
Monitoring, Observabilité et 
Détection du drift

Julien Romero

1



Failure Story (Failure First)
● Scénario réaliste

○ Le modèle fonctionnait le mois dernier

○ Aucun crash

○ Aucune exception

○ Aucune alerte

○ Les prédictions sont maintenant mauvaises
● Constat

○ Le système est vivant

○ Le monde a changé

○ Le modèle n’a pas été informé

2



Pourquoi c’est la partie la plus difficile du MLOps
● Échecs silencieux

○ Pas de stacktrace

○ Pas de bug visible

○ Dégradation progressive
● Feedback tardif

○ Labels disponibles avec retard

○ Impossible de valider immédiatement la qualité
● Problème système

○ Pas un problème d’algorithme

○ Pas un problème de code isolé

○ Interaction données × modèle × temps × infra

3



Rappels : La pipeline MLOps et où 
nous en sommes

4



ML System n’est pas uniquement le modèle
● Un système ML en production

○ Modèle ≠ cœur du système

○ Composantes indissociables :
■ Data
■ Code
■ Infrastructure
■ Temps

● Idée clé
○ Le temps est un paramètre caché

○ Ce qui était vrai hier peut être faux aujourd’hui

5



Pipeline MLOps complet

● Tout après le déploiement est souvent ignoré
● Pourtant, c’est là que les systèmes cassent

Ingesti
on

Validat
ion

Featur
es

Trainin
g

Registr
y

Servin
g

Monito
ring Drift Retrain

ing

6



Où nous en sommes dans le cours
● Déjà construit

○ API déployée

○ Feature Store opérationnel

○ Modèles entraînés et servis

○ Pipelines reproductibles
● Manque critique

○ Pas de visibilité

○ Pas de feedback

○ Pas de signal d’alerte

7



“Production” : définition concrète
● Production, ici, signifie

○ Des utilisateurs appellent l’API

○ Les données changent en continu

○ Les décisions sont automatisées

○ Les erreurs ont un coût réel
● Conséquence

○ Ne pas observer le système = accepter le risque

8



Observabilité : les concepts clefs

9



Monitoring vs Observability
● Monitoring

○ Questions prédéfinies

○ Seuils fixes

○ Réponses connues à l’avance

○ “Est-ce que X dépasse Y ?”
● Observabilité

○ Capacité à poser de nouvelles questions

○ Compréhension du système via ses signaux

○ Investigation a posteriori

○ “Pourquoi ça a changé ?”
● Idée clé

○ Monitoring est inclu dans l’observabilité

10



Observabilité dans les systèmes ML
● Pourquoi le monitoring logiciel classique ne suffit pas

○ Le code peut être correct

○ L’infrastructure peut être saine

○ L’API peut répondre normalement
● Mais

○ Les données changent

○ Les distributions évoluent

○ Le modèle se dégrade sans erreur explicite
● Nouveaux modes de panne

○ Data drift

○ Prediction drift

○ Concept drift (souvent invisible)

11



Les 3 piliers de l’observabilité
● Métriques

○ Valeurs numériques dans le temps

○ Agrégables, requêtables

○ Base de l’automatisation
● Logs

○ Événements discrets

○ Contexte, erreurs, décisions

○ Essentiels pour le debug
● Traces

○ Propagation d’une requête

○ Latence distribuée

○ Hors périmètre ici

12



Périmètre de ce cours
● Ce que nous allons utiliser

○ Métriques avec Prometheus

○ Dashboards avec Grafana

○ Drift avec Evidently
● Logs

○ API FastAPI (erreurs, requêtes)

○ Prefect (exécution des flows)

○ Utilisation ciblée, pas de log engineering avancé
● Ce que nous ne couvrons pas

○ Tracing distribué

○ APM complet

13



Ce qui peut mal se passer

14



Modèle de monitoring en couches
● Système ML = empilement de couches

1. Infrastructure

2. API / Application

3. Données

4. Modèle
● Principe

a. Une couche peut être saine

b. Une autre peut être défaillante

c. Les symptômes ne sont pas toujours visibles au même niveau

15



Défaillances d’infrastructure
● Exemples

○ CPU saturé

○ Mémoire insuffisante

○ I/O disque lent

○ Problèmes réseau
● Caractéristiques

○ Non spécifiques au ML

○ Mais impactent directement l’inférence

○ Souvent déjà monitorés par l’infra
● Risque

○ Latence artificielle

○ Timeouts

○ Effets en cascade

16



Défaillances au niveau de l’API
● Signaux typiques

○ Pics de latence

○ Augmentation du taux d’erreur (4xx / 5xx)

○ Variation brutale du trafic
● Causes possibles

○ Charge inattendue

○ Mauvaise gestion des cas limites

○ Dépendances externes lentes
● Point clé

○ Une API “up” peut être fonctionnellement dégradée

17



Défaillances au niveau des données
● Exemples courants

○ Valeurs manquantes

○ Changements de distribution

○ Colonnes nouvelles ou supprimées

○ Types incohérents
● Problème majeur

○ Peu ou pas d’erreurs visibles

○ Effets silencieux sur le modèle
● Impact

○ Features incorrectes

○ Décalage training / inference

18



Défaillances au niveau du modèle
● Formes de dérive

○ Prediction drift
■ Les sorties changent dans le temps

○ Target drift
■ La distribution des labels évolue
■ Observée avec retard

○ Concept drift
■ Relation entre les entrées et les sorties change
■ Très difficile à détecter directement

19



Pourquoi monitorer la performance est difficile
● Contraintes structurelles

○ Labels disponibles tardivement

○ Ground truth bruitée ou incomplète

○ Pas de feedback instantané
● Conséquence

○ Impossible de s’appuyer uniquement sur l’accuracy

○ Besoin de signaux indirects

○ La dérive/drift devient un proxy de dégradation

20



Métriques et Prometheus

21



Pourquoi commencer par les métriques
● Avantages

○ Peu coûteuses

○ Collecte continue

○ Faciles à automatiser
● Rôle

○ Premier signal de dégradation

○ Base de toute observabilité

○ Déclencheur d’investigation

22



Modèle mental de Prometheus
● Prometheus est une application qui va nous permettre de suivre et gérer des métriques
● Principes clés

○ Pull-based
■ Prometheus vient chercher les métriques (et pas l’inverse)

○ Time series
■ Valeurs indexées par le temps

○ Targets stateless
■ L’application n’a pas de mémoire Prometheus

● Conséquence
○ Simplicité côté application

○ Robustesse du système

23



Architecture Prometheus
● Flux conceptuel

○ L’API expose un endpoint /metrics

○ Prometheus scrape périodiquement

○ Les données sont stockées dans une TSDB
■ (Time Serie Database)

● Caractéristiques
○ Historique conservé

○ Pas de push depuis l’application

○ Tolérant aux redémarrages

API

/health

/predict

/metrics

PrometheusTSDB

24



Types de métriques
● Counter

○ Compteur monotone

○ Ex : nombre de requêtes
● Gauge

○ Valeur instantanée

○ Ex : mémoire utilisée
● Histogram

○ Distribution de valeurs

○ Ex : latence des requêtes
● Summary

○ Similarité avec histogram

○ Moins utilisé

25



Métriques typiques d’une API ML
● Volume

○ Nombre de requêtes

○ Requêtes par seconde
● Latence

○ Temps de réponse

○ p50 / p95 / p99 (percentile)
● Erreurs

○ Codes 4xx / 5xx

○ Taux d’échec
● Idée clé

○ Pas encore de métriques “qualité modèle”

26



Labels Prometheus : puissance et danger
● Les labels dans Prometheus permettent caractériser la chose en train d’être mesurée

○ Ex: api_request_duration_seconds peut avoir une valeur par stage (extract, transform, load)
● Utilité

○ Ajouter des dimensions
■ path
■ method
■ status

● Risque majeur
○ Explosion de cardinalité

○ Coût mémoire

○ Requêtes lentes
● Règle pratique

○ Labels finis

○ Pas de valeurs dynamiques (user_id, timestamps)

27



Lire du PromQL
● PromQL = langage de requête de Prometheus
● Fonctions essentielles

○ rate(counter[window])
■ Dérivée temporelle

○ histogram_quantile(q, ...)
■ Estimation des percentiles

● Objectif pédagogique
○ Comprendre ce que montre un dashboard

○ Adapter légèrement une requête existante

○ Pas d’écriture complexe

28



Instrumentaliser une API ML

29



Où vivent les métriques
● Localisation

○ Directement dans le service d’inférence

○ Au plus proche de la requête réelle
● Pourquoi ici

○ Vision fidèle de la production

○ Pas de proxy

○ Pas d’approximation
● Principe

○ Ce qui n’est pas mesuré ici n’existe pas

30



Instrumentation FastAPI : concept
● Mécanisme

○ Middleware interceptant les requêtes

○ Instrumentation transversale

○ Aucune logique métier modifiée
● Mesures automatiques

○ Compteurs de requêtes

○ Latence par requête

○ Codes de réponse
● Avantage

○ Faible effort

○ Faible risque

○ Couverture globale

31



Cycle de vie d’une requête

Idée clé
● La mesure est orthogonale au code ML
● Le modèle reste un composant pur

Requête 
entrante

Middlewar
e 

Prometheu
s

Endpoint 
FastAPI Modèle Réponse

Mise à jour 
des 

métriques

32



Ce que nous ne mesurons pas encore
● Absent volontairement

○ Qualité du modèle

○ Performance métier

○ Valeur business
● Pourquoi

○ Labels retardés

○ Données partielles

○ Nécessite une autre couche de monitoring
● Transition

○ Besoin de signaux indirects => drift

33



Grafana

34



Pourquoi les dashboards comptent
● Un dashboard est une interface permettant de visualiser un ensemble de données facilement
● Raison humaine

○ Les humains raisonnent visuellement

○ Les tendances sont plus parlantes que des valeurs brutes
● En production

○ Un point isolé ne dit rien

○ Une évolution dans le temps révèle un problème
● Objectif

○ Comprendre l’état du système en quelques secondes

35



Modèle mental de Grafana
● Grafana est une suite logicielle pour créer des Dashboards
● Briques fondamentales

○ Data source
■ Origine des métriques (Prometheus)

○ Panel
■ Une visualisation = une question

○ Dashboard
■ Ensemble cohérent de panels

● Principe
○ Grafana ne calcule rien

○ Il visualise et agrège ce qui existe déjà

36



Point de vue opérateur
● Questions typiques

○ “Le système est-il sain ?”

○ “Quelque chose a-t-il changé récemment ?”
● Ce qu’on ne demande pas ici

○ “Pourquoi exactement ?”

○ “Quel feature est responsable ?”
● Rôle du dashboard

○ Détection rapide

○ Pas diagnostic complet

37



Dashboards essentiels
● Vue trafic

○ Nombre de requêtes

○ Requêtes par seconde

○ Variations anormales
● Vue latence

○ Temps de réponse

○ Percentiles
● Vue erreurs

○ Taux d’erreurs

○ Codes de statut

38



Lire un histogramme de latence
● Percentiles

○ p50 : cas “normal”

○ p95 : utilisateurs pénalisés

○ p99 : pires cas
● Idée clé

○ La moyenne cache les problèmes

○ La latence de queue (tail latency) dégrade l’expérience
● Signal faible mais critique

○ p95/p99 augmentent avant les erreurs visibles

39



Des métriques au drift

40



Les métriques sont nécessaires mais insuffisantes
● Situation fréquente

○ L’API répond

○ La latence est stable

○ Le taux d’erreur est faible
● Mais

○ Les prédictions sont mauvaises

○ Les décisions métier sont dégradées
● Conclusion

○ Un système peut être techniquement sain

○ Et fonctionnellement faux

41



Qu’est-ce que le drift ?
● Idée centrale

○ Le monde change

○ Les données évoluent

○ Les hypothèses du modèle deviennent invalides
● Conséquence

○ Le modèle ne généralise plus

○ Les performances chutent progressivement
● Caractère inévitable

○ Le drift n’est pas une exception

○ C’est une propriété des systèmes réels

42



Types de drift
● Covariate drift

○ Changement de distribution des features d’entrée

○ Ex : baisse du nombre de sessions après un changement produit
● Prior probability drift

○ Changement de la fréquence des labels

○ Ex : plus de churn après une hausse de prix
● Concept drift

○ Changement de la relation entre les entrées et les sorties

○ Ex : les mêmes signaux ne prédisent plus le churn

43



Clarification importante
● Point clé

○ Le concept drift n’est pas directement observable
● Pourquoi

○ Il nécessite des labels

○ Les labels arrivent tard

○ La causalité est difficile à établir
● En pratique

○ On observe des signaux indirects

○ Drift des features

○ Drift des prédictions

○ Drift du target (avec retard)

44



Détection du drift avec Evidently

45



Pourquoi Evidently
● Besoin

○ Comparer des jeux de données dans le temps

○ Quantifier les changements

○ Avoir des signaux exploitables
● Evidently fournit

○ Comparaison reference vs current

○ Tests statistiques automatiques

○ Métriques orientées ML, pas génériques
● Positionnement

○ Outil de diagnostic

○ Pas un outil de prédiction

46



Données de référence vs données courantes
● Cadre temporel

○ Données historiques stabilisées

○ Données récentes à analyser
● Exemple

○ Mois N : référence

○ Mois N+1 : courant
● Principe clé

○ Toujours comparer des périodes cohérentes

○ Même schéma, même définition de features

47



Ce que détecte réellement Evidently
● Observables directs

○ Changement de distribution des features

○ Anomalies statistiques
● Si les labels sont disponibles

○ Changement de distribution du target

○ Proxy de dégradation de performance
● Non détecté directement

○ Concept drift réel

○ Causalité

48



Métriques de drift
● Niveau feature

○ Drift par colonne

○ Tests adaptés au type (numérique / catégoriel)
● Niveau dataset

○ Drift share
■ Proportion de features en drift

● Utilisation
○ Résumer un état complexe en un signal exploitable

49



Les seuils sont des heuristiques
● Règle arbitraire

○ 20% de features en drift => alerte / action
● Réalité industrielle

○ Dépend du domaine

○ Dépend du coût d’erreur

○ Dépend de la stabilité attendue
● Message clé

○ Les seuils ne sont pas universels

○ Ce sont des décisions système, pas statistiques

50



Le drift comme signal de décision

51



Drift n’entraîne pas forcément un réentraînement automatique
● Clarification essentielle

○ Le drift n’est pas une action

○ Le drift est un signal
● Risque naïf

○ Retrain à chaque fluctuation

○ Sur-automatisation

○ Instabilité du système
● Principe MLOps

○ Observer d’abord

○ Décider ensuite

52



Logique de décision basée sur le drift
● Cas nominal

○ Drift faible

○ Variations attendues

○ => Aucune action
● Cas suspect

○ Drift significatif

○ Signal statistique fort

○ => Investigation ou réentraînement
● Idée clé

○ Le drift déclenche une décision, pas une pipeline aveugle

53



Point de décision formel
● Position dans le système

○ Entre monitoring et training

○ Barrière de contrôle
● Rôle

○ Éviter les réentraînements inutiles

○ Centraliser la logique métier

○ Rendre le système gouvernable
● Concept

○ Le réentraînement est une conséquence contrôlée

○ Pas un effet de bord implicite

54



Automatisation avec Prefect

55



Pourquoi la planification est indispensable
● Réalité opérationnelle

○ Le drift apparaît progressivement

○ Pas forcément visible en temps réel

○ Aucun événement brutal
● Limite humaine

○ Les dashboards ne sont pas consultés en continu

○ L’attention décroît avec le temps
● Conclusion

○ L’observation doit être automatisée

○ La vigilance humaine ne suffit pas

56



Prefect comme plan de contrôle
● Rôle de Prefect

○ Orchestration des pipelines

○ Planification temporelle

○ Exécution fiable et traçable
● Dans ce contexte

○ Lancer régulièrement des analyses de drift

○ Centraliser les décisions

○ Observer l’exécution (logs, états)
● Idée clé

○ Prefect devient le chef d’orchestre du système ML

57



Pipeline conceptuel de détection de drift
● Étapes

1. Charger les snapshots temporels

2. Calculer les métriques de drift

3. Journaliser les résultats

4. Appliquer la logique de décision
● Caractéristiques

○ Déterministe

○ Rejouable

○ Observable

58



Mettre tout ensemble

59



Boucle complète d’observabilité
● Chaîne opérationnelle

○ Métriques API en continu

○ Visualisation via dashboards

○ Détection de drift périodique

○ Prise de décision formelle
● Lecture du système

○ Le modèle n’est plus aveugle

○ Le système devient interprétable dans le temps

60



Ce que nous ne résolvons pas encore
● Limites assumées

○ Performance réelle du modèle

○ Mesure directe de la qualité prédictive

○ Compréhension causale des changements
● Pourquoi

○ Labels retardés

○ Environnements complexes

○ Décisions métier non observables directement
● Transition

○ Ces limites motivent la suite du cours

61



Messages clés à retenir
● Production ML

○ Se dégrade sans bruit

○ Ne casse pas proprement

○ Évolue avec le monde réel
● Observabilité

○ Non optionnelle

○ Condition de survie du système
● Drift

○ N’est pas un bug

○ N’est pas une erreur

○ Est un signal à interpréter

62



Lab 5

63



Ce que vous allez construire dans le TP

● Composants concrets
○ API instrumentée avec métriques Prometheus

○ Dashboards Grafana en temps réel

○ Pipeline de détection de drift automatisé
● Objectif

○ Rendre le système observable

○ Passer de l’intuition aux signaux mesurés

64



Ce que cela permet à long terme

● Automatisation sûre
○ Déclenchements contrôlés

○ Décisions traçables
● Réentraînement maîtrisé

○ Basé sur des signaux observés

○ Pas sur des impressions
● Préparation de la suite

○ CI/CD des modèles

○ Promotion automatique

○ Gouvernance (Lecture 6)

65



En route vers le TP

66


