&-v'\owuc"”;o INSTITUT TELECOM
;.lo,: POLYTECHNIQUE
‘“4’/ P "‘i

* DE PARIS =TT

- —
- -~ -

Entrainement d'un modeéle,
Tracking avec MLflox,
Model Registry et
déploiement avec une API

Julien Romero

\h__—’

Introduction et contexte

Objectifs du cours

e Comprendre le role du training dans un systeme ML en production
e Introduire MLflow comme colonne vertébrale du cycle modele
e Relier:
O Les features a I'entrainement
O L'entrainement au registry
O Leregistry a 'API
e Comprendre la logique staging / production
e Poser les bases du serving industriel (API + features en ligne)

Pourquoi ca casse ici, en pratique

e Zone de fragilité majeure des systemes ML

O Beaucoup de modeles fonctionnent offline

O Peu fonctionnent correctement en production
e Raisons fréquentes d’échec

O Training différent du serving (skew)

O Modele non tragable :
[impossible de savoir ce qui est en production
Evaluations non comparables (différents jeux de tests, différentes métriques)

Entrainement non reproductible

Déploiement manuel, non contrélé

o O O O

Absence de rollback
e Le probleme n'est pas l'algorithme : le probleme est le systeme autour du modele

Rappel : pipeline MLOps complet

Validation Features Training Registry Deployment Serving

e Ingestion & validation : vues précédentes
e Feature Store : cohérence training / inference

e Training:

O point de jonction data/modéle
e Registry:

O mémoire centrale des modéles
e Serving:

O exposition controlée en production
e Focus du cours : Du dataset de features au modele en production

Ou on en est, ou on va

e Ce que vous avez déja construit
O Pipelines de données déterministes
O Snapshots temporels
O Feature Store (offline / online)
O Alignement training / inference
e Cecours
O Entrainer un modele comme un composant systeme
O Suivre et comparer les expériences
O Gérer des versions de modeles
O Servir un modele via une API
e Ce qui arrive ensuite (Cours 5 et 6)
O Monitoring en production
O Drift (données & performance)
O Réentrainement automatisé
O Promotion automatique des modeles

“Production-ready training”, ¢a veut dire quoi ?

Ce que ce n'est pas
o model.fit(X, y)
O Un notebook isolé
O Un fichier .pkl sur disque
O Une métrique affichée une fois
Ce que c'est
Pipeline déterministe

O Données versionnées implicitement
o Evaluations comparables dans le temps
O Modele:

m tragable
[versionné
u déployable automatiquement

O Séparation claire :

[] entrainement
n validation
| serving

Entrainer un modele = produire un artefact industriel

Des features aux modeles :
L’entrainement comme une
composante du systeme

Training # Notebook

Idée clé

O En production, I'entrainement n'est pas :

[un notebook exploratoire
[une cellule exécutée une fois

O C'est un composant systéeme, au méme titre que :
[ingestion

[API
[monitoring
Conséquences

O Code exécutable sans interaction humaine
O Entrées et sorties clairement définies
O Exécution répétable
O Observable (logs, métriques)
Le training est une pipeline, pas une expérience ponctuelle

Entrées d’une pipeline d'entrainement

e Inputs explicites

@ Features
n issues du Feature Store
n offline, temporellement correctes
O Labels
m définis pour une période donnée
m alignés avec les features
O Configuration

[hyperparamétres
[métriques
= seuils

[logique de training
[preprocessing éventuel
[Logique d'évaluation
e Principe MLOps : Tout ce qui influence le modele doit €tre une entrée tragable

10

Pipelines déterministes : définition

o Définition
O Méme inputs donne méme outputs
o Alidentique, aujourd’hui ou dans 6 mois
e Outputs concernés
O Meétriques
O Modele entrainé
O Artefacts (courbes, coefficients, signatures)
e Pourquoi c’est critique
O Comparer des modeles dans le temps
O Debugger une régression
O Reproduire un modele en production
O Autoriser 'automatisation (CI/CD)
e Sans déterminisme, pas de gouvernance possible

11

Ce qui casse le déterminisme

e Sources classiques

O Aléatoire

m seeds non fixées
m split aléatoire non controlé

O Temps
= now(), today()
[dépendance a I'horloge systeme

O Data leakage
m features calculées aprés le label
[Corrections a posteriori

O Code drift
[modification silencieuse du code
[Dépendances non figées

e Symptome typique : “Je ne retrouve pas les résultats d'hier”

12

Rappel crucial : alignement temporel

e Principe : Le modele doit apprendre avec uniquement l'information disponible au moment de la prédiction réelle
e Alignement requis

O Label adatet

O Features calculées avantou a t

O Pasdacces au futur
e Pourquoi c'est vital

o Eviter des performances artificiellement élevées

O Garantir une évaluation réaliste

O Assurer cohérence training / inference

13

Stratégies de split train / validation

o Split par entité (ex: user_id)
O Séparation par individus

O Utile si :

m données indépendantes
[pas de dépendance temporelle forte

o Split temporel
O Train sur le passé
O Validation sur le futur

O Recommandé pour:

[churn
= finance
m séries temporelles

e Regle pratique
O Siletemps a du sens, split temporel

O Sinon, split par entité

14

Pipeline d'entrainement minimal

o Etapes haut niveau

1.

No gk wd

8.

Charger labels pour une période donnée

Construire un dataframe ids + timestamps + labels
Récupérer features historiques dans le feature store
Vérifier le dataset (taille, valeurs)

Split train / validation

Entrainer un modele

Evaluer avec métriques choisies

Produire artefacts et métriques

o Pas d'optimisation prématurée : Pipeline clair > modele complexe

15

Checkpoint #1

e A ce stade, vous devez pouvoir :

O

O

O

O

O

Expliquer pourquoi le training est une pipeline
Identifier toutes les entrées qui influencent un modele
Définir ce qu'est un pipeline déterministe

Lister les causes principales de non-reproductibilité

Justifier une stratégie de split adaptée au probleme

e Siune étape n'est pas claire ici, elle cassera tout le systeme ensuite

16

Pourquoi le tracking d'expériences
est obligatoire en production ?

17

Question centrale en production

e Motivation
O “Quel modele est en production... et pourquoi celui-la ?”
O “Quelle version du code ? Quelles features ? Quel dataset ?”
O “Quelle performance attendue ? Sur quelles métriques ?”
O “Sica casse : on rollback vers quoi ?”
e Sans tracking:
O impossible de répondre factuellement
O débats “a l'intuition”
O pertes de temps énormes en incident
e Letracking = mémoire et preuve du systeme ML

18

Ce qu'il faut traquer (minimum viable)

o Parameétres (inputs du training)
O hyperparametres
O parametres de pipeline (fenétres temporelles, split)
O seeds
O version de la config
e Métriques (outputs mesurables)
O AUC/ logloss / F1 / calibration...
O meétriques train vs validation
O éventuellement par segment (plan_type, pays...)
o Artefacts
O modele sérialisé
O courbe ROC, matrice de confusion
o feature importance / coefficients
O échantillon de prédictions
e Contexte de code
O version du code (commit hash)
O environnement (versions libs)

19

Pourquoi “des logs + des fichiers” ne suffisent pas

Approche naive
O results_run_12.json
O model_final_v3.pkl

O logs console + screenshots
Problemes

O pas de structure standard
impossible de comparer automatiquement des runs
perte d'info (qui a lancé, quand, avec quoi)

impossible de faire des recherches

o O O O

pas de lien natif :

[run — modele — métriques — artefacts — code
Ce n'est pas “audit-ready”
Ce n'est pas “Cl/CD-ready”

Experiment tracking vs Model registry

o Experiment tracking
O historise des runs
O but: exploration contrélée, comparaison, reproductibilité
O granularité : un entrainement = un run
O objets : params, metrics, artifacts, tags
e Model registry
O gere des versions de modeles
O but: gouvernance + déploiement
O granularité : un modele = plusieurs versions
O objets: version, stage, approbation, rollback

e Tracking = “comment ce modele a été produit”
e Registry = “quel modele doit étre utilisé en production”

Position de MLflow dans la stack MLOps

Validation Features Training Registry

e MLflow = interface standardisée pour :
O journaliser runs / métriques / artefacts
O packager un modéle dans un format de serving
i) Tracking
O centraliser versions et stages
e Intégration naturelle avec :
O pipelines d’entrainement (scripts, orchestrateurs)
© CI/CD (promotion conditionnelle)

e serving (charger “Production”)

Deployment

Serving

22

Ce que MLflow ne résout pas

MLflow n'est pas :
O un Feature Store (ne calcule pas les features)
O un orchestrateur (ne planifie pas les jobs)
O un outil de validation data (pas Great Expectations)
O un systéme de monitoring de production (drift, latence, logs API)
O une solution de data versioning compléte
En bref
O MLflow geére le cycle du modele
O paslecycle complet des données / infra
Il faut une stack, pas un outil unique

23

Checkpoint #2

Vous devez étre capables de :

expliquer pourquoi la question “quel modele et pourquoi” est critique
lister ce qu'il faut tracer (paramétres / métriques / artéfacts / contexte)
expliquer pourquoi fichiers + logs = insuffisant
distinguer clairement :

O tracking (runs)

O registry (versions + stages)
situer MLflow dans une architecture MLOps compléte
identifier les limites de MLflow

24

Concepts clés de MLflow

25

MLflow : vue d’ensemble

e MLflow repose sur trois piliers

1. Experiment Tracking

= runs
[métriques
[parametres
n artefacts

2. Model Packaging

n format standardisé
[interface de prédiction
] environnement associé

3. Model Registry

[versions
m stages (Staging / Production)
= gouvernance

e Objectif global : structurer le cycle de vie du modele

26

Runs et Experiments

Experiment
O regroupement logique de runs
o ex:“churn_model_v1”
O permet comparaison et itération contrdlée

O une exécution compléte d’'un training pipeline

O correspond a:

n un dataset
[une config
n une version de code

Propriétés clés d'un run
O horodaté
O immuable apres exécution
O comparable aux autres runs
Un run = une tentative mesurable et tragable

27

Parameétres, métriques, artefacts

Parametres
O entrées du training

O ex:hyperparameétres, fenétres temporelles, seeds
O valeurs scalaires ou catégorielles
Métriques
O sorties mesurés
O ex:AUC, loss, F1
O souvent suivies dans le temps
Artefacts
o fichiers associés au run

O ex:

modele

plots

feature importance
samples de prédictions

Séparation claire : inputs / outputs / preuves

28

Meétriques dans le temps

Pourquoi I'historique est essentiel
O comparer des modeles entre eux

O détecter des régressions

O suivre la progression d'un pipeline
Comparaisons typiques

O modele A vs modele B

O nouvelle feature vs baseline

O nouvelle période de données
Signal faible mais critique

O baisse progressive de métrique

O variance inhabituelle
O incohérence train / validation
Tracking = observabilité du training

29

Pourquoi le modeéle seul ne suffit pas

e Anti-pattern
O “Voici le modeéle, il a un AUC de 0.82"
e Cequimanque
O sur quelles données ?
O avec quelles features ?
O avec quels paramétres ?
O comparé a quoi ?
O stable dans le temps ?
e Bon principe
O Un modéele sans contexte est inexploitable
O Les artefacts racontent I'histoire du modele
e Le modele est une conséquence, pas l'objet principal

30

Format de modéle MLflow (pyfunc)

Idée clé

O Un modéele est exposé via une interface standard

O Indépendante de:

m lalibrairie (sklearn, xgboost, torch...)
[le langage interne

Interface conceptuelle
o predict(input) => output
Avantages
O méme logique de chargement en training et en API

O découplage modele/serving
O interchangeabilité des implémentations
Le modele devient un composant logiciel

31

Signature de modele : pourquoi c'est crucial

Signature

O schéma des entrées

O schéma des sorties
e Rodles

O validation automatique des inputs

O détection d’'incohérences au serving

O documentation implicite du contrat modele
Sans signature

O erreurs silencieuses

O mismatch colonnes / types
O bugs difficiles a diagnostiquer
Une signature = un contrat d’API du modele

32

Capture de I'environnement

Probleme classique
O méme modele, comportement différent

O dépendances non alignées
O versions de librairies divergentes
e MLflow capture
O dépendances Python
O versions des librairies ML
o parfois OS-level (partiel)
Objectif
O pouvoir relancer une prédiction :
m aujourd’hui

n ailleurs
n Plus tard

Reproductibilité n'est pas uniguement données + code

33

Versionnement de modele vs tracking

Tracking
O compare des runs
O réponda:
m “gu'est-ce qui a marché ?”
m ‘comment on en est arrivé la ?”
Versionnement (Registry)

o gere des modeles “officiels”

O réponda:
= “quel modéle est autorisé ?”
m “lequel est en production ?”
Relation

O plusieurs runs peuvent donner un modele versionné
O tous les runs ne deviennent pas des versions
Exploration n'est pas la production

34

Evaluation de modéle : ce qui compte
en production

35

Checkpoint #3

e MLflow vous garantit :

O tragabilité des runs

O comparabilité des expériences

O packaging standard des modeles

O gestion des versions et des stages
e MLflow ne garantit pas :

O qualité des données

O absence de data leakage

O pertinence des métriques

O monitoring en production

O décisions business correctes

e MLflow est un outil structurant, pas une solution magique

36

L'évaluation n'est pas “juste I'accuracy”

e Probleme classique
O Accuracy souvent utilisée par défaut
O Facile a expliquer
O Souvent trompeuse en production
e Pourquoi
O Déséquilibre des classes
o Décisions asymétriques (faux positifs et faux négatifs n‘ont pas la méme valeur)
O L'accuracy ne reflete pas l'usage réel du score
e Une bonne métrique dépend du contexte d'utilisation

37

AUC : métrique centrale pour le churn

Pourquoi 'AUC (Area Under the Curve, voir cours ML/DL) est pertinente
O Indépendante du seuil

O Mesure la capacité de ranking
O Stable face aux déséquilibres modérés
Interprétation
O Probabilité qu’'un utilisateur churn soit mieux scoré qu’un utilisateur non churn

O Comparaison robuste entre modeles
Usage typique
O Classer les utilisateurs du plus a risque au moins a risque

O Définir des actions sur le top-k%
e AUC = bonne métrique de sélection de modele

38

Pieges de I'accuracy (cas déséquilibré)

e Exemple churn
O 95% des utilisateurs ne churnent pas
O Modele trivial : “jamais churn”
O Accuracy = 95%
O Valeur business =0
e Ce que l'accuracy cache
O incapacité a détecter les cas rares
O absence de signal utile pour I'action
e Accuracy élevée n'implique pas modele utile

39

Métriques complémentaires

Precision
O Parmi les alertes, combien sont correctes

O Co0t des faux positifs
e Recall
O Parmi les churns réels, combien sont détectés
O Co0t des faux négatifs
e F1
O compromis precision / recall
e Calibration de modele
o fiabilité des probabilités : Vérifier que quand un modele prédit qu’'un événement a X% de chance de se passer, il
se passe vraiment X% du temps
= Ex:Sion prédit qu'une équipe A bat une équipe B 80% du temps, aprés 100 matches, on devrait avoir 80
victoires pour A
m Ex:Dans un systéme de recommandation, si un utilisateur regarde 80% de comédies romantiques et 20% de
thrillers, le systeme de recommandation devrait suivre ces valeurs
e Plusieurs métriques = vision compléete

40

Meétriques offline vs impact business

e Offline
o AUC
o F1
O logloss

O calibration

Business (non mesurable a I'entrainement en général)
O taux de rétention
O coutdes actions
O ROl des campagnes

O satisfaction utilisateur
Lien clé

O meétriques ML entrainent des décisions
O décisions entrainent colts / gains
Une métrique n'a de valeur que reliée a une action

41

Spoiler prochain cours : dérive des métriques

e Constat
O Un modéele ne reste jamais optimal
O Les données changent
O Les comportements évoluent
e Symptbmes
O baisse progressive de 'AUC
O dégradation de calibration
O instabilité par segment
e Conséquence
O nécessité de surveiller les métriques dans le temps

O préparation au monitoring et au retraining

42

Checkpoint #4

e Vous devez étre capables de :

expliquer pourquoi I'accuracy est souvent insuffisante
justifier 'usage de I'’AUC pour le churn

identifier les limites des métriques seuil-dépendantes

relier métriques ML et décisions business

O O O O O

anticiper pourquoi les métriques évoluent dans le temps
e Choisir une métrique = choisir une stratégie de décision

43

Model Registry et
Lifecycle Management

44

Pourquoi un model registry existe

e Leregistry permet de stocker des modeles de facon organisée
Probleme sans registry
O modeéles dispersés (fichiers, dossiers, buckets)

O aucune source de vérité
O décisions de déploiement implicites
o rollback artisanal
e Role du registry
O point central des modeles utilisables
O historique des versions
O contrble de ce qui peut aller en production
e Leregistry est a la production ML ce que Git est au code

45

Un modéle n'est pas un fichier

Vision naive
O modele = .pkl, .joblib, .bin
Vision production

O modele = artefact versionné comprenant :

m binaire du modele

m signature (schéma entrée/sortie)
[environnement

[métriques associées

[lien vers le run d’origine

Conséquence
O onne “copie” pas un modele
O onréférence une version
Le fichier est un détail d'implémentation

46

Versions et stages de modele

Version

O incrément automatique
O liée a unrun précis
O immuable
Stage (état logique)
O None : expérimental

O Staging : candidat a la production
O Production : modele officiel
© (Archived : obsoléte)
Principe clé
O une seule version en Production

O plusieurs versions en Staging possibles
Le stage exprime une intention opérationnelle

47

Logique de promotion

Questions fondamentales
O Qui peut promouvoir un modele ?
O Quand un modele devient-il “meilleur” ?
O Surquels critéres ?
Criteres typiques
O métriques > modele courant
O validation humaine
O tests de non-régression
O conformité métier / légale
Point important
O promotion n'est pas I'entrainement
O décision explicite, tragable
Gouvernance minimale mais explicite

48

Le rollback : operation critique

Le rollback est une opération permettant de revenir a une version précédente
Pourquoi le rollback est indispensable
O bugs en production

O données inattendues
O dérive rapide
Bon rollback

O instantané

O déterministe

O sans réentrainement
Registry bien congu

O permet de revenira:

] version N-1
n version stable connue

O sans modifier le code
Si le rollback est difficile, le systeme est fragile

49

Lineage : de la donnée au déploiement

Données Training Version du

brutes Snapshot Features uns

e Lineage = description de toutes les composantes donnant lieu a un résultat final
e Chaine de tracabilité
e Pourquoi c'est critique
O auditabilité
O explication des décisions
O analyse post-mortem
o conformité (finance, santé, RGPD...)
e Sans lineage, pas de confiance

APl /
Service

50

Human-in-the-loop aujourd’hui

Etat réaliste des systémes ML
O décisions souvent manuelles
O validation humaine avant production
O promotion via Ul / revue
Evolution naturelle
O regles automatiques
O promotion conditionnelle
O CI/CD des modeles
Message clé
O commencer simple
O structurer des maintenant
L'automatisation vient apres la tracabilité

o1

Checkpoint #5

e Vous devez étre capables de:

O O O O O

O

expliquer le réle d’'un model registry
distinguer fichier vs modele versionné
décrire versions et stages

justifier une logique de promotion
expliquer pourquoi le rollback est central

raisonner en termes de lineage end-to-end

e Gérer des modeles = gérer un cycle de vie, pas des fichiers

52

Architecture de serving :
Du Registry a I'API

53

Sans serving, le training est inutile

e Reéalité opérationnelle

o Un modéle non servi :

[ne génére aucune valeur
[ne peut pas étre testé en conditions réelles
[ne peut pas étre monitoré

e Serving = moment de vérité
O contraintes temps réel
O données partielles

O erreurs utilisateurs

0

charge concurrente

e Le serving est souvent la ou les hypothéses du training cassent

54

Architecture de serving

AP| de Feature

Client Store

production (online)

e Composants
O API : orchestration + contrat sur les entrées/sorties
O Feature Store : fourniture des features

O Registry : sélection du bon modele

Modele
(Production)

Modele
(Production)

55

Séparation stricte des responsabilités

e API

O validation des entrées

O gestion des erreurs

O exposition HTTP

O observabilité (logs, métriques)
Feature Store

O calcul historique (offline)

O lookup rapide (online)

O cohérence training / inference
Modele

O transformation features et prédiction

O aucune logique d'acces aux données
Mélanger ces roles = dette technique assurée

56

Pourquoi I’API ne doit pas calculer les features

Anti-pattern courant
O recalcul des features dans 'API
O duplication de logique
O versions divergentes
Conséquences
O training-serving skew

O bugs silencieux

O performances imprévisibles
Bon principe

o I'API consomme des features

O elle ne les définit pas
La logique feature appartient au Feature Store

57

Contraintes du online feature retrieval

Latence

O objectif : quelques millisecondes

O pasdejointures lourdes

O pas de calcul dynamique
Fraicheur

O dépend de la matérialisation

O compromis fraicheur / colt
Complétude

o features parfois manquantes

O gestion des valeurs par défaut
Le serving impose des compromis absents du training

58

Charger le modele “Production”

e Pourquoi le stage est critique

O I'API ne doit pas connaitre :

n les numéros de version
[les expériences

o elle charge:
= le modele validé
e Avantages

O promotion sans redéployer le code
O rollback immédiat
O séparation décisions ML / infra

e Leregistry devient le point de contrdle

59

Piege critique : chargement du modele

e Mauvaise pratique
O charger le modele a chaque requéte
O latence élevée
O consommation mémoire
O instabilité sous charge
e Bonne pratique
O chargement au démarrage du service
O modele en mémoire
O prédictions rapides
e Regle simple

O Le modele est un état du service, pas une dépendance par requéte

60

Checkpoint #6

e Invariants d’'une architecture de serving saine

O

o O O O

O

API = orchestration, pas feature engineering
Feature Store = source unique des features
Modéele = composant pur de prédiction

Le modéele chargé est celui en Production
Le modele est chargé une seule fois

Le rollback ne nécessite pas de redéploiement

e Toute violation crée un systeme fragile

61

Design d’API pour les systemes ML

62

Ce qui rend une API ML différente

e APl classique
O CRUD (create, read, update, et delete/GET, POST, PUT et DELETE)
O logique métier déterministe
O réponses exactes attendues
e APl de prédiction
O comportement probabiliste
O dépend fortement des données
O qualité variable dans le temps
O couplée a un modele versionné
e Conséquence
O I'API ML est un composant expérimental controlé
O Nécessite plus de garde-fous
e Une API ML est un systeme statistique exposé

Validation des entrées

e Pourquoi c'est critique

O

O

un input invalide = prédiction absurde

erreurs souvent silencieuses

e Bonnes pratiques

O

O

O

schémas stricts (types, champs obligatoires)

validation des IDs d’entités

refus explicite des requétes ambigués

e Exemples d'erreurs a bloquer

O

O

O

O

entité inconnue
champs manquants
mauvais types

payloads partiels incohérents

e Mieux vaut refuser que prédire n'importe quoi

64

Design de la sortie

e Sortie minimale utile

O

O

score / probabilité
identifiant de la requéte

e Sorties recommandées

O probabilité plutét que classe brute
O version du modele utilisée
O timestamp
O éventuellement:
= seuil appliqué
m décision dérivée
e Principe
O séparer score et décision
O laisser la décision au systeme aval

e Une probabilité est plus flexible qu’'un label

65

Health checks & readiness

e Health check (/health)
O le service répond
O dépendances accessibles
e Readiness
O modele chargé en mémoire
o feature store accessible
O registry atteignable
e Pourquoi séparer
O un service “up” peut étre inutilisable
O nécessaire pour orchestration / scaling
e Unservice ML doit dire s'il est prét a prédire

66

Modes d'erreur spécifiques aux APl ML

Erreurs liées aux données

o features manquantes

O valeurs hors distribution

O entités absentes
Erreurs liées au modele

O modele non chargé

O signature incompatible

O version supprimée
Erreurs systémiques

O latence excessive

O dépendance externe lente (feature store)
Principe

O erreurs explicites

O logs exploitables

O pas de fallback silencieux
Les erreurs ML doivent étre observables

67/

Checkpoint #7

e Vous devez étre capables de:

expliquer pourquoi une APl ML est différente d'une API classique
définir une validation d’entrée robuste

concevoir une sortie exploitable et tragable

distinguer health vs readiness

O O O O O

anticiper les modes d'erreur spécifiques au ML
e Une API ML slre protege le modele et le business

68

Vue de bout-en-bout et
transition vers le TP

69

Vue end-to-end : du training a la prédiction

MLflow
Training (runs,

Feature
Store

(offline) pipeline métriques,

artefacts)

Message clé
O Chaque brique a un réle unique
O Le modele n'est jamais isolé
La valeur vient de I'intégration, pas du modéle seul

Model
Registry
(Production)

APl de
prédiction

Feature
Store
(online)
Service

Score
retourné

70

Ce qui change quand un nouveau modele est entrainé

e Cequichange
métriques
version du modele

artefacts associés

o O O O

éventuellement le stage (Staging vers Production)
e Ce quine change pas

API

logique de serving

contrat d’'entrée / sortie

O O O O

consumers aval
e Unbon systeme absorbe le changement de modele sans casser le reste

71

Stabilité vs variabilité dans un systeme ML

e Doit étre stable

O

o O O

schéma des features
signature du modele
API contract

pipeline de déploiement

e Peut évoluer

O O O O

modele
hyperparametres
métriques

seuils de décision

e La stabilité est une condition de l'itération rapide

72

Ce que vous allez implementer dans le TP

e Concretement, dans le lab

O

O O O O O

O

pipeline d'entrainement déterministe
récupération de features via le Feature Store
log des runs et métriques dans MLflow
enregistrement du modele

promotion en Production

chargement du modele Production dans I'API

premiéere prédiction end-to-end

e Premier vrai systeme ML “production-like”

73

Checkpoint final

o Alissue de ce cours, vous devez pouvoir :

O

N

O
O
O
O
O
e Ap

expliquer pourquoi le training est une pipeline
justifier 'usage d'un experiment tracking
distinguer tracking vs registry
raisonner sur le cycle de vie d'un modele
expliquer comment une API charge le bon modele
décrire un flux complet, du training au serving
artir d’ici, on n'entraine plus des modeles, on opére des systemes ML

74

En route pour le TP

75

