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Introduction et contexte
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Objectifs du cours

● Comprendre le rôle du training dans un système ML en production
● Introduire MLflow comme colonne vertébrale du cycle modèle
● Relier :

○ Les features à l’entraînement

○ L’entraînement au registry

○ Le registry à l’API
● Comprendre la logique staging / production
● Poser les bases du serving industriel (API + features en ligne)
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Pourquoi ça casse ici, en pratique

● Zone de fragilité majeure des systèmes ML
○ Beaucoup de modèles fonctionnent offline

○ Peu fonctionnent correctement en production
● Raisons fréquentes d’échec

○ Training différent du serving (skew)

○ Modèle non traçable :
■ impossible de savoir ce qui est en production

○ Évaluations non comparables (différents jeux de tests, différentes métriques)

○ Entraînement non reproductible

○ Déploiement manuel, non contrôlé

○ Absence de rollback
● Le problème n’est pas l’algorithme : le problème est le système autour du modèle
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Rappel : pipeline MLOps complet

● Ingestion & validation : vues précédentes
● Feature Store : cohérence training / inference
● Training :

○ point de jonction data/modèle
● Registry :

○ mémoire centrale des modèles
● Serving :

○ exposition contrôlée en production
● Focus du cours : Du dataset de features au modèle en production

Data Validation Features Training Registry Deployment Serving
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Où on en est, où on va

● Ce que vous avez déjà construit
○ Pipelines de données déterministes
○ Snapshots temporels
○ Feature Store (offline / online)
○ Alignement training / inference

● Ce cours
○ Entraîner un modèle comme un composant système
○ Suivre et comparer les expériences
○ Gérer des versions de modèles
○ Servir un modèle via une API

● Ce qui arrive ensuite (Cours 5 et 6)
○ Monitoring en production
○ Drift (données & performance)
○ Réentraînement automatisé
○ Promotion automatique des modèles
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“Production-ready training”, ça veut dire quoi ?

● Ce que ce n’est pas
○ model.fit(X, y)
○ Un notebook isolé
○ Un fichier .pkl sur disque
○ Une métrique affichée une fois

● Ce que c’est
○ Pipeline déterministe
○ Données versionnées implicitement
○ Évaluations comparables dans le temps
○ Modèle :

■ traçable
■ versionné
■ déployable automatiquement

○ Séparation claire :
■ entraînement
■ validation
■ serving

● Entraîner un modèle = produire un artefact industriel
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Des features aux modèles :
L’entraînement comme une 
composante du système
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Training ≠ Notebook

● Idée clé
○ En production, l’entraînement n’est pas :

■ un notebook exploratoire
■ une cellule exécutée une fois

○ C’est un composant système, au même titre que :
■ ingestion
■ API
■ monitoring

● Conséquences
○ Code exécutable sans interaction humaine

○ Entrées et sorties clairement définies

○ Exécution répétable

○ Observable (logs, métriques)
● Le training est une pipeline, pas une expérience ponctuelle
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Entrées d’une pipeline d’entraînement

● Inputs explicites
○ Features

■ issues du Feature Store
■ offline, temporellement correctes

○ Labels
■ définis pour une période donnée
■ alignés avec les features

○ Configuration
■ hyperparamètres
■ métriques
■ seuils

○ Code
■ logique de training
■ preprocessing éventuel
■ Logique d’évaluation

● Principe MLOps : Tout ce qui influence le modèle doit être une entrée traçable
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Pipelines déterministes : définition

● Définition
○ Même inputs donne même outputs

○ À l’identique, aujourd’hui ou dans 6 mois
● Outputs concernés

○ Métriques

○ Modèle entraîné

○ Artefacts (courbes, coefficients, signatures)
● Pourquoi c’est critique

○ Comparer des modèles dans le temps

○ Debugger une régression

○ Reproduire un modèle en production

○ Autoriser l’automatisation (CI/CD)
● Sans déterminisme, pas de gouvernance possible
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Ce qui casse le déterminisme

● Sources classiques
○ Aléatoire

■ seeds non fixées
■ split aléatoire non contrôlé

○ Temps
■ now(), today()
■ dépendance à l’horloge système

○ Data leakage
■ features calculées après le label
■ Corrections a posteriori

○ Code drift
■ modification silencieuse du code
■ Dépendances non figées

● Symptôme typique : “Je ne retrouve pas les résultats d’hier”
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Rappel crucial : alignement temporel

● Principe : Le modèle doit apprendre avec uniquement l’information disponible au moment de la prédiction réelle
● Alignement requis

○ Label à date t

○ Features calculées avant ou à t

○ Pas d’accès au futur
● Pourquoi c’est vital

○ Éviter des performances artificiellement élevées

○ Garantir une évaluation réaliste

○ Assurer cohérence training / inference
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Stratégies de split train / validation

● Split par entité (ex: user_id)
○ Séparation par individus

○ Utile si :
■ données indépendantes
■ pas de dépendance temporelle forte

● Split temporel
○ Train sur le passé

○ Validation sur le futur

○ Recommandé pour :
■ churn
■ finance
■ séries temporelles

● Règle pratique
○ Si le temps a du sens, split temporel

○ Sinon, split par entité
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Pipeline d’entraînement minimal

● Étapes haut niveau
1. Charger labels pour une période donnée

2. Construire un dataframe ids + timestamps + labels

3. Récupérer features historiques dans le feature store

4. Vérifier le dataset (taille, valeurs)

5. Split train / validation

6. Entraîner un modèle

7. Évaluer avec métriques choisies

8. Produire artefacts et métriques
● Pas d’optimisation prématurée : Pipeline clair > modèle complexe
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Checkpoint #1

● À ce stade, vous devez pouvoir :
○ Expliquer pourquoi le training est une pipeline

○ Identifier toutes les entrées qui influencent un modèle

○ Définir ce qu’est un pipeline déterministe

○ Lister les causes principales de non-reproductibilité

○ Justifier une stratégie de split adaptée au problème
● Si une étape n’est pas claire ici, elle cassera tout le système ensuite
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Pourquoi le tracking d’expériences 
est obligatoire en production ?
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Question centrale en production

● Motivation
○ “Quel modèle est en production… et pourquoi celui-là ?”

○ “Quelle version du code ? Quelles features ? Quel dataset ?”

○ “Quelle performance attendue ? Sur quelles métriques ?”

○ “Si ça casse : on rollback vers quoi ?”
● Sans tracking :

○ impossible de répondre factuellement

○ débats “à l’intuition”

○ pertes de temps énormes en incident
● Le tracking = mémoire et preuve du système ML
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Ce qu’il faut traquer (minimum viable)

● Paramètres (inputs du training)
○ hyperparamètres
○ paramètres de pipeline (fenêtres temporelles, split)
○ seeds
○ version de la config

● Métriques (outputs mesurables)
○ AUC / logloss / F1 / calibration…
○ métriques train vs validation
○ éventuellement par segment (plan_type, pays…)

● Artefacts
○ modèle sérialisé
○ courbe ROC, matrice de confusion
○ feature importance / coefficients
○ échantillon de prédictions

● Contexte de code
○ version du code (commit hash)
○ environnement (versions libs)
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Pourquoi “des logs + des fichiers” ne suffisent pas

● Approche naïve
○ results_run_12.json

○ model_final_v3.pkl

○ logs console + screenshots
● Problèmes

○ pas de structure standard

○ impossible de comparer automatiquement des runs

○ perte d’info (qui a lancé, quand, avec quoi)

○ impossible de faire des recherches

○ pas de lien natif :
■ run → modèle → métriques → artefacts → code

● Ce n’est pas “audit-ready”
● Ce n’est pas “CI/CD-ready”
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Experiment tracking vs Model registry

● Experiment tracking
○ historise des runs

○ but : exploration contrôlée, comparaison, reproductibilité

○ granularité : un entraînement = un run

○ objets : params, metrics, artifacts, tags
● Model registry

○ gère des versions de modèles

○ but : gouvernance + déploiement

○ granularité : un modèle = plusieurs versions

○ objets : version, stage, approbation, rollback
● Tracking = “comment ce modèle a été produit”
● Registry = “quel modèle doit être utilisé en production”
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Position de MLflow dans la stack MLOps

● MLflow = interface standardisée pour :
○ journaliser runs / métriques / artefacts

○ packager un modèle dans un format de serving

○ centraliser versions et stages
● Intégration naturelle avec :

○ pipelines d’entraînement (scripts, orchestrateurs)

○ CI/CD (promotion conditionnelle)
● serving (charger “Production”)
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Ce que MLflow ne résout pas

● MLflow n’est pas :
○ un Feature Store (ne calcule pas les features)

○ un orchestrateur (ne planifie pas les jobs)

○ un outil de validation data (pas Great Expectations)

○ un système de monitoring de production (drift, latence, logs API)

○ une solution de data versioning complète
● En bref

○ MLflow gère le cycle du modèle

○ pas le cycle complet des données / infra
● Il faut une stack, pas un outil unique
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Checkpoint #2

Vous devez être capables de :
● expliquer pourquoi la question “quel modèle et pourquoi” est critique
● lister ce qu’il faut tracer (paramètres / métriques / artéfacts / contexte)
● expliquer pourquoi fichiers + logs = insuffisant
● distinguer clairement :

○ tracking (runs)

○ registry (versions + stages)
● situer MLflow dans une architecture MLOps complète
● identifier les limites de MLflow
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Concepts clés de MLflow
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MLflow : vue d’ensemble

● MLflow repose sur trois piliers
1. Experiment Tracking

■ runs
■ métriques
■ paramètres
■ artefacts

2. Model Packaging
■ format standardisé
■ interface de prédiction
■ environnement associé

3. Model Registry
■ versions
■ stages (Staging / Production)
■ gouvernance

● Objectif global : structurer le cycle de vie du modèle
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Runs et Experiments

● Experiment
○ regroupement logique de runs
○ ex : “churn_model_v1”
○ permet comparaison et itération contrôlée

● Run
○ une exécution complète d’un training pipeline
○ correspond à :

■ un dataset
■ une config
■ une version de code

● Propriétés clés d’un run
○ horodaté
○ immuable après exécution
○ comparable aux autres runs

● Un run = une tentative mesurable et traçable
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Paramètres, métriques, artefacts

● Paramètres
○ entrées du training
○ ex : hyperparamètres, fenêtres temporelles, seeds
○ valeurs scalaires ou catégorielles

● Métriques
○ sorties mesurés
○ ex : AUC, loss, F1
○ souvent suivies dans le temps

● Artefacts
○ fichiers associés au run
○ ex :

■ modèle
■ plots
■ feature importance
■ samples de prédictions

● Séparation claire : inputs / outputs / preuves
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Métriques dans le temps

● Pourquoi l’historique est essentiel
○ comparer des modèles entre eux

○ détecter des régressions

○ suivre la progression d’un pipeline
● Comparaisons typiques

○ modèle A vs modèle B

○ nouvelle feature vs baseline

○ nouvelle période de données
● Signal faible mais critique

○ baisse progressive de métrique

○ variance inhabituelle

○ incohérence train / validation
● Tracking = observabilité du training
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Pourquoi le modèle seul ne suffit pas

● Anti-pattern
○ “Voici le modèle, il a un AUC de 0.82”

● Ce qui manque
○ sur quelles données ?

○ avec quelles features ?

○ avec quels paramètres ?

○ comparé à quoi ?

○ stable dans le temps ?
● Bon principe

○ Un modèle sans contexte est inexploitable

○ Les artefacts racontent l’histoire du modèle
● Le modèle est une conséquence, pas l’objet principal
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Format de modèle MLflow (pyfunc)

● Idée clé
○ Un modèle est exposé via une interface standard

○ Indépendante de :
■ la librairie (sklearn, xgboost, torch…)
■ le langage interne

● Interface conceptuelle
○ predict(input) => output

● Avantages
○ même logique de chargement en training et en API

○ découplage modèle/serving

○ interchangeabilité des implémentations
● Le modèle devient un composant logiciel
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Signature de modèle : pourquoi c’est crucial

● Signature
○ schéma des entrées

○ schéma des sorties
● Rôles

○ validation automatique des inputs

○ détection d’incohérences au serving

○ documentation implicite du contrat modèle
● Sans signature

○ erreurs silencieuses

○ mismatch colonnes / types

○ bugs difficiles à diagnostiquer
● Une signature = un contrat d’API du modèle
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Capture de l’environnement

● Problème classique
○ même modèle, comportement différent

○ dépendances non alignées

○ versions de librairies divergentes
● MLflow capture

○ dépendances Python

○ versions des librairies ML

○ parfois OS-level (partiel)
● Objectif

○ pouvoir relancer une prédiction :
■ aujourd’hui
■ ailleurs
■ Plus tard

● Reproductibilité n’est pas uniquement données + code
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Versionnement de modèle vs tracking

● Tracking
○ compare des runs

○ répond à :
■ “qu’est-ce qui a marché ?”
■ “comment on en est arrivé là ?”

● Versionnement (Registry)
○ gère des modèles “officiels”

○ répond à :
■ “quel modèle est autorisé ?”
■ “lequel est en production ?”

● Relation
○ plusieurs runs peuvent donner un modèle versionné

○ tous les runs ne deviennent pas des versions
● Exploration n’est pas la production
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Évaluation de modèle : ce qui compte 
en production
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Checkpoint #3

● MLflow vous garantit :
○ traçabilité des runs

○ comparabilité des expériences

○ packaging standard des modèles

○ gestion des versions et des stages
● MLflow ne garantit pas :

○ qualité des données

○ absence de data leakage

○ pertinence des métriques

○ monitoring en production

○ décisions business correctes
● MLflow est un outil structurant, pas une solution magique
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L’évaluation n’est pas “juste l’accuracy”

● Problème classique
○ Accuracy souvent utilisée par défaut

○ Facile à expliquer

○ Souvent trompeuse en production
● Pourquoi

○ Déséquilibre des classes

○ Décisions asymétriques (faux positifs et faux négatifs n’ont pas la même valeur)

○ L’accuracy ne reflète pas l’usage réel du score
● Une bonne métrique dépend du contexte d’utilisation
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AUC : métrique centrale pour le churn

● Pourquoi l’AUC (Area Under the Curve, voir cours ML/DL) est pertinente
○ Indépendante du seuil

○ Mesure la capacité de ranking

○ Stable face aux déséquilibres modérés
● Interprétation

○ Probabilité qu’un utilisateur churn soit mieux scoré qu’un utilisateur non churn

○ Comparaison robuste entre modèles
● Usage typique

○ Classer les utilisateurs du plus à risque au moins à risque

○ Définir des actions sur le top-k%
● AUC = bonne métrique de sélection de modèle
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Pièges de l’accuracy (cas déséquilibré)

● Exemple churn
○ 95% des utilisateurs ne churnent pas

○ Modèle trivial : “jamais churn”

○ Accuracy = 95%

○ Valeur business = 0
● Ce que l’accuracy cache

○ incapacité à détecter les cas rares

○ absence de signal utile pour l’action
● Accuracy élevée n’implique pas modèle utile
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Métriques complémentaires

● Precision
○ Parmi les alertes, combien sont correctes
○ Coût des faux positifs

● Recall
○ Parmi les churns réels, combien sont détectés
○ Coût des faux négatifs

● F1
○ compromis precision / recall

● Calibration de modèle
○ fiabilité des probabilités : Vérifier que quand un modèle prédit qu’un événement à X% de chance de se passer, il 

se passe vraiment X% du temps
■ Ex : Si on prédit qu’une équipe A bat une équipe B 80% du temps, après 100 matches, on devrait avoir 80 

victoires pour A
■ Ex : Dans un système de recommandation, si un utilisateur regarde 80% de comédies romantiques et 20% de 

thrillers, le système de recommandation devrait suivre ces valeurs
● Plusieurs métriques = vision complète
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Métriques offline vs impact business

● Offline
○ AUC

○ F1

○ logloss

○ calibration
● Business (non mesurable à l’entraînement en général)

○ taux de rétention

○ coût des actions

○ ROI des campagnes

○ satisfaction utilisateur
● Lien clé

○ métriques ML entraînent des décisions

○ décisions entraînent coûts / gains
● Une métrique n’a de valeur que reliée à une action
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Spoiler prochain cours : dérive des métriques

● Constat
○ Un modèle ne reste jamais optimal

○ Les données changent

○ Les comportements évoluent
● Symptômes

○ baisse progressive de l’AUC

○ dégradation de calibration

○ instabilité par segment
● Conséquence

○ nécessité de surveiller les métriques dans le temps

○ préparation au monitoring et au retraining
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Checkpoint #4

● Vous devez être capables de :
○ expliquer pourquoi l’accuracy est souvent insuffisante

○ justifier l’usage de l’AUC pour le churn

○ identifier les limites des métriques seuil-dépendantes

○ relier métriques ML et décisions business

○ anticiper pourquoi les métriques évoluent dans le temps
● Choisir une métrique = choisir une stratégie de décision
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Model Registry et
Lifecycle Management
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Pourquoi un model registry existe
● Le registry permet de stocker des modèles de façon organisée
● Problème sans registry

○ modèles dispersés (fichiers, dossiers, buckets)

○ aucune source de vérité

○ décisions de déploiement implicites

○ rollback artisanal
● Rôle du registry

○ point central des modèles utilisables

○ historique des versions

○ contrôle de ce qui peut aller en production
● Le registry est à la production ML ce que Git est au code
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Un modèle n’est pas un fichier
● Vision naïve

○ modèle = .pkl, .joblib, .bin
● Vision production

○ modèle = artefact versionné comprenant :
■ binaire du modèle
■ signature (schéma entrée/sortie)
■ environnement
■ métriques associées
■ lien vers le run d’origine

● Conséquence
○ on ne “copie” pas un modèle

○ on référence une version
● Le fichier est un détail d’implémentation
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Versions et stages de modèle
● Version

○ incrément automatique

○ liée à un run précis

○ immuable
● Stage (état logique)

○ None : expérimental

○ Staging : candidat à la production

○ Production : modèle officiel

○ (Archived : obsolète)
● Principe clé

○ une seule version en Production

○ plusieurs versions en Staging possibles
● Le stage exprime une intention opérationnelle
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Logique de promotion
● Questions fondamentales

○ Qui peut promouvoir un modèle ?

○ Quand un modèle devient-il “meilleur” ?

○ Sur quels critères ?
● Critères typiques

○ métriques > modèle courant

○ validation humaine

○ tests de non-régression

○ conformité métier / légale
● Point important

○ promotion n’est pas l’entraînement

○ décision explicite, traçable
● Gouvernance minimale mais explicite
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Le rollback : opération critique
● Le rollback est une opération permettant de revenir à une version précédente
● Pourquoi le rollback est indispensable

○ bugs en production

○ données inattendues

○ dérive rapide
● Bon rollback

○ instantané

○ déterministe

○ sans réentraînement
● Registry bien conçu

○ permet de revenir à :
■ version N-1
■ version stable connue

○ sans modifier le code
● Si le rollback est difficile, le système est fragile
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Lineage : de la donnée au déploiement

● Lineage = description de toutes les composantes donnant lieu à un résultat final
● Chaîne de traçabilité
● Pourquoi c’est critique

○ auditabilité

○ explication des décisions

○ analyse post-mortem

○ conformité (finance, santé, RGPD…)
● Sans lineage, pas de confiance
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Human-in-the-loop aujourd’hui
● État réaliste des systèmes ML

○ décisions souvent manuelles

○ validation humaine avant production

○ promotion via UI / revue
● Évolution naturelle

○ règles automatiques

○ promotion conditionnelle

○ CI/CD des modèles
● Message clé

○ commencer simple

○ structurer dès maintenant
● L’automatisation vient après la traçabilité
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Checkpoint #5
● Vous devez être capables de :

○ expliquer le rôle d’un model registry

○ distinguer fichier vs modèle versionné

○ décrire versions et stages

○ justifier une logique de promotion

○ expliquer pourquoi le rollback est central

○ raisonner en termes de lineage end-to-end
● Gérer des modèles = gérer un cycle de vie, pas des fichiers
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Architecture de serving :
Du Registry à l’API
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Sans serving, le training est inutile
● Réalité opérationnelle

○ Un modèle non servi :
■ ne génère aucune valeur
■ ne peut pas être testé en conditions réelles
■ ne peut pas être monitoré

● Serving = moment de vérité
○ contraintes temps réel

○ données partielles

○ erreurs utilisateurs

○ charge concurrente
● Le serving est souvent là où les hypothèses du training cassent
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Architecture de serving

● Composants
○ API : orchestration + contrat sur les entrées/sorties

○ Feature Store : fourniture des features

○ Registry : sélection du bon modèle
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Séparation stricte des responsabilités
● API

○ validation des entrées

○ gestion des erreurs

○ exposition HTTP

○ observabilité (logs, métriques)
● Feature Store

○ calcul historique (offline)

○ lookup rapide (online)

○ cohérence training / inference
● Modèle

○ transformation features et prédiction

○ aucune logique d’accès aux données
● Mélanger ces rôles = dette technique assurée
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Pourquoi l’API ne doit pas calculer les features
● Anti-pattern courant

○ recalcul des features dans l’API

○ duplication de logique

○ versions divergentes
● Conséquences

○ training-serving skew

○ bugs silencieux

○ performances imprévisibles
● Bon principe

○ l’API consomme des features

○ elle ne les définit pas
● La logique feature appartient au Feature Store
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Contraintes du online feature retrieval
● Latence

○ objectif : quelques millisecondes

○ pas de jointures lourdes

○ pas de calcul dynamique
● Fraîcheur

○ dépend de la matérialisation

○ compromis fraîcheur / coût
● Complétude

○ features parfois manquantes

○ gestion des valeurs par défaut
● Le serving impose des compromis absents du training
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Charger le modèle “Production”
● Pourquoi le stage est critique

○ l’API ne doit pas connaître :
■ les numéros de version
■ les expériences

○ elle charge :
■ le modèle validé

● Avantages
○ promotion sans redéployer le code

○ rollback immédiat

○ séparation décisions ML / infra
● Le registry devient le point de contrôle
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Piège critique : chargement du modèle
● Mauvaise pratique

○ charger le modèle à chaque requête

○ latence élevée

○ consommation mémoire

○ instabilité sous charge
● Bonne pratique

○ chargement au démarrage du service

○ modèle en mémoire

○ prédictions rapides
● Règle simple

○ Le modèle est un état du service, pas une dépendance par requête
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Checkpoint #6
● Invariants d’une architecture de serving saine

○ API = orchestration, pas feature engineering

○ Feature Store = source unique des features

○ Modèle = composant pur de prédiction

○ Le modèle chargé est celui en Production

○ Le modèle est chargé une seule fois

○ Le rollback ne nécessite pas de redéploiement
● Toute violation crée un système fragile
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Design d’API pour les systèmes ML
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Ce qui rend une API ML différente
● API classique

○ CRUD (create, read, update, et delete/GET, POST, PUT et DELETE)

○ logique métier déterministe

○ réponses exactes attendues
● API de prédiction

○ comportement probabiliste

○ dépend fortement des données

○ qualité variable dans le temps

○ couplée à un modèle versionné
● Conséquence

○ l’API ML est un composant expérimental contrôlé

○ Nécessite plus de garde-fous
● Une API ML est un système statistique exposé
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Validation des entrées
● Pourquoi c’est critique

○ un input invalide = prédiction absurde

○ erreurs souvent silencieuses
● Bonnes pratiques

○ schémas stricts (types, champs obligatoires)

○ validation des IDs d’entités

○ refus explicite des requêtes ambiguës
● Exemples d’erreurs à bloquer

○ entité inconnue

○ champs manquants

○ mauvais types

○ payloads partiels incohérents
● Mieux vaut refuser que prédire n’importe quoi
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Design de la sortie
● Sortie minimale utile

○ score / probabilité

○ identifiant de la requête
● Sorties recommandées

○ probabilité plutôt que classe brute

○ version du modèle utilisée

○ timestamp

○ éventuellement :
■ seuil appliqué
■ décision dérivée

● Principe
○ séparer score et décision

○ laisser la décision au système aval
● Une probabilité est plus flexible qu’un label
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Health checks & readiness
● Health check (/health)

○ le service répond

○ dépendances accessibles
● Readiness

○ modèle chargé en mémoire

○ feature store accessible

○ registry atteignable
● Pourquoi séparer

○ un service “up” peut être inutilisable

○ nécessaire pour orchestration / scaling
● Un service ML doit dire s’il est prêt à prédire
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Modes d’erreur spécifiques aux API ML
● Erreurs liées aux données

○ features manquantes
○ valeurs hors distribution
○ entités absentes

● Erreurs liées au modèle
○ modèle non chargé
○ signature incompatible
○ version supprimée

● Erreurs systémiques
○ latence excessive
○ dépendance externe lente (feature store)

● Principe
○ erreurs explicites
○ logs exploitables
○ pas de fallback silencieux

● Les erreurs ML doivent être observables
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Checkpoint #7
● Vous devez être capables de :

○ expliquer pourquoi une API ML est différente d’une API classique

○ définir une validation d’entrée robuste

○ concevoir une sortie exploitable et traçable

○ distinguer health vs readiness

○ anticiper les modes d’erreur spécifiques au ML
● Une API ML sûre protège le modèle et le business
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Vue de bout-en-bout et 
transition vers le TP
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Vue end-to-end : du training à la prédiction

● Message clé
○ Chaque brique a un rôle unique

○ Le modèle n’est jamais isolé
● La valeur vient de l’intégration, pas du modèle seul
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Ce qui change quand un nouveau modèle est entraîné
● Ce qui change

○ métriques

○ version du modèle

○ artefacts associés

○ éventuellement le stage (Staging vers Production)
● Ce qui ne change pas

○ API

○ logique de serving

○ contrat d’entrée / sortie

○ consumers aval
● Un bon système absorbe le changement de modèle sans casser le reste
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Stabilité vs variabilité dans un système ML
● Doit être stable

○ schéma des features

○ signature du modèle

○ API contract

○ pipeline de déploiement
● Peut évoluer

○ modèle

○ hyperparamètres

○ métriques

○ seuils de décision
● La stabilité est une condition de l’itération rapide
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Ce que vous allez implémenter dans le TP
● Concrètement, dans le lab

○ pipeline d’entraînement déterministe

○ récupération de features via le Feature Store

○ log des runs et métriques dans MLflow

○ enregistrement du modèle

○ promotion en Production

○ chargement du modèle Production dans l’API

○ première prédiction end-to-end
● Premier vrai système ML “production-like”
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Checkpoint final
● À l’issue de ce cours, vous devez pouvoir :

○ expliquer pourquoi le training est une pipeline

○ justifier l’usage d’un experiment tracking

○ distinguer tracking vs registry

○ raisonner sur le cycle de vie d’un modèle

○ expliquer comment une API charge le bon modèle

○ décrire un flux complet, du training au serving
● À partir d’ici, on n’entraîne plus des modèles, on opère des systèmes ML
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En route pour le TP

75


