
CI/CD pour le machine learning,
réentraînement et Intégration

Julien Romero

1

Cadrage et motivation

2

TP6 : CI/CD ML, retraining automatisé, intégration complète
● Objectif : boucler la boucle (dev -> prod -> monitoring -> retraining -> promotion)
● Résultat : système plus fiable, plus reproductible, moins “fragile”
● Livrables techniques (vue globale)

○ CI GitHub Actions (tests + intégration)

○ Promotion/rollback de modèles (registry)

○ Stratégies de déploiement (concepts + où ça vit)

3

Motivation : pourquoi les systèmes ML cassent en production
● Sources de régression

○ Code : refactor, dépendances, config

○ Données : schéma, distributions, valeurs rares, qualité

○ Features : calcul, disponibilité, cohérence offline/online

○ Modèle : drift, surapprentissage, changement de target
● Risques typiques

○ Erreurs silencieuses (mauvais scores sans crash)

○ Dégradations progressives (drift lent)

○ “Ça marche en local” mais pas en stack complète
● Réponse MLOps

○ Tests + gates (qualité)

○ Automatisation (répétable)

○ Rollback (recovery rapide)

4

Rappel : pipeline MLOps complet (vue système)
● Chaîne principale (offline -> serving)

● Boucle de feedback (prod -> amélioration)

● Point clé : “Déployer” en ML = code + artefacts modèle + décisions de promotion

Ingestion Validation Feature
Store Train Evaluation Registry Serving

Monitoring Drift Réentraîne
ment

Comparais
on

Promotion
/Rollback

5

Où on en est (après TP1–TP5)
● Stack locale docker-compose

○ API (serving), MLflow (tracking/registry), Prefect (orchestration), monitoring/drift
● Capacités déjà acquises

○ Pipelines orchestrés (Prefect)

○ Validation données (Great Expectations)

○ Observabilité / drift (dashboards + rapport)

○ Entraînement + logging MLflow, modèle servi via API
● Limite actuelle

○ Qualité non vérifiée : pas de vérification automatiques sur chaque changement

○ Boucle retraining/promotion pas encore “production-grade”

6

Monitoring Drift Réentraîne
ment

Comparais
on

Promotion
/Rollback

Ce que TP6 ajoute (résultats attendus)
● CI (GitHub Actions) : qualité code + intégration système

○ unit tests (pytest)

○ tests d’intégration (compose + appel FastAPI)

○ data checks “light” (invariants)
● CD côté modèle : train → evaluate → compare → promote (+ rollback)

○ stratégies : manuel / semi-auto / auto (aperçu théorique)

○ règle de marge (stabilité)
● Déploiement modèles (concepts) : shadow / A/B / canary / interleaving / bandits

○ clarification : promotion registry ≠ routage de trafic

7

Définitions CI/CD et spécificités ML

8

Définitions : CI, CD, CT
● CI (Continuous Integration)

○ intégrer fréquemment (à chaque push/Pull Request)

○ exécuter automatiquement : build + tests + checks

○ objectif : détecter régressions tôt
● CD (Continuous Delivery / Deployment)

○ delivery : artefacts prêts à être déployés (release candidate)

○ deployment : déploiement automatique en prod (selon politique)
● CT (Continuous Training)

○ ré-entraîner régulièrement / sur événement (drift, nouvelle période)

○ produire un candidat (pas forcément prod)
● Exemples typiques

○ Pull Request -> CI -> OK

○ Nouveau mois data -> CT -> modèle candidat

9

CI/CD logiciel vs CI/CD ML : différences structurelles
● Logiciel “classique”

○ entrée : code

○ tests : déterministes

○ livrable : binaire / image / service
● ML system

○ entrée : code + données + features + config

○ non-déterminisme (seed, sampling, infra, versions libs)

○ “qualité” = métriques + contraintes (pas juste “ça compile”)
● Conséquence

○ CI doit tester le système, pas uniquement des fonctions

○ CD côté ML implique gates (évaluation, compatibilité, risques)

10

Production = prêt à servir un client
● “Production model” = modèle servable dans un contexte réel

○ latence acceptable, robustesse, compat API

○ observabilité : logs/metrics

○ traçabilité : version, données, features, config
● Attention : “meilleur offline” ≠ “meilleur en prod”

○ distribution change, coût erreurs, contraintes infra
● Implication : promotion = décision technique + produit + risque

11

Environnements : dev / staging / prod
● Pourquoi des environnements

○ isoler les changements

○ valider intégration avant exposition client

○ réduire incidents
● Caractéristiques typiques

○ dev : rapide, itératif, logs verbeux

○ staging : proche prod, tests réalistes, données contrôlées

○ prod : stable, observé, changements maîtrisés
● Dans le cours (local/compose)

○ environnements ≈ config + profils compose + variables

○ Même stack, paramètres différents (ports, volumes, niveaux logs)

12

Deux livraisons : code et modèle
● Livraison code (CI/CD)

○ GitHub Actions : tests → build image → intégration

○ objectif : garantir “le système démarre et répond”
● Livraison modèle (CT + promotion)

○ orchestration : train/eval/compare

○ artefact : version modèle (registry)

○ Décision : promouvoir / conserver / rollback
● Message clé

○ on peut changer le modèle sans changer le code

○ et inversement : changer le code sans changer le modèle

○ ne pas confondre : promotion registry vs déploiement trafic (à venir)

13

Stratégie de tests pour systèmes ML

14

Pourquoi tester un système ML est multi-couches
● Un modèle en prod = un système distribué (data + services + artefacts)
● Les régressions possibles ne sont pas seulement “bugs code”

○ données invalides mais “parsables”

○ features incohérentes (offline/online)

○ modèle incompatible avec l’API (signature, types)
● Objectif des tests

○ détecter tôt

○ isoler la cause (code vs data vs modèle vs intégration)

15

Taxonomie des tests ML
● Unit tests (pytest)

○ parsing, transformations, validation paramètres

○ fonctions pures, rapides
● Contract tests (API)

○ schéma request/response, types, champs obligatoires
● Data tests

○ schéma, null-rate, ranges, catégories autorisées

○ invariants (ex : âge ≥ 0, dates cohérentes)
● Model tests

○ performance minimale (floor)

○ non-régression vs baseline / production

○ compatibilité signature + features attendues
● Integration tests

○ plusieurs services (compose), appel HTTP réel

16

Politique de test du cours
● Contraintes

○ CI doit être rapide et stable

○ pas d’entraînement lourd à chaque PR
● Donc, en CI (GitHub Actions)

○ unit + contract : systématique

○ integration smoke (compose + FastAPI) : systématique

○ data checks légers : systématique
● Hors CI (orchestrateur / exécution contrôlée)

○ entraînement complet + évaluation + comparaison

○ promotion/rollback

17

Unit tests (pytest) : style attendu
● Tests sur fonctions pures

○ load_config(): valeurs par défaut, erreurs explicites

○ make_features(df): colonnes attendues, types, pas de NaN introduits

○ split_train_valid(): tailles, reproductibilité (seed)
● Bonnes pratiques

○ tests courts, déterministes

○ fixtures pour données jouets

○ messages d’erreur utiles (assert explicites)

18

Pytest : l’essentiel pour démarrer
● Convention

○ fichiers : test_*.py (ou *_test.py)

○ fonctions : def test_xxx(): ...
● Exécution

○ pytest (tous les tests)

○ pytest -q (compact), pytest -k "pattern" (filtre)
● Assertions

○ assert expr + messages explicites
● Fixtures (réutilisation)

○ @pytest.fixture pour données jouets / clients API
● Structure conseillée

○ tests/unit/, tests/contract/, tests/data/, tests/model/, tests/integration/

def test_sanity():
 assert 1 + 1 == 2

19

Unit test : logique pure
● Cible : fonctions de transformation / parsing / validation
● Données : petites, en mémoire, reproductibles

src/features.py
def normalize_age(age: int) -> float:
 if age < 0:
 raise ValueError("age must be >= 0")
 return min(age, 100) / 100.0

tests/unit/test_features.py
import pytest
from src.features import normalize_age

def test_normalize_age_ok():
 assert normalize_age(50) == 0.5
 assert normalize_age(200) == 1.0 # cap à 100

def test_normalize_age_negative_raises():
 with pytest.raises(ValueError):
 normalize_age(-1)

20

Pytest fixtures : partager des “objets de test” propres et
réutilisables
● Problème

○ duplication de setup (données jouets, config, client API)

○ tests difficiles à lire / maintenir
● Solution : fixture

○ fonction décorée @pytest.fixture

○ injectée automatiquement par nom de paramètre

○ scope possible : function (défaut), module, session
● Bon usage

○ données petites, déterministes

○ helpers communs (client FastAPI, sample DataFrame)

21

Pytest fixtures : partager des “objets de test” propres et
réutilisables
import pytest
import pandas as pd
from fastapi.testclient import TestClient
from src.api import app

@pytest.fixture
def sample_df():
 return pd.DataFrame({
 "user_id": ["u1", "u2", "u3"],
 "age": [25, 40, 31],
 "country": ["FR", "FR", "ES"],
 })

@pytest.fixture
def api_client():
 return TestClient(app)

def test_make_features_no_nan(sample_df):
 out = make_features(sample_df)
 assert out.isna().sum().sum() == 0

def test_predict_contract(api_client):
 r = api_client.post("/predict", json={"user_id": "u1", "as_of": "2025-01-01"})
 assert r.status_code == 200

22

Contract test : API stable (schéma request/response)
● Cible : contrat (inputs/outputs) indépendamment du “meilleur modèle”
● Outil : fastapi.testclient (pas besoin de réseau)

tests/contract/test_api_contract.py
from fastapi.testclient import TestClient
from src.api import app # FastAPI app

client = TestClient(app)

def test_predict_contract():
 payload = {"user_id": "u_123", "as_of": "2025-01-01"}
 r = client.post("/predict", json=payload)

 assert r.status_code == 200
 body = r.json()

 # champs attendus
 assert "user_id" in body
 assert "proba" in body

 # types attendus
 assert isinstance(body["proba"], float)
 assert 0.0 <= body["proba"] <= 1.0

23

Data tests : philosophie + exemples concrets
● Pourquoi : les données cassent souvent sans “crash”
● Exemples de checks

○ schema : colonnes, types

○ completeness : taux de valeurs manquantes ≤ seuil

○ ranges : bornes numériques, dates valides

○ categorical : valeurs autorisées, cardinalité max

○ volume : nombre de lignes dans une plage attendue
● Où les placer

○ CI : checks légers (détecter breaking changes)

○ pipeline data : checks complets (qualité et drift)

24

Data test : invariants sur données/features
● Cible : schéma + règles simples (light checks)
● But : détecter breaking changes (colonne manquante, null-rate explosif…)

tests/data/test_data_invariants.py
import pandas as pd

REQUIRED_COLS = {"user_id", "age", "country", "label"}

def test_schema_and_null_rate():
 df = pd.read_parquet("data/features_sample.parquet") # sample contrôlé

 assert REQUIRED_COLS.issubset(df.columns)

 null_rate_age = df["age"].isna().mean()
 assert null_rate_age <= 0.01, f"null_rate_age={null_rate_age:.3f}"

def test_ranges():
 df = pd.read_parquet("data/features_sample.parquet")
 assert (df["age"].dropna() >= 0).all()
 assert (df["age"].dropna() <= 120).all()

25

Model tests offline : ce qu’on garantit
● Quality gate

○ métrique ≥ minimum (floor)
● Non-régression

○ nouveau modèle ≥ production + marge (stabilité)
● Compatibility gate

○ même signature / mêmes features requises

○ output stable (proba/logit, nom de champs)
● Rappel

○ ces tests sont des garde-fous, pas une preuve d’optimalité

26

Model test : qualité minimale + non-régression + compatibilité
● Cible : empêcher un modèle “pire” ou incompatible de passer en prod
● Sans détour statistique : seuils + marge

tests/model/test_model_gates.py
def test_quality_gate(metrics_new):
 # fixture: dict {"auc": ..., "logloss": ...}
 assert metrics_new["auc"] >= 0.70

def test_non_regression(metrics_new, metrics_prod):
 margin = 0.01
 assert metrics_new["auc"] >= metrics_prod["auc"] + margin

def test_signature_compatibility(signature_new, signature_prod):
 # signature = {"features": [...], "output": "..."}
 assert signature_new["features"] == signature_prod["features"]
 assert signature_new["output"] == signature_prod["output"]

27

Integration test : système complet
● Cible : vérifier que la stack démarre et répond (réseau, config, dépendances)
● Principe : ping /health puis /predict

tests/integration/test_stack_smoke.py
import time
import requests

BASE_URL = "http://localhost:8000"

def wait_until_ready(timeout_s=60):
 t0 = time.time()
 while time.time() - t0 < timeout_s:
 try:
 r = requests.get(f"{BASE_URL}/health", timeout=1)
 if r.status_code == 200:
 return True
 except requests.RequestException:
 pass
 time.sleep(1)
 return False

def test_stack_predict_smoke():
 assert wait_until_ready(), "API not ready"

 payload = {"user_id": "u_123", "as_of": "2025-01-01"}
 r = requests.post(f"{BASE_URL}/predict", json=payload, timeout=3)

 assert r.status_code == 200
 assert "proba" in r.json() 28

GitHub Actions : pipeline CI
exécutable

29

GitHub Actions : concepts minimum
● Déclencheurs (events)

○ push, pull_request
● Workflow = fichier YAML dans .github/workflows/
● Job = suite d’étapes sur un runner (VM)
● Step = commande (checkout, install, tests…)
● Résultat

○ statut PASS/FAIL

○ logs consultables

○ artefacts possibles (logs, rapports)

30

Lire un run CI : quoi regarder, dans quel ordre
1. Statut global : quel job échoue ?
2. Logs du job

○ étape qui échoue (souvent visible immédiatement)

○ message d’erreur + stack trace
3. Indices fréquents

○ dépendances manquantes

○ variables d’environnement

○ service non prêt (healthcheck)

○ timeout réseau
4. Artefacts (si upload en échec)

○ docker compose logs

○ rapports de tests (pytest)

31

Architecture CI du projet
● Runner GitHub exécute :

○ docker build (images)

○ docker compose up (stack)

○ pytest (tests)
● Tout est local au runner

○ pas de credentials externes

○ reproductible : même workflow pour tous
● Pré-requis pour stabilité

○ healthchecks (services prêts)

○ timeouts maîtrisés

○ logs exploitables

32

Workflow CI : structure recommandée
● Étapes typiques

○ checkout repo

○ setup Python

○ install deps

○ (option) lint

○ unit + contract tests

○ démarrage compose + integration tests

○ data checks “light”

○ upload logs en cas d’échec
● Philosophie

○ fail fast

○ tests rapides d’abord

○ intégration ensuite (plus coûteux)

33

Tests d’intégration en CI : “FastAPI smoke test”
● Objectif

○ vérifier que la stack démarre et que l’API répond
● Pattern

○ compose up -d

○ attendre /health (ou healthcheck)

○ appeler /predict

○ vérifier contrat (HTTP 200, champs attendus)
● Bonnes pratiques CI

○ pas de “sleep(30)” fixe si possible

○ timeouts explicites

○ logs compose en artefacts si fail

34

Limites assumées de la CI (et pourquoi c’est OK)
● CI ≠ pipeline de training complet

○ entraînement lourd : lent, coûteux

○ CI doit rester rapide et fiable
● Ce que CI garantit

○ qualité du code + intégration système

○ contrat API stable

○ invariants data “anti-breaking change”
● Ce qui tourne ailleurs

○ entraînement + évaluation + comparaison + promotion (orchestrateur)
● Message clé

○ CI = garde-fou à chaque changement

○ CT/promotion = amélioration continue pilotée par données/monitoring

35

Livraison continue des modèles :
promotion, gates, rollback

36

Model Registry : versionner un modèle “servable” (Rappel)
● Rôle du registry

○ centraliser artefacts (modèle, preprocess, signature)

○ versioning + traçabilité

○ point d’intégration avec le serving (quel modèle servir ?)
● Notions clés

○ Run (expérience) : produit une version de modèle

○ métadonnées : params, métriques, dataset tag, code version (commit)
● Production-ready (rappel)

○ modèle = artefact + contrat + observabilité

37

Stratégies de promotion
● Manuelle

○ un humain choisit la version à promouvoir

○ contrôle fort, mais lent et peu scalable
● Semi-automatique

○ training + évaluation auto

○ promotion avec approval (ex : reviewer)

○ bon compromis pour systèmes à risque
● Automatique

○ règles : métrique + marge + checks compatibilité

○ rapide et itératif, mais nécessite de bons garde-fous
● Risk-based

○ politique dépend de la criticité (finance/santé vs recommandation)

○ plus de gates + validation humaine pour cas sensibles

38

Gating : exemples de critères “offline”
● Quality gate

○ métrique ≥ seuil minimal (floor)

○ non-régression vs baseline/Production (+ marge)
● Compatibility gate

○ signature identique (features attendues, types, output)

○ invariants API (contrat stable)
● Safety/robustness gate (light)

○ sanity checks : distribution outputs, taux de positifs, NaN

○ latence inference sur batch de test (grossier)
● Important

○ gates = “stop the bleeding” (réduire risques), pas “optimiser”

39

Rollback : stratégie essentielle
● Pourquoi rollback

○ métriques offline trompeuses

○ incidents prod : latence, bugs, dérive inattendue
● Principe

○ conserver l’historique des versions servies

○ capacité à revenir à N-1 en minutes
● Déclencheurs typiques

○ SLO (objectif de niveau de service) violé (latence, erreurs)

○ alerting drift/anomalies

○ incidents business (si métrique online existe)
● Traceability

○ “qui a promu quoi, quand, pourquoi”

40

Promotion registry ≠ Déploiement trafic
● Promotion (registry)

○ décision : “ce modèle est candidat à être servi”

○ change un label / stage (Production)
● Déploiement trafic

○ décision : “combien de requêtes vont vers quel modèle”

○ nécessite routing (gateway/app/serving layer), monitoring fin
● Pourquoi séparer

○ sécurité : on peut promouvoir sans exposer 100% trafic

○ permet canary / A/B / shadow (section suivante)

41

Stratégies de déploiement modèles

42

Panorama : stratégies de déploiement
● Objectifs

○ réduire risque d’incident

○ mesurer impact (qualité, latence, stabilité)

○ contrôler l’exposition (progressif)
● 2 axes de choix

○ besoin de feedback online (ici : faible / absent)

○ niveau de risque acceptable
● Vocabulaire

○ shadow (miroir), A/B (split), canary (progressif)

○ interleaving (ranking), bandits (adaptatif)

43

Shadow deployment (mirroring)
● Principe

○ même requête envoyée à modèle prod + modèle candidat

○ seule réponse prod est utilisée (candidat “observe”)
● Ce qu’on mesure

○ latence, erreurs, timeouts

○ divergence outputs (statistiques)
● Avantages / limites

○ très sûr (pas d’impact client direct)

○ ne mesure pas un KPI métier (si pas de feedback)
● Où ça vit techniquement

○ gateway / service mesh / application layer

○ nécessite duplication contrôlée des requêtes

44

Ancien modèle

Nouveau modèle Comparaison

A/B testing (trafic split)
● Principe

○ une fraction du trafic va vers A, l’autre vers B

○ comparaison sur métriques observées (perf, erreurs, éventuellement KPI)
● Pré-requis (important)

○ instrumentation solide, assignation stable

○ définition claire des métriques
● Dans ce cours (sans feedback online)

○ intérêt surtout conceptuel

○ on peut néanmoins mesurer : latence, erreurs, stabilité output
● Où ça vit

○ gateway/router ou application

45

Ancien modèle

Nouveau modèle

Aléatoire

Canary release (progressive rollout)
● Principe

○ exposition progressive : 1% → 5% → 25% → 100%

○ conditions d’arrêt : seuils (erreurs, latence, anomalies)
● Avantages

○ limite blast radius

○ rollback rapide si dérive / bug
● Pré-requis

○ monitoring (latence, taux d’erreur, saturation)

○ alerting + runbook rollback
● Où ça vit

○ gateway/service mesh (idéal)

○ ou application layer (routing interne)

46

Ancien modèle

Nouveau modèle

Transition
progressive

Interleaving (pour ranking/reco) : concept
● Quand

○ systèmes de ranking (recherche, recos)
● Principe

○ mélanger résultats de deux modèles dans une même liste

○ feedback utilisateur plus “efficace” qu’un A/B classique
● Pré-requis

○ signal utilisateur (clic, dwell time, etc.)

○ instrumentation fine

47

Ancien modèle

Nouveau modèle

A

B

A

B

A

B

Attention de choisir
aléatoirement le
premier à afficher

Bandits (multi-armed) : concept et prérequis
● Principe

○ choisir dynamiquement le modèle à servir (exploration/exploitation)

○ maximise reward à court terme
● Pré-requis

○ reward online rapide et fiable

○ gestion de biais, monitoring, garde-fous
● Risques

○ instabilité, sur-optimisation court terme

○ complexité opérationnelle

48

Ancien modèle

Nouveau modèle

Algo.
bandit

Il faut une boucle de rétroaction
rapide

Continuous learning et pourquoi c’est
un problème d’infra

49

Niveaux de “continuous learning”
● Niveau 0 : Manual

○ entraînement ponctuel, déploiement manuel
● Niveau 1 : Automatisé (schedule)

○ retrain périodique (ex : chaque mois)
● Niveau 2 : Automatisé + stateful

○ conservation d’état : features historisées, lineage, backfills
● Niveau 3 : Event-triggered

○ retrain déclenché par événements (drift, data arrival, alert)
● Positionnement du cours

○ objectif : event-triggered (drift => retrain) + promotion contrôlée

50

Pourquoi “continuous learning” = problème d’infrastructure
● Problèmes “non-ML” mais critiques

○ data freshness (arrivée des données, SLA)

○ compute budget (coût, durée, contention)

○ reproductibilité (versions libs, config, seeds, datasets)
● Problèmes “système”

○ orchestration fiable (retries, idempotence)

○ observabilité (logs, métriques, traces)

○ gouvernance (qui a promu quoi, audit)
● Message clé

○ automatiser sans garde-fous = usine à incidents

○ MLOps = engineering de fiabilité + contrôle du risque

51

Qui fait quoi : CI vs Orchestrateur vs Monitoring
● CI (GitHub Actions)

○ qualité du code + intégration (compose + API smoke)

○ bloque les régressions “software/system”
● Orchestrateur (Prefect)

○ pipelines data/model : train → eval → compare → promote/rollback

○ exécutions traçables, relançables
● Monitoring / Drift

○ signaux de prod (latence, erreurs, drift)

○ déclencheurs (event) + alerting
● Séparation des responsabilités

○ CI ≠ retraining

○ Monitoring ≠ décision de merge

○ Registry ≠ routage trafic

52

Diagramme final : système complet intégré (boucle fermée)
● Flux “code”

○ commit/PR → CI tests → build → stack déployable
● Flux “data/model”

○ nouvelles données → validation → features → train → eval

○ compare vs prod → promote (ou non) → rollback possible
● Flux “prod”

○ API sert un modèle “Production-ready”

○ monitoring + drift → événement → retrain
● Ce que TP6 apport

○ boucle automatisée, testée, observable, récupérable (rollback)

53

Aperçu du TP

54

TP6 : ce que vous allez construire
● Objectif : rendre le système production-like
● Étapes

1. Ajouter logique train → eval → compare

2. Implémenter promotion (selon policy) + rollback possible

3. Connecter drift → retraining (event-triggered)

4. Mettre en place CI GitHub Actions
■ unit/contract/data light/integration smoke

5. Valider le cycle complet
■ “nouvelle donnée” → drift → retrain → décision → modèle servi

● Ce que vous devez observer
○ run CI (green/red) + logs

○ exécutions orchestrateur (logs + décisions)

○ registry (versions + stage)

○ API (contrat + latence de base)

55

À retenir
● CI/CD en ML = qualité système + qualité modèle

○ CI : empêche régressions de code/intégration

○ CT/promotion : empêche régressions modèle
● “Production” = servable pour un client

○ contrat API, latence, observabilité, traçabilité
● Déploiement modèle = stratégie de risque

○ shadow / A/B / canary / rollback

○ promotion registry ≠ routage trafic
● Continuous learning = engineering d’infrastructure

○ data freshness, budget compute, reproductibilité, gouvernance

56

