diversity also means different languages.
● …but not all languages are equally represented in training (and evaluation) data.
● Smaller representation in data = worse performance.

○ This is particularly problematic for low-resource languages. 

Languages in FineWeb 2 (except English)



Linguistic and thematic diversity
● In addition to generic text, teams integrate data from specific domains (code, math, scientific data) to equip the 

language model with specific skills (e.g., programming, arithmetic reasoning).
● For example, LLaMA 3 has built dedicated pipelines to extract content from web pages focused on code and 

mathematics.

22



Linguistic and thematic diversity

23

Types of data used to train LLaMa 3



Data pre-processing and filtering
● A lot of the work.
● Massive cleaning: raw web data contains noise (incorrect language, spam, duplicate content, toxic content, etc.). 

Filtering is a crucial step. Automated filters detect and discard low-quality or irrelevant pages.

○ LLaMa 3 uses a custom HTML parser to extract high-quality text.

○ Special attention to mathematical code and formulas.

○ This works only to some extent, and additional measures are needed to e.g. block the model from generating toxic 
content.

24



Data pre-processing and filtering
● Examples of filters:

○ Personal and dangerous information: LLaMa 3 has implemented classifiers to judge whether data contains sensitive or 
inappropriate information.

○ Quality classifiers: LLaMa 3 experimented with classifiers trained to evaluate the quality of text extracts and retain only 
tokens deemed useful. Similarly, OpenAI filtered Common Crawl using models that evaluated ‘quality’ or ‘probability of 
being from a book’.

25



Data pre-processing and filtering
● Examples of filters:

○ Deduplication: To avoid seeing and learning the same data, potentially from different sources, multiple times (which 
distorts the evaluation and can cause overfitting), large-scale deduplication algorithms are applied. 

■ Example: the GPT-3 corpus was deduplicated using n-grams, and LLaMA 2 published its exclusion criteria (banned URLs, 
MinHash, document and line level, n-grams).

○ Use of heuristics: Avoid repetition of words, n-grams, inappropriate vocabulary, outlier calculations, etc. 

26



Size of the corpus
● Context: Before 2022, the trend was to make models as huge as possible (e.g., GPT-3 175B), often with insufficient 

data. The "Chinchilla" paper changed everything by proving that for a fixed budget, you should train smaller models on 
more data.

27



Size of the corpus
● Scale/quality tradeoff: 

○ Finding the right balance between model size and data volume is crucial. 

○ Scaling laws suggest that, given a fixed computing budget, it is better to have a smaller model that has been trained on 
more tokens. (E.g., the Chinchilla 70B model outperformed an under-trained 175B model by being trained for longer).

● Rule of thumb: 

○ Chinchilla's law suggests ~20 to 30 tokens per model parameter for optimal training. 

○ In practice, LLaMA 1 (65B) ~1.0T tokens (≈15 tokens/par.), LLaMA 2 (70B) ~2.0T tokens (≈30 tokens/par.). 

○ The 2024 models tend to increase this ratio even further, a sign that we have not yet saturated our thirst for data.

28



Chinchilla IsoFLOPs - 2022
For a given FLOPs budget, how can we find the best compromise between model size and number of training tokens?

29



LLaMa 3 IsoFLOPs - 2024

30



Duration of training

31



Cost of training (estimated)

32



Tricks to save time (and money)
● Pre-training an LLM costs millions of dollars in GPU computing. 
● Several tricks can be performed to save time and money.

○ Mixed Precision (FP16/BF16): We don't need 32 decimal places of precision for every number. Using 16-bit (half 
precision) cuts memory usage in half and speeds up math.

○ FlashAttention: A hardware-aware algorithm. It reduces the number of times the GPU has to read/write to its slow 
memory (HBM), making attention calculation much faster.

33



Other tricks used during training
● Scheduling the data path: Training is generally performed in epochs on the corpus. 

○ Some teams use implicit curriculum learning: for example, starting training with shorter sequences and then gradually 
increasing the length of the context. 

■ Definition curriculum learning: a machine learning technique that involves training a model on a sequence of tasks or 
examples of increasing difficulty, starting with simpler ones and gradually progressing to more complex ones.

○ Others apply non-uniform sampling: LLaMA 3 oversampled high-quality data (code, math) at the end of pre-training to 
boost performance in those domains.

● Learning rate: A high learning rate is used at the beginning (after warm-up), followed by a gradual decrease, often 
using cosine decay. LLaMA 3 used cosine annealing at the end, in conjunction with upsampling certain types of data.

○ Training stability is a challenge.

○ With increasingly longer contexts (e.g., 100k tokens, such as Gemini 1.5 or Claude 2), the effective duration of a gradient 
step increases and also requires adjusting these schedules.

34



Other tricks used during training
● Data augmentation: We already have a lot of text, but there are a few approaches for augmenting (i.e. oversampling) 

the pre-training dataset with synthetic data:

○ generative self-play: having a smaller model produce text to increase the corpus.

○ machine translation to add languages.
● But these techniques are marginal for pre-training (more commonly used in post-training).

35



Other tricks used during training
● Long context management: To increase the context window without exploding the cost of attention (which is 

quadratic), some tricks are used:

○ Mistral 7B uses sliding window attention to process arbitrarily long sequences, limiting attention to a local sliding 
window. This allows it to handle long inputs at a reduced cost. 

○ Other models use advanced positional embeddings (RoPE, ALiBi) to extrapolate to long sequences.

36



Other tricks used during training
● Optimized tokenization:

○ The choice of tokenizer (BPE, Unigram) and vocabulary (e.g., 32k vs. 100k tokens) impacts training. 

○ Multilingual models have larger vocabularies. 

○ Code models incorporate special tokens for programming symbols.

○ Qwen uses ~150k tokens, including special control tokens.

○ LLaMa = 128k tokens = 100k + 28k for non-English support.
■ Tokenization is a challenge for multilinguality, since tokenizers are often optimized for English.

37



Evaluation of pre-training 

38



Why evaluating?
● To measure the capabilities of an LLM and guide its improvement.
● Since LLMs are versatile, we cannot rely on a single metric, and multiple evaluation criteria are used. 
● Types of evaluation:

○ Internal metrics such as perplexity on a secret text corpus (indicator of the model's quality as a language model);

○ External benchmarks on standardized tasks (Q&A, reasoning, code, etc.), allowing models to be compared with each 
other;

○ Human evaluation or evaluation via other models on aspects such as response preference and usefulness in 
conversation;

○ Safety checks and other evaluations: bias, toxicity, hallucinations, robustness to rephrasing.
● We will focus now on the techniques used on models after pre-training, in the next lecture we will look at additional 

evaluation techniques.

39



Why evaluating?
● Pre- vs. post-training evaluation: a pre-trained (unaligned) model is often evaluated using perplexity and a few closed 

tasks, whereas a conversational model must be evaluated on the quality of its free responses. This sometimes 
requires chatbot arenas or qualitative ratings.

● Challenges:

○ Ensure that the evaluation is fair and unbiased (avoid contamination where the model has seen the test responses during 
training).

○ Cover a wide range of areas (to avoid over-optimizing on a few popular benchmarks).

○ Take ethical criteria into account (a technically high-performing model may still be unusable if it generates biased or 
dangerous responses).

40



Perplexity and linguistic quality
● Perplexity is a basic metric for language models. 
● It measures how well the model predicts text it has not seen (the lower the perplexity, the better the model). 
● For example, DeepMind's RETRO 7B achieves a perplexity comparable to GPT-3 175B on The Pile using a text 

database, despite having 25 times fewer parameters.

41



Perplexity and linguistic quality
● Interpretation: level of surprise upon seeing a sequence (in other words, how unexpected it was).

○ perplexity = 10 → the model is as surprised on average as if it had to choose between 10 options for each word (another 
way to see this: “as confused as if it had to roll a 10-sided dice”).

○ perplexity = 50 → model is “more surprised”, thus less good.

42



Perplexity and linguistic quality

43Source: https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word



Perplexity and linguistic quality
Utility:
● Perplexity is mainly used to evaluate pre-training. It is calculated on a hidden test set (e.g., unseen Wikipedia pages). 
● A decrease in perplexity from one model generation to the next indicates progress in overall linguistic ability.

Limites:
● Low perplexity does not guarantee that the model will perform well on specific tasks or be aligned. 

○ For example, GPT-3 had much better perplexity than GPT-2, but still produced unfiltered responses or responses that were 
off-topic. 

● Over-optimizing perplexity can sacrifice other aspects (such as diversity).

44



Other internal metrics
● Entropy rate.
● Vocabulary coverage.
● Loss in specific domains (e.g., perplexity can be calculated on code to estimate programming abilities).
● Manual evaluation of “bulk” completion examples to ensure that the model does not deviate.

45



Application: 
Fine-tuning for Classification 

46



From text generation to discrimination
● LLMs are great at generating texts (poetry, chatting, …) but in many applications we often just need a specific answer:

○ Is this email Spam or Not? ← spam detection

○ Is this contract risky (0-5)?; ← risk classification

○ Is this a positive review? ← sentiment analysis

○ What does this document represent? ← topic modelling
● We could ask a text generation model to answer with specific words (e.g., {‘spam’, ‘not spam’}), but this is inefficient 

and harder to evaluate programmatically (synonyms, rephrasing, …).
➢ We can teach the models to output a probability distribution over fixed classes.

● Key Terminology:
○ Generative: Modeling P(x) or P(xnext | xprev).

○ Discriminative: Modeling P(y|x) where y is a discrete label.

47



From text generation to discrimination
● A (multimodal) example.
● Generative Model: receives an image, generate a description 

(race, colour…).
● Discriminative Model: receives an image, returns a binary 

classification (cat vs. dog)

48



From text generation to discrimination
● Some textual examples.
● Spam detection.

○ Generative: receives an email, produces a text stating whether it is spam or not.

○ Discriminative: produces a binary classification (potentially with a probability score).
● Sentiment analysis

○ Generative: receives a movie review, and produces a textual feedback about it.

○ Discriminative: produces a score on a predefined range (e.g. 1-5).

49



Classification head
● We can teach the models to output probability distributions over fixed classes by using a classification head.
● Mechanism:

○ Feed input text (tokens) into the Base Model.

○ Extract the Last Hidden State of the final token (often the [EOS] token or a specific [CLS] token, depends on the 
architecture).

○ Discard the massive Vocabulary Projection Layer (dmodel → 50k vocab size).

○ Attach a small Linear Layer (dmodel → K classes).

○ Apply Softmax (for multi-class) or Sigmoid (for binary).
● We use the last hidden state because it contains the "semantic summary" of the sentence; the linear layer maps that 

summary to your specific labels.

50



Pooling strategies
● Issue: The model outputs a vector for every token. Which one represents the "whole sentence"?
● Strategies: 

○ Last Token / EOS: Standard for causal LLMs (GPT style). The last token has "seen" everything before it.

○ CLS Token: Standard for encoder-only (BERT style), but can be trained into decoders.

○ Mean Pooling: Averaging all token vectors (good for semantic similarity/embeddings).

51



The fine-tuning process
● The classification head is initialised randomly, we have to train it: this is called fine-tuning.
● Weights:

○ We initialize with the Base Model weights (pre-trained knowledge). 

○ The Classification Head is initialized randomly.
● We use a different loss function:

○ Pre-training: Cross-Entropy over 50k vocabulary (predict next word).

○ Classification: Cross-Entropy over N classes (predict label).

○ Regression: Mean Squared Error (MSE) (predict a score, e.g., 1.5 stars).
● Note: This updates the entire model (unless we use PEFT/LoRA, seen in next lecture).

52



Today’s practical session
● Later today, in the practical session (TP), you will have the opportunity to work on a fine-tuning for classification 

problem, taking a pretrained GPT-2 model and fine-tuning it for spam detection.

53



Knowledge Distillation 

54



The Inference bottleneck
● Let’s say that you have a 70B parameter model that classifies 

legal documents perfectly.
● However:

○ Latency: It takes 2 seconds per document.

○ Cost: You would need an A100 GPU to run it.

○ Requirement: You need to process 1 million documents a 
day, and only have access to a CPU.

● You cannot use that model, in this setting.
● The Solution: Knowledge Distillation. Compressing the 

"Teacher's" intellect into a "Student."

55



Teacher-Student Architecture

56Source

https://assets.zilliz.com/Figure_Teacher_student_model_knowledge_distillation_c309acdc2a.png


Teacher-Student Architecture
● Roles:

○ Teacher: Large, accurate, slow (e.g., GPT-4, Llama-70B).

○ Student: Small, fast, initially dumb (e.g., TinyLlama, DistilBERT).

○ Goal: Student mimics the Teacher, not just the Ground Truth.

57



“Dark Knowledge" & Soft Targets
● Hinton’s Insight (2015): The "wrong" answers contain information.
● An example (from image classification):

○ Image: A Golden Retriever.

○ Hard Label (Ground Truth): [1, 0, 0, 0] (Dog, Cat, Car, Boat).

○ Teacher's Logits: [0.90, 0.09, 0.009, 0.001].

○ The Teacher tells the Student: "It's definitely a dog, but if it wasn't a dog, it would look like a cat, not a boat."
● This relationship (Dog ~ Cat != Boat) is the Dark Knowledge or "structural understanding" of the world.
● Temperature (T): We "soften" the probability distribution to exaggerate these small details so the student can learn 

them.

58



The Distillation Loss Function
● The Formula:

○ Ltotal = ɑ LCE(y, ŷstudent) + (1-ɑ) LKL(Pteacher, Pstudent)
● Breakdown:

○ Student vs. Reality (LCE): "Get the right answer."

○ Student vs. Teacher (LKL): "Reason like the expert."
● White-box vs. Black-box:

○ White-box: We have access to the Teacher's weights/logits (Classic KD).

○ Black-box (Modern API Era): We only get the text output. We use "Synthetic Data Generation" (Teacher generates Q&A 
pairs, Student trains on them).

59



When to use Distillation?
● High Volume / Low Latency: Spam filters, Search ranking, On-device assistants.
● Privacy: Distill a cloud model into a local model that never sends data out.
● A successful example:

60



Conclusion
● Pre-training
● Pre-processing
● Evaluation of pre-training
● Fine-tuning of pre-trained models for supervised tasks
● Knowledge distillation

61


