!?’oms\%% INSTITUT TELECOM
;'0 : POLYTECHNIQUE
’ DE PARIS S0 |

Feature stores & Feast

Julien Romero

Motivation &
Concepts du Feature Store

Pourquoi un Feature Store ?

o Les features sont au coeur de la performance d’'un modéle.

e Sans standardisation : calculs incohérents, duplication, bugs silencieux.

e Les équipes doivent partager, versionner et réutiliser des features.

e Enproduction : besoin d'accéder aux features rapidement, systématiquement, sans recalculer.

e Le Feature Store fournit un cadre structuré : définition, stockage, serving, et historique des features.

Limites du calcul de features “a la main”

e Scripts dispersés entre notebooks, API, scripts d'entrainement.

e Logique de transformation dupliquée, parfois contradictoire.

e Mises a jour manuelles source d'erreurs.

o Difficile d'assurer que I'API reproduit exactement la logique du training.
e Aucune garantie temporelle : possible fuite d'information.

e Peu ou pas de réutilisation cross-projets.

Training-Serving Skew : probleme central

o Définition: divergence entre les features utilisées a I'entrainement et celles calculées pour l'inférence.
e Undes principaux facteurs d'échec d'un systeme ML en production.

e Peut rendre un modele performant “offline” mais catastrophique en conditions réelles.

e Origine : absence d'un mécanisme commun de définition/serving des features.

Causes du skew en pratique

e Code de feature engineering réécrit dans I'API au lieu d'étre partagé.

e Agrégations calculées différemment selon I'environnement.

e Pipelines training et inference non synchronisés.

o Données plus fraiches en production qu’a I'entrainement (ou inverse).

o Différences de type, schéma ou mapping lors de I'ingestion.

e Bugs silencieux liés a des corrections appliquées apres coup sur I'historique.

Conséquences : dérive silencieuse, bugs couteux

e Baisse soudaine ou progressive de la précision du modele.

e Prédictions instables ou incohérentes selon les utilisateurs.

o Difficulté extréme de diagnostic : “le modele est-il mauvais ou les features sont-elles incohérentes ?”
o Colts opérationnels élevés : réentrainements inutiles, hotfix API, rollback de modeles.

e Risque business réel : churn mal détecté, pertes de revenus.

Objectifs d’'un Feature Store moderne

o Définition centralisée des features (déclarative, versionnée).
o Reproductibilité exacte entre offline et online.
e Point-in-time correctness pour éviter la fuite de données.
e Serving efficace :
o Offline (training, batch scoring).
O Online (latence faible pour l'inférence).
o Partage : plusieurs modeéles/systemes peuvent réutiliser les mémes features.
e Tragabilité compléte : source, schéma, timestamps, versions.

Offline vs Online Features

e Offline

O

O

O

O

e Online

O

O
O
O

Utilisés pour : entrainement, validation, backtesting.
Données historiques, volumineuses.
Agrégations lourdes autorisées.

Temporellement correctes via snapshots ou stores dédiés.

Utilisés pour : prédiction en temps réel.

Latence trés faible exigée (<10—-50 ms).

Taille plus limitée.

Doivent étre synchronisés avec les features offline.

Temps réel vs batch : contraintes opérationnelles

o Batch (offline) :
O Fenétre temporelle large (ex : 30j, 90j).
O Processus intensifs (ingestion, agrégations).
O Pas besoin de retour immédiat.
e Temps réel (online) :
O Doit répondre instantanément aux requétes de I'API.
O Matérialisation nécessaire : pas de recalcul dynamique.

O Forte contrainte de cohérence avec la logique offline.

10

Versionnage des features et tracabilité

Les features évoluent : définition, fenétres temporelles, agrégations.
Besoin de garder :
O Version de chaque Feature View.

O Mapping vers la source (snapshots).
¢ Paramétres utilisés lors de I'entrainement.

Sans versionnage : impossible de reproduire un modele ou comprendre une dérive.
Le Feature Store est un métastore des features.

11

Point-in-Time Correctness : intuition

e Probleme : un modele peut “voir le futur” s'il utilise des données postérieures au label.
e Principe:
O Pour chaque observation, seules les features disponibles a cette date sont utilisées.
O Alignement strict entre timestamp du label et timestamp des features.
e Le Feature Store assure automatiquement cette garantie via son moteur de jointure temporelle (historical retrieval).

12

Comparaison : sans FS vs avec FS

e Sans Feature Store

O

o O O O

O

Du code partout.

Skew fréquent.

Peu de réutilisation.

Pas de versionnage clair.

Tests limités, difficilement automatisables.

Diagnostique tres difficile.

e Avec Feature Store

O

o O O O

Définition unique et centralisée.
Alignement automatique training/inference.
Meilleure robustesse opérationnelle.
Historique et tracabilité garantis.

Rapidité a développer de nouveaux modeles.

13

Intégration dans notre architecture StreamFlow

e Ingestion + validation (TP1-TP2) produisent des snapshots mensuels.

e Feast consomme ces snapshots comme offline store.

o Développeurs définissent des entities, data sources, feature views.

e Matérialisation vers un online store pour I'API FastAPI.

o Entrainement (Lecture 4) récupérera un dataset cohérent via historical retrieval.
e Serving : FastAPI interroge Feast, puis le model, et renvoie la réponse.

14

Architecture de Feast

15

Position de Feast dans le pipeline MLOps

o Feastintervient entre I'ingestion/snapshots (TP1-TP2) et I'entrainement/modeéle (TP4).

e Rodle: fournir un acces cohérent, versionné, temporellement correct aux features.
e C'estla couche intermédiaire qui garantit :

O Alignement training/inference

O Réutilisation de transformations

O Découplage entre data engineering et modele
e Faitle pont entre :

O PostgreSQL (données structurées) < Training pipeline < API en production

16

Vue d'ensemble : repo -> registry -> offline/online stores

o Feast repo : répertoire déclaratif contenant la définition des features.
o Registry : base interne stockant la configuration versionnée (entities, FV...).
o Offline Store : source historique (PostgreSQL dans notre cas).
e Online Store : stockage rapide (Redis ou SQLite) pour I'inférence temps réel.
e Flux standard:

1. Définir features

2. feast apply (synchronise registry)

3. Materialize offline puis online

4. Serve features a I'API et au training.

17

Concept 1 : Entities

Une Entity identifie I'unité principale pour laquelle on calcule des features.
O Exemples : user, device, transaction, produit.

© Dans notre projet : user.
Propriétés essentielles :
O nom unique

O clé primaire (user_id)
m stable dans le temps
m correspondant aux clefs dans PostgreSQL

O type (int, string, UUID...)
Sert de pivot pour toutes les jointures temporelles.
Pseudo-Python (exemple) :

O user = Entity(name="user", join_keys=["user_id"], description="Identifie un utilisateur

StreamFlow")

18

Concept 2 : Data Sources (PostgreSQL dans le TP)

e Une Data Source décrit ou les features brutes/historiques sont stockées.
O Dansle TP : tables snapshot dans PostgreSQL.

e Contient:
O connexion DB
O table ou requéte SQL

o timestamp field (as_of)

[récupération historique
m alignement avec les labels
m exclusion automatique des données postérieures (anti-data leakage)

O mapping des champs
e Importance : la validité temporelle dépend de cette source.
e Pseudo-Python:

PostgresSource(
table="subscriptions_profile_snapshots"”,
timestamp_field="as_of"

19

Concept 3 : Feature Views

Un Feature View regroupe les features associées a une entity.

Contient :
O entities target : liste d’Entities liées
O data source : table snapshot (PostgresSource ici)
O liste des features (nom + type)
O timestamp
O TTL: période de validité en online store
O tags: pour la documentation

e Acte central : déclarer les features plutot que les calculer a la main.
Correspond entierement aux tables snapshot que nous avons construites.
Pseudo-Python :

subscriptions_fv = FeatureView(
name="subscriptions_profile",
entities=["user"],

schema=[Field("plan_type", String), Field("status", Int64)],

source=subscriptions_source

20

Best practices : granularité des FeatureViews

e On ne fait pas un FeatureView par un modele. Un FV = un bloc logique homogeéne.
o Eviter:

O unFV gigantesque avec 100+ features

o fusionner des domaines hétérogenes (ex : paiements + support)
e Favoriser:

O regroupements naturels (durées, fenétres temporelles)

O modularité pour réutiliser des FV dans plusieurs modeles

21

Best practices : stabilité de schéma (liée a GE)

e Les FeatureViews supposent un schéma stable, d'ou validation GE en amont.
e ModifierunFV:

O ajouter feature = OK

O supprimer ou renommer = versionner
e Feast ne valide pas la qualité des données : GE reste indispensable.

22

Concept 4 : Feature Service

e Un Feature Service regroupe plusieurs FeatureViews logiquement liés.
e Permet d'exposer un ensemble cohérent de features pour :
O un modele spécifique (ex : modele churn)
O unendpoint API
e Abstraction clé : un modele ne dépend pas de la structure interne du Feature Store.
e Pseudo-Python:

churn_service = FeatureService(
name="churn_service",
features=[subscriptions_fv, usage_fv, payments_fv]

23

Concept 5 : Offline Store (training et historique)

L'offline store est utilisé pour :
O récupération historique (training)

O backtesting
O génération de datasets volumineux
Dans le TP : PostgreSQL, alimenté par nos snapshots mensuels.
Feast exécute automatiquement les point-in-time joins entre labels et features.
e Pas de recalcul lourd dans le code d’entrainement : Feast gére la reconstruction du dataset.

24

Concept 6 : Online Store (inférence)

e L'online store sert les features pour I'API en temps réel.
e Caractéristiques:
o faible latence, lookup direct
O stockage clé/valeur basé sur entity_id + timestamp
O contenu mis a jour via la matérialisation
e Dansle TP : petit online store local.

e Permet a FastAPI de récupérer 10-20 features en quelques millisecondes.

25

Concept 7 : Materialization (offline -> online)

o Etape centrale : transférer les données snapshot vers le online store.
o Effectuéevia:

o feast materialize <start> <end>
e Permet d'éviter les recalculs au moment de l'inférence.
e Assure:
o faible latence
O cohérence avec les données historiques
o refresh programmé (ex : quotidien, mensuel)
e Dans notre TP : matérialisation mensuelle basée sur les snapshots.

Cycle de vie d’un feature dans Feast

Ingestion & validation dans PostgreSQL (TP1-TP2).
Création d'un snapshot mensuel (as_of).

Déclaration du FeatureView (schema + source).

feast apply => mise a jour du registry.

Materialize => remplissage du online store.

Offline retrieval => construction du dataset d’entrainement.
Online retrieval -> FastAPI -> modele -> prédiction.

No g hrMw N2

Cycle entierement reproductible et versionné.

27

Utilisation de feast apply

e Commandeclé:

o feast apply
o Effets:

O synchronise le registry avec les FV déclarés

O détecte les ajouts/modifications

O avertit si des changements cassent la compatibilité
e Exécution a chaque changement de configuration.

28

Fichiers du repo Feast dans le projet

e Dans services/feast_repo/repo:

O

O

feature_store.yaml

m configuration globale (offline store, online store).
entities.py

m définition des entities.
data_sources.py

m configuration des tables PostgreSQL.
feature_views.py

= unfichier par FeatureView (une seule ici)
services.py

m Feature Services (groupement logique).
Registry (généré apres feast apply).

e L'ensemble constitue la spécification déclarative des features.

29

Résultat : un registry versionné

e Apres feast apply, Feast génere :

O un registry.db (ou fichier équivalent)

O contenant toutes les versions des FV, Entities, Sources
e Unregqistry:

O permet la reproductibilité des entrainements

O garantit que I'API et le pipeline training utilisent la méme définition
e Le Feature Store devient la vérité unique des features du systeme.

30

Flux : snapshots -> Feast offline -> retrieval

Points importants :

e Un seul pipeline de features, deux modes de
consommation.

e Toujours basé sur les mémes définitions =>

pas de duplication de logique.

Snapshots
PostgreSQL
(as_of)

Offline Store Materializati
(Feast) on

Historical
REGEE] Online Store API FastAPI
(training)

get_online_fe
atures

31

Pourquoi Feast résout le skew

e Une seule déclaration de features utilisée partout.

e Serving offline/online basé sur la méme source, garantissant cohérence.

e Jointures temporelles automatiques, impossibles a maintenir manuellement.
e Versionnage du registry — reproductibilité du modele.

e Matérialisation contrélée pour garantir la fraicheur.

o Découplage : data engineers, ML engineers, API engineers utilisent la méme base fonctionnelle.

e Le modele voit exactement les mémes features en entrainement et en production.

32

Offline Feature Retrieval (Training +
Temporal Correctness)

33

Objectif : reconstruire un jeu d’entrainement

e Pour entrainer un modele, il faut un dataset contenant :
O un label (ex : churn / non churn)
O untimestamp correspondant a la date du label
O Toutes les features valides a ce moment-la
e Lerdlede Feast:
O reconstruire automatiquement les features telles qu’elles existaient a une date passée
O garantir une cohérence temporelle et structurelle
e L'ensemble forme un dataset utilisable pour un entrainement reproductible.

34

Labels + timestamp = cle d'alignement

e Chaque label est associé a:
O unuser_id
O unlabel_value (ex : churn =1)
O un label_timestamp (date de référence)
e Le Feature Store utilise ce timestamp pour :
O chercher les features correspondantes a cette date
O Ignorer toute donnée future
o Alignement essentiel pour éviter le biais de fuite de données.

35

Roéle du timestamp dans l'historisation

e Les snapshots construits dans TP2 forment un historique mensuel.
e Chaque ligne de feature est datée par as_of.
e Feast reconstruit I'historique complet en choisissant :
O le snapshot le plus récent avant le timestamp du label
e Celapermetde:
o refaire un entrainement identique plusieurs mois ou années plus tard

O auditer une prédiction passée

36

Point-in-time join

e Pour chaque (user_id, label_timestamp) :
O sélectionner dans les snapshots les features valides au moment du label
e Condition:
O feature_timestamp <= label_timestamp
e Etchoisirla plus récente:
O ORDER BY feature_timestamp DESC LIMIT 1
o Feast automatise cela : aucune jointure SQL manuelle nécessaire.

37

Pseudo-Python : get_historical_features

from feast import FeatureService

training_df = store.get_historical_features(

entity_df=1labels_df, # contient user_id + event_timestamp + label
features=FeatureService("churn_service")
) .to_df()

e entity_df = DataFrame contenant user_id + event_timestamp (timestamp du label) + label.
e Feast renvoie un DataFrame fusionné :

O user_id, label, et toutes les features correctes a la date donnée.

38

Exemple : jointure snapshots + labels

Labels:
O user_id = 42, churn =1, event_timestamp = 2024-02-05
e Snapshots disponibles:
O as_of =2024-01-31
O as_of =2024-02-29
e Résultat du retrieval :
O Feast prend 2024-01-31, car c'est le dernier snapshot avant 2024-02-05.
o L'utilisateur ne voit jamais cette logique.
o Feast applique automatiquement la regle temporelle.

39

Gestion des valeurs manquantes / users inconnus

e Users absents dans certains FeatureViews :
O Feast renvoie NULL (ou NaN) => a gérer dans le pipeline de training.
o Features manquantes dans certaines fenétres temporelles :
O typique des nouveaux utilisateurs
O acceptable tant que le modéle sait gérer ces cas
e Users totalement inconnus:
O Feastrenvoie une ligne vide => peut étre filtré en prétraitement.
e Bonnes pratiques :
o appliquer des imputations simples (0, médiane, catégorie “unknown”) dans le pipeline ML.

40

Résultat : un dataset cohérent et reproductible

e Le retrieval garantit que :

toutes les features proviennent de la méme définition versionnée (registry).
aucun calcul n'est refait manuellement.

aucune information future n'est injectée.

si l'ingénierie de features change, alors un nouveau registry versionné est utilisé.
le dataset est recréable a I'identique dans 6 mois.

st le fondement de la reproductibilité en MLOps.

O O O O O

o C

D

41

Préparation pour I'entrainement

e Lerésultat du offline retrieval :

O

O

O

DataFrame complet : labels + features + user_id
ordres de colonnes uniformes

dataset prét a étre :

= nettoyé (imputation, normalisation)

= splitté (train/test/validation)

m Loggé dans MLflow pour tragabilité
Le cours 4 montrera :

m I'entrainement du modele

[I'enregistrement dans MLflow

[le passage en production

42

Lien avec la future API (FastAPI + online store)

e L’APIl en production appellera :
o store.get_online_features(feature_service, {"user_id": X})
o Les features récupérées online doivent correspondre exactement a celles utilisées offline.
e Gracea:
O la définition unique des FeatureViews
O la matérialisation réguliére du online store
e Conséquence:
O Pas de recalcul manuel dans I'API
O Plus de training-serving skew

O Modeéle robuste et cohérent

43

Online Features & Materialization

44

Pourquoi un Online Store ?

e Le modele en production doit accéder aux features en temps réel.

e Impossible de recalculer des agrégations complexes a chaque requéte.

e Le Online Store fournit :
O lookup trés rapide (ms) basé sur user_id
O features déja préparées via la matérialisation
O cohérence avec I'historique (méme définition que l'offline)
e C'est un cache structuré, versionné, optimisé pour l'inférence.

45

Mateérialisation périodique : offline vers online

o Etape consistant & pousser les snapshots (offline store) dans le online store.
e Utilisée pour:

O préparer les features avant les requétes de I'API

O synchroniser offline et online

O garantir que le modele en production utilise les données les plus récentes
o Exécutée:

O manuellement

O automatiquement (cron, orchestrateur Prefect dans les cours suivants)

O Périodicité dépend du systéme (mensuelle dans notre TP).

46

Pseudo-Python : materialize(start, end)

from feast import FeatureStore
store = FeatureStore(repo_path=".")
store.materialize(

Sta r‘t_date:"2@24_a—| _91 n ,
end_date=”2924_92_e—l "

e Feast récupere toutes les lignes offline entre start_date et end_date.

e Lesinsére dans l'online store sous forme de clés (entity_id => features).

e Aucun recalcul : simplement un transfert.

47

Structure du Online Store dans notre TP

Store local, léger :
O Redis (optionnel selon config)

O SQLite (par défaut en mode local)

O PostgreSQL dans le TP
Organisation clé-valeur :

o key = (entity, user_id)

O value ={"feature_1": ..., "feature_2": ..., ... }
Stockage déterminé par :
¢ FeatureViews déclarés

O TTL éventuel
Vidange ou refresh déclenché par de nouvelles matérialisations.

48

Online retrieval : get_online_features

features = store.get_online_features(
feature_service="churn_service",
entity_rows=[{"user_id": 42}]

) .to_dict()

Retourne un dictionnaire ;

{
"nb_sessions_36d": 12,
"total_paid_90d": 29.99,
"status": 1,

}

Appelé directement dans I'API FastAPI.

Latence extrémement faible.

49

Exemple d’accés en temps réel (pseudo-API)

@app.post("/predict")
def predict(request: PredictRequest):
features = store.get_online_features(

"churn_service",
[{"user_id": request.user_id}]

) .to_dict()

model = mlflow.pyfunc.load_model("models:/churn_model/Production")
y_pred = model.predict(features)

return {"prediction": float(y_pred)}
e Aucune transformation métier dans I'API.

e Le Feature Store fournit déja les valeurs prétes.
e Assurerigidité et cohérence.

50

Contrainte de fraicheur (“freshness”)

e Les features online doivent étre :
o suffisamment fraiches pour étre pertinentes
O mais pas recalculées a chaque requéte
e Parametres influencant la fraicheur :
o fenétre de matérialisation
o fréquence des mises a jour

O TTL éventuel sur certaines FeatureViews

e Dansle TP : données mensuelles, fraicheur = “dernier snapshot disponible”.

51

Connexion avec le futur modele servi

e Lemodele servira les prédictions via FastAPI + online store.
e Conséquences de Feast:
O méme définition des features utilisée en entrainement et en production
O réduction drastique du risque de training-serving skew
O pipeline APl minimal et propre
o FEtape suivante (Lecture 4) :
O entrainer un modele
O l'enregistrer dans MLflow

O connecter FastAPl a MLflow + Feast

52

Introduction TP 3

53

Objectifs du TP 3

e AlafinduTP vous saurez:

O

o O O O O

Définir une Entity pour l'utilisateur.

Déclarer des DataSources PostgreSQL basées sur les snapshots (TP2).
Créer plusieurs FeatureViews cohérentes.

Appliquer la configuration avec feast apply.

Matérialiser les features dans l'online store.

Effectuer un offline retrieval simple pour visualiser les features récupérées.

e Lebut: connecter I'ingestion (TP2) au futur pipeline d’entrainement (TP4).

54

