&.v'\oh"sc%e IN S TIT U T TELECOM
a_.lo,: POLYTECHNIQUE
.%/ P "‘i

* DE PARIS =TT

= ==
” ~~

CIl/CD pour le machine learning,
réentrainement et Intégration

Julien Romero

\h__—’

Cadrage et motivation

TP6 : CI/CD ML, retraining automatisé, intégration complete

e Objectif : boucler la boucle (dev -> prod -> monitoring -> retraining -> promotion)
e Résultat: systeme plus fiable, plus reproductible, moins “fragile”
e Livrables techniques (vue globale)

O Cl GitHub Actions (tests + intégration)

O Promotion/rollback de modéles (registry)

O Stratégies de déploiement (concepts + ol ga vit)

Motivation : pourquoi les systemes ML cassent en production

e Sources de régression
O Code : refactor, dépendances, config
0 Données : schéma, distributions, valeurs rares, qualité
O Features : calcul, disponibilité, cohérence offline/online
O Modele : drift, surapprentissage, changement de target
e Risques typiques
O Erreurs silencieuses (mauvais scores sans crash)
O Dégradations progressives (drift lent)
O “Camarche en local” mais pas en stack complete
e Réponse MLOps
O Tests + gates (qualité)
O Automatisation (répétable)

O Rollback (recovery rapide)

Rappel : pipeline MLOps complet (vue systéeme)

e Chaine principale (offline -> serving)

Feature

Ingestion Validation Store Evaluation Registry Serving

e Boucle de feedback (prod -> amélioration)

Réentraine Comparais Promotion
ment on /Rollback

Monitoring

e Pointclé: “Déployer” en ML = code + artefacts modele + décisions de promotion

Ou on en est (aprés TP1-TP5)

e Stack locale docker-compose

O API (serving), MLflow (tracking/registry), Prefect (orchestration), monitoring/drift
e Capacités déja acquises

O Pipelines orchestrés (Prefect)

O Validation données (Great Expectations)

O Observabilité / drift (dashboards + rapport)

O Entrainement + logging MLflow, modéle servi via API
e Limite actuelle

O Qualité non vérifiée : pas de vérification automatiques sur chaque changement

O Boucle retraining/promotion pas encore “production-grade”

Réentraine Promotion
ment /Rollback

Monitoring

Ce que TP6 ajoute (résultats attendus)

e CI (GitHub Actions) : qualité code + intégration systéme
O unit tests (pytest)
O tests d'intégration (compose + appel FastAPI)
O data checks “light” (invariants)
e CD coté modele : train — evaluate — compare — promote (+ rollback)
O stratégies : manuel / semi-auto / auto (apergu théorique)
O regle de marge (stabilité)
o Déploiement modeles (concepts) : shadow / A/B / canary / interleaving / bandits
O clarification : promotion registry # routage de trafic

Définitions CI/CD et spécificités ML

Définitions : Cl, CD, CT

e CI (Continuous Integration)
O intégrer fréquemment (a chaque push/Pull Request)
O exécuter automatiquement : build + tests + checks
O objectif : détecter régressions tot
e CD (Continuous Delivery / Deployment)
o delivery : artefacts préts a étre déployés (release candidate)
O deployment : déploiement automatique en prod (selon politique)
e CT (Continuous Training)
O ré-entrainer régulierement / sur événement (drift, nouvelle période)
O produire un candidat (pas forcément prod)
e Exemples typiques
O Pull Request -> Cl -> OK

O Nouveau mois data -> CT -> modéle candidat

CIl/CD logiciel vs CI/CD ML : différences structurelles

e Logiciel “classique”

O entrée:code

O tests:déterministes

O livrable : binaire / image / service
¢ ML system

O entrée: code + données + features + config

O non-déterminisme (seed, sampling, infra, versions libs)

O “qualité” = métriques + contraintes (pas juste “ca compile”)
e Conséquence

O Cldoit tester le systeme, pas uniquement des fonctions

O CD coété ML implique gates (évaluation, compatibilité, risques)

10

Production = preét a servir un client

e “Production model” = modele servable dans un contexte réel
O latence acceptable, robustesse, compat API
O observabilité : logs/metrics
O tracabilité : version, données, features, config
e Attention : “meilleur offline” # “meilleur en prod”
O distribution change, co(t erreurs, contraintes infra
e Implication : promotion = décision technique + produit + risque

11

Environnements : dev / staging / prod

e Pourquoi des environnements
O isoler les changements
O valider intégration avant exposition client
O réduire incidents
e Caractéristiques typiques
O dev:rapide, itératif, logs verbeux
O staging : proche prod, tests réalistes, données controlées
o prod : stable, observé, changements maitrisés
e Dansle cours (local/compose)
O environnements = config + profils compose + variables

O Méme stack, parametres différents (ports, volumes, niveaux logs)

12

Deux livraisons : code et modele

e Livraison code (CI/CD)
O GitHub Actions : tests — build image — intégration
O objectif : garantir “le systeme démarre et répond”
e Livraison modele (CT + promotion)
O orchestration : train/eval/compare
o artefact : version modele (registry)
O Décision : promouvoir / conserver / rollback
e Messageclé
O on peut changer le modeéle sans changer le code
O etinversement: changer le code sans changer le modele

O ne pas confondre : promotion registry vs déploiement trafic (a venir)

13

Stratégie de tests pour systemes ML

14

Pourquoi tester un systeme ML est multi-couches

e Un modele en prod = un systéme distribué (data + services + artefacts)
e Lesrégressions possibles ne sont pas seulement “bugs code”

O données invalides mais “parsables”

O features incohérentes (offline/online)

O modeéle incompatible avec I'API (signature, types)
e Objectif des tests

O détecter tot

O isoler la cause (code vs data vs modele vs intégration)

15

Taxonomie des tests ML

Unit tests (pytest)

O parsing, transformations, validation parametres

o fonctions pures, rapides
Contract tests (API)

O schéma request/response, types, champs obligatoires
Data tests

O schéma, null-rate, ranges, catégories autorisées

O invariants (ex: age = 0, dates cohérentes)
Model tests

o performance minimale (floor)

O non-régression vs baseline / production

O compatibilité signature + features attendues
Integration tests

O plusieurs services (compose), appel HTTP réel

16

Politique de test du cours

e Contraintes
O Cldoit étre rapide et stable
O pas d'entrainement lourd a chaque PR
e Dong, en CI (GitHub Actions)
O unit + contract : systématique
O integration smoke (compose + FastAPI) : systématique
O data checks légers : systématique
e Hors Cl (orchestrateur / exécution controlée)
O entrainement complet + évaluation + comparaison

© promotion/rollback

17

Unit tests (pytest) : style attendu

e Tests sur fonctions pures
o0 load_config(): valeurs par défaut, erreurs explicites
O make_features(df): colonnes attendues, types, pas de NaN introduits
o split_train_valid(): tailles, reproductibilité (seed)
e Bonnes pratiques
O tests courts, déterministes
O fixtures pour données jouets

O messages d'erreur utiles (assert explicites)

18

Pytest : I'essentiel pour déemarrer

e Convention
o fichiers : test_*.py (ou *_test.py)
o fonctions : def test_xxx(): ...
e Exécution
O pytest (tous les tests)
O pytest-q (compact), pytest -k "pattern” (filtre)
e Assertions
O assert expr + messages explicites
e Fixtures (réutilisation)
O (@pytest.fixture pour données jouets / clients API
e Structure conseillée
O tests/unit/, tests/contract/, tests/data/, tests/model/, tests/integration/

def test_sanity():
assert 1 + 1 == 2

19

Unit test : logique pure

e Cible: fonctions de transformation / parsing / validation
o Données : petites, en mémoire, reproductibles

src/features.py
def normalize_age(age: int) -> float:
if age < 0:
raise ValueError("age must be >= 0")
return min(age, 100) / 100.90

tests/unit/test_features.py
import pytest
from src.features import normalize_age

def test_normalize_age_ok():
assert normalize_age(50

) 9.5
assert normalize_age(200)

= 1.0 # cap a 1600

def test_normalize_age_negative_raises():
with pytest.raises(ValueError):
normalize_age(-1)

Pytest fixtures : partager des “objets de test” propres et
réutilisables

e Probleme
O duplication de setup (données jouets, config, client API)
O tests difficiles a lire / maintenir
e Solution : fixture
o fonction décorée @pytest.fixture
O injectée automatiquement par nom de paramétre
O scope possible : function (défaut), module, session
e Bonusage
O données petites, déterministes

O helpers communs (client FastAPI, sample DataFrame)

21

Pytest fixtures : partager des “objets de test” propres et
réutilisables

import pytest

import pandas as pd

from fastapi.testclient import TestClient
from src.api import app

@pytest.fixture
def sample_df():
return pd.DataFrame({
lluser_idll: [llunlll' ”u2"' Ilu3ll]'
"age": [25, 40, 31],
"country": ["FR", "FR", "ES"I],
})

@pytest.fixture
def api_client():
return TestClient(app)

def test_make_features_no_nan(sample_df):
out = make_features(sample_df)
assert out.isna().sum().sum() ==

def test_predict_contract(api_client):
r = api_client.post("/predict", json={"user_id":
assert r.status_code == 200

ul", "as_of": "2025-01-01"})

22

Contract test : API stable (schéma request/response)

e Cible: contrat (inputs/outputs) indépendamment du “meilleur modéle”
e Outil : fastapi.testclient (pas besoin de réseau)

tests/contract/test_api_contract.py
from fastapi.testclient import TestClient
from src.api import app # FastAPI app

client = TestClient(app)

def test_predict_contract():
payload = {"user_id": "u_123", "as_of": "2025-01-01"}
r = client.post("/predict", json=payload)

assert r.status_code == 200
body = r.json()

champs attendus
assert "user_id" in body
assert "proba" in body

types attendus
assert isinstance(body["proba"], float)
assert 0.0 <= body["proba"] <= 1.0

23

Data tests : philosophie + exemples concrets

e Pourquoi: les données cassent souvent sans “crash”
e Exemples de checks

O schema: colonnes, types

O completeness : taux de valeurs manquantes < seuil

o ranges : bornes numériques, dates valides

O categorical : valeurs autorisées, cardinalité max

O volume : nombre de lignes dans une plage attendue
e Oules placer

O Cl:checks légers (détecter breaking changes)

o

pipeline data : checks complets (qualité et drift)

24

Data test : invariants sur données/features

e Cible: schéma + régles simples (light checks)
But : détecter breaking changes (colonne manquante, null-rate explosif...)

tests/data/test_data_invariants.py
import pandas as pd

REQUIRED_COLS = {"user_id", "age", "country", "label"}

def test_schema_and_null_rate():
df = pd.read_parquet("data/features_sample.parquet") # sample contrdolé

assert REQUIRED_COLS.issubset(df.columns)

null_rate_age = df["age"].isna().mean()
assert null_rate_age <= 0.01, f"null_rate_age={null_rate_age:.3f}"

def test_ranges():
df = pd.read_parquet("data/features_sample.parquet")
assert (df["age"].dropna() >= 0).all()
assert (df["age"].dropna() <= 120).all()

25

Model tests offline : ce quon garantit

e Quality gate
O métrique = minimum (floor)
e Non-régression
O nouveau modele = production + marge (stabilité)
e Compatibility gate
O méme signature / mémes features requises
O output stable (proba/logit, nom de champs)
e Rappel
O ces tests sont des garde-fous, pas une preuve d'optimalité

26

Model test : qualité minimale + non-régression + compatibilité

e Cible : empécher un modele “pire” ou incompatible de passer en prod
e Sans détour statistique : seuils + marge

tests/model/test_model_gates.py

def test_quality_gate(metrics_new):
fixture: dict {"auc": ..., "logloss": ...}
assert metrics_new["auc"] >= 0.70

def test_non_regression(metrics_new, metrics_prod):
margin = 0.01

assert metrics_new["auc"] >= metrics_prod["auc"] + margin

def test_signature_compatibility(signature_new, signature_prod):

signature = {"features”: [...], "output": "..."}
assert signature_new["features"] == signature_prod["features"]
assert signature_new["output"] == signature_prod["output"]

27

Integration test : systeme complet

° Cible : vérifier que la stack démarre et répond (réseau, config, dépendances)
° Principe : ping /health puis /predict

tests/integration/test_stack_smoke.py
import time
import requests

BASE_URL = "http://localhost:8000"

def wait_until_ready(timeout_s=60):
t0 = time.time()
while time.time() - t0 < timeout_s:
try:
r = requests.get(f"{BASE_URL}/health", timeout=1)
if r.status_code == 200:
return True
except requests.RequestException:
pass
time.sleep(1)
return False

def test_stack_predict_smoke():
assert wait_until_ready(), "API not ready"

payload = {"user_id": "u_123", "as_of": "2025-01-01"}
r = requests.post(f"{BASE_URL}/predict", json=payload, timeout=3)

assert r.status_code == 200
assert "proba" in r.json()

28

GitHub Actions : pipeline CI
exécutable

29

GitHub Actions : concepts minimum

e Déclencheurs (events)
O push, pull_request
e Workflow = fichier YAML dans .github/workflows/
e Job = suite d'étapes sur un runner (VM)
e Step = commande (checkout, install, tests...)
e Résultat
O statut PASS/FAIL
O logs consultables

o artefacts possibles (logs, rapports)

30

Lire un run Cl : quoi regarder, dans quel ordre

1. Statut global : quel job échoue ?
2. Logsdujob
O étape qui échoue (souvent visible immédiatement)
O message d’erreur + stack trace
3. Indices fréquents
O dépendances manquantes
O variables d’environnement
O service non prét (healthcheck)
O timeout réseau
4. Artefacts (si upload en échec)
O docker compose logs

O rapports de tests (pytest)

Architecture Cl du projet

e Runner GitHub exécute :

o docker build (images)

O docker compose up (stack)

O pytest (tests)
e Tout est local au runner

O pas de credentials externes

O reproductible : méme workflow pour tous
e Pré-requis pour stabilité

O healthchecks (services préts)

O timeouts maitrisés

O logs exploitables

32

Workflow CI : structure recommandée

o Etapes typiques
O checkout repo
setup Python
install deps
(option) lint
unit + contract tests
démarrage compose + integration tests
data checks “light”

O O O O O O

O upload logs en cas d'échec
e Philosophie

o fail fast

O tests rapides d'abord

O intégration ensuite (plus colteux)

Tests d'intégration en CI : “FastAPI smoke test”

e Objectif
o vérifier que la stack démarre et que I'’API répond
e Pattern

O compose up -d

O attendre /health (ou healthcheck)

O appeler /predict

o vérifier contrat (HTTP 200, champs attendus)
e Bonnes pratiques ClI

O pas de “sleep(30)” fixe si possible

O timeouts explicites

O logs compose en artefacts si fail

Limites assumées de la CI (et pourquoi c'est OK)

e Cl # pipeline de training complet

O entrainement lourd : lent, coliteux

O Cl doit rester rapide et fiable
e Ce que Cl garantit

O qualité du code + intégration systeme

O contrat API stable

O invariants data “anti-breaking change”
e Ce quitourne ailleurs

O entrainement + évaluation + comparaison + promotion (orchestrateur)
e Messageclé

O Cl = garde-fou a chaque changement

O CT/promotion = amélioration continue pilotée par données/monitoring

35

Livraison continue des modeles :
promotion, gates, rollback

36

Model Registry : versionner un modeéle “servable” (Rappel)

e Role du registry

O centraliser artefacts (modeéle, preprocess, signature)

O versioning + tracabilité

O point d'intégration avec le serving (quel modeéle servir ?)
e Notions clés

O Run (expérience) : produit une version de modéle

O métadonnées : params, métriques, dataset tag, code version (commit)
e Production-ready (rappel)

O modele = artefact + contrat + observabilité

37

Stratégies de promotion

Manuelle

O un humain choisit la version a promouvoir
O contrdle fort, mais lent et peu scalable
e Semi-automatique
O training + évaluation auto
O promotion avec approval (ex : reviewer)
O bon compromis pour systemes a risque
Automatique
O regles: métrique + marge + checks compatibilité

0 rapide et itératif, mais nécessite de bons garde-fous
Risk-based
o politique dépend de la criticité (finance/santé vs recommandation)

O plus de gates + validation humaine pour cas sensibles

38

Gating : exemples de critéres “offline”

e Quality gate
O métrique = seuil minimal (floor)
O non-régression vs baseline/Production (+ marge)
e Compatibility gate
O signature identique (features attendues, types, output)
O invariants API (contrat stable)
o Safety/robustness gate (light)
O sanity checks : distribution outputs, taux de positifs, NaN
O latence inference sur batch de test (grossier)
e Important
O gates = “stop the bleeding” (réduire risques), pas “optimiser”

39

Rollback : stratégie essentielle

e Pourquoi rollback
O meétriques offline trompeuses
0 incidents prod : latence, bugs, dérive inattendue
e Principe
O conserver I'historique des versions servies
O capacité a revenir a N-1 en minutes
e Déclencheurs typiques
O SLO (objectif de niveau de service) violé (latence, erreurs)
O alerting drift/anomalies
O incidents business (si métrique online existe)
e Traceability
O “quia promu quoi, quand, pourquoi”

40

Promotion registry # Déploiement trafic

e Promotion (registry)

O décision : “ce modele est candidat a étre servi”

O change un label / stage (Production)
e Déploiement trafic

O décision : “combien de requétes vont vers quel modele”

O nécessite routing (gateway/app/serving layer), monitoring fin
e Pourquoi séparer

O sécurité : on peut promouvoir sans exposer 100% trafic

O permet canary / A/B / shadow (section suivante)

41

Stratégies de déploiement modeéles

42

Panorama : stratégies de déploiement

e Objectifs
O réduire risque d'incident
O mesurer impact (qualité, latence, stabilité)
O controler I'exposition (progressif)
e 2 axes de choix
O besoin de feedback online (ici : faible / absent)
O niveau de risque acceptable
e Vocabulaire
o shadow (miroir), A/B (split), canary (progressif)

O interleaving (ranking), bandits (adaptatif)

43

Shadow deployment (mirroring)

Principe
O méme requéte envoyée a modele prod + modeéle candidat
O seule réponse prod est utilisée (candidat “observe”)

Ce qu'on mesure
0 latence, erreurs, timeouts

o divergence outputs (statistiques)
Avantages / limites
O tres s(r (pas d'impact client direct)

O ne mesure pas un KPI métier (si pas de feedback)
Ou ¢a vit techniqguement

O gateway / service mesh / application layer

O nécessite duplication controlée des requétes

Ancien modéle

I

Nouveau modeéle

Comparaison]

44

A/B testing (trafic split)

Principe
O une fraction du trafic va vers A, l'autre vers B
O comparaison sur métriques observées (perf, erreurs, éventuellement KPI)
Pré-requis (important)
0 instrumentation solide, assignation stable
O définition claire des métriques
o Dans ce cours (sans feedback online)
O intérét surtout conceptuel

O on peut néanmoins mesurer : latence, erreurs, stabilité output
Ou ca vit
O gateway/router ou application

Ancien modele

Nouveau modele

\/

\

45

Canary release (progressive rollout)

Principe

O exposition progressive: 1% — 5% — 25% — 100%

O conditions d’arrét : seuils (erreurs, latence, anomalies)
Avantages

O limite blast radius

O rollback rapide si dérive / bug
Pré-requis
© monitoring (latence, taux d'erreur, saturation)

Transition
progressive

o alerting + runbook rollback
Ou ca vit
O gateway/service mesh (idéal)

O ou application layer (routing interne)

Ancien modele

Nouveau modéle

46

Interleaving (pour ranking/reco) : concept

e Quand
O systemes de ranking (recherche, recos)
e Principe

O mélanger résultats de deux modéles dans une méme liste

o feedback utilisateur plus “efficace” qu'un A/B classique
e Pré-—requis

O signal utilisateur (clic, dwell time, etc.) A

o} instrumentation fine

Ancien modeéle

Nouveau modele

Attention de choisir
aléatoirement le
premier a afficher

47

Bandits (multi-armed) : concept et prérequis

e Principe
o choisir dynamiquement le modéle a servir (exploration/exploitation)
O maximise reward a court terme
e Pré-requis
O reward online rapide et fiable
O gestion de biais, monitoring, garde-fous
e Risques
O instabilité, sur-optimisation court terme

O complexité opérationnelle

Ancien modele o

Algo. Il faut une boucle de rétroaction

Nouveau modele :

 S—

48

Continuous learning et pourquoi c'est
un probleme d’infra

49

Niveaux de “continuous learning”

Niveau 0 : Manual

O entrainement ponctuel, déploiement manuel
Niveau 1 : Automatisé (schedule)

O retrain périodique (ex : chaque mois)
Niveau 2 : Automatisé + stateful

O conservation d’état : features historisées, lineage, backfills
Niveau 3 : Event-triggered

O retrain déclenché par événements (drift, data arrival, alert)
Positionnement du cours

O objectif : event-triggered (drift => retrain) + promotion controlée

50

Pourquoi “continuous learning” = probleme d’infrastructure

e Problemes “non-ML" mais critiques

O data freshness (arrivée des données, SLA)

O compute budget (colt, durée, contention)

o reproductibilité (versions libs, config, seeds, datasets)
e Problemes “systeme”

O orchestration fiable (retries, idempotence)

O observabilité (logs, métriques, traces)

O gouvernance (qui a promu quoi, audit)
e Messageclé

O automatiser sans garde-fous = usine a incidents

O MLOps = engineering de fiabilité + controle du risque

o1

Qui fait quoi : Cl vs Orchestrateur vs Monitoring

e CI (GitHub Actions)
O qualité du code + intégration (compose + APl smoke)
O bloque les régressions “software/system”
e Orchestrateur (Prefect)
O pipelines data/model : train — eval — compare — promote/rollback
O exécutions tracables, relangables
e Monitoring / Drift
O signaux de prod (latence, erreurs, drift)
O déclencheurs (event) + alerting
e Séparation des responsabilités
O Cl #retraining
O Monitoring # décision de merge

O Registry # routage trafic

52

Diagramme final : systéme complet intégré (boucle fermée)

Flux “code”

0 commit/PR — Cl tests — build — stack déployable
Flux “data/model”
O nouvelles données — validation — features — train — eval

O compare vs prod — promote (ou non) — rollback possible
Flux “prod”
O API sert un modele “Production-ready”

O monitoring + drift — événement — retrain
e Ceque TP6 apport
O boucle automatisée, testée, observable, récupérable (rollback)

53

Apercu du TP

54

TP6 : ce que vous allez construire

Obijectif : rendre le systeme production-like
Etapes

1.
2.
3.
4

5.

Ajouter logique train — eval — compare
Implémenter promotion (selon policy) + rollback possible
Connecter drift — retraining (event-triggered)

Mettre en place Cl GitHub Actions
[unit/contract/data light/integration smoke
Valider le cycle complet
m “nouvelle donnée” — drift — retrain — décision — modeéle servi

Ce que vous devez observer

O

O
O
O

run Cl (green/red) + logs

exécutions orchestrateur (logs + décisions)
registry (versions + stage)

API (contrat + latence de base)

55

A retenir

e CI/CD en ML = qualité systeme + qualité modele
O Cl:empéche régressions de code/intégration
O CT/promotion : empéche régressions modele
e “Production” = servable pour un client
O contrat API, latence, observabilité, tracabilité
e Déploiement modele = stratégie de risque
O shadow / A/B / canary / rollback
O promotion registry # routage trafic
e Continuous learning = engineering d’infrastructure
O data freshness, budget compute, reproductibilité, gouvernance

56

