
Feature stores & Feast

Julien Romero

1

Motivation &
Concepts du Feature Store

2

Pourquoi un Feature Store ?

● Les features sont au cœur de la performance d’un modèle.
● Sans standardisation : calculs incohérents, duplication, bugs silencieux.
● Les équipes doivent partager, versionner et réutiliser des features.
● En production : besoin d’accéder aux features rapidement, systématiquement, sans recalculer.
● Le Feature Store fournit un cadre structuré : définition, stockage, serving, et historique des features.

3

Limites du calcul de features “à la main”

● Scripts dispersés entre notebooks, API, scripts d’entraînement.
● Logique de transformation dupliquée, parfois contradictoire.
● Mises à jour manuelles source d’erreurs.
● Difficile d’assurer que l’API reproduit exactement la logique du training.
● Aucune garantie temporelle : possible fuite d’information.
● Peu ou pas de réutilisation cross-projets.

4

Training-Serving Skew : problème central

● Définition: divergence entre les features utilisées à l’entraînement et celles calculées pour l’inférence.
● Un des principaux facteurs d’échec d’un système ML en production.
● Peut rendre un modèle performant “offline” mais catastrophique en conditions réelles.
● Origine : absence d’un mécanisme commun de définition/serving des features.

5

Causes du skew en pratique

● Code de feature engineering réécrit dans l’API au lieu d’être partagé.
● Agrégations calculées différemment selon l’environnement.
● Pipelines training et inference non synchronisés.
● Données plus fraîches en production qu’à l’entraînement (ou inverse).
● Différences de type, schéma ou mapping lors de l’ingestion.
● Bugs silencieux liés à des corrections appliquées après coup sur l’historique.

6

Conséquences : dérive silencieuse, bugs coûteux

● Baisse soudaine ou progressive de la précision du modèle.
● Prédictions instables ou incohérentes selon les utilisateurs.
● Difficulté extrême de diagnostic : “le modèle est-il mauvais ou les features sont-elles incohérentes ?”
● Coûts opérationnels élevés : réentraînements inutiles, hotfix API, rollback de modèles.
● Risque business réel : churn mal détecté, pertes de revenus.

7

Objectifs d’un Feature Store moderne

● Définition centralisée des features (déclarative, versionnée).
● Reproductibilité exacte entre offline et online.
● Point-in-time correctness pour éviter la fuite de données.
● Serving efficace :

○ Offline (training, batch scoring).

○ Online (latence faible pour l’inférence).
● Partage : plusieurs modèles/systèmes peuvent réutiliser les mêmes features.
● Traçabilité complète : source, schéma, timestamps, versions.

8

Offline vs Online Features

● Offline
○ Utilisés pour : entraînement, validation, backtesting.

○ Données historiques, volumineuses.

○ Agrégations lourdes autorisées.

○ Temporellement correctes via snapshots ou stores dédiés.
● Online

○ Utilisés pour : prédiction en temps réel.

○ Latence très faible exigée (<10–50 ms).

○ Taille plus limitée.

○ Doivent être synchronisés avec les features offline.

9

Temps réel vs batch : contraintes opérationnelles

● Batch (offline) :
○ Fenêtre temporelle large (ex : 30j, 90j).

○ Processus intensifs (ingestion, agrégations).

○ Pas besoin de retour immédiat.
● Temps réel (online) :

○ Doit répondre instantanément aux requêtes de l’API.

○ Matérialisation nécessaire : pas de recalcul dynamique.

○ Forte contrainte de cohérence avec la logique offline.

10

Versionnage des features et traçabilité

● Les features évoluent : définition, fenêtres temporelles, agrégations.
● Besoin de garder :

○ Version de chaque Feature View.

○ Mapping vers la source (snapshots).

○ Paramètres utilisés lors de l’entraînement.
● Sans versionnage : impossible de reproduire un modèle ou comprendre une dérive.
● Le Feature Store est un métastore des features.

11

Point-in-Time Correctness : intuition

● Problème : un modèle peut “voir le futur” s'il utilise des données postérieures au label.
● Principe :

○ Pour chaque observation, seules les features disponibles à cette date sont utilisées.

○ Alignement strict entre timestamp du label et timestamp des features.
● Le Feature Store assure automatiquement cette garantie via son moteur de jointure temporelle (historical retrieval).

12

Comparaison : sans FS vs avec FS

● Sans Feature Store
○ Du code partout.

○ Skew fréquent.

○ Peu de réutilisation.

○ Pas de versionnage clair.

○ Tests limités, difficilement automatisables.

○ Diagnostique très difficile.
● Avec Feature Store

○ Définition unique et centralisée.

○ Alignement automatique training/inference.

○ Meilleure robustesse opérationnelle.

○ Historique et traçabilité garantis.

○ Rapidité à développer de nouveaux modèles.

13

Intégration dans notre architecture StreamFlow

● Ingestion + validation (TP1–TP2) produisent des snapshots mensuels.
● Feast consomme ces snapshots comme offline store.
● Développeurs définissent des entities, data sources, feature views.
● Matérialisation vers un online store pour l’API FastAPI.
● Entraînement (Lecture 4) récupérera un dataset cohérent via historical retrieval.
● Serving : FastAPI interroge Feast, puis le model, et renvoie la réponse.

14

Architecture de Feast

15

Position de Feast dans le pipeline MLOps

● Feast intervient entre l’ingestion/snapshots (TP1–TP2) et l’entraînement/modèle (TP4).
● Rôle : fournir un accès cohérent, versionné, temporellement correct aux features.
● C’est la couche intermédiaire qui garantit :

○ Alignement training/inference

○ Réutilisation de transformations

○ Découplage entre data engineering et modèle
● Fait le pont entre :

○ PostgreSQL (données structurées) ⇔ Training pipeline ⇔ API en production

16

Vue d’ensemble : repo -> registry -> offline/online stores

● Feast repo : répertoire déclaratif contenant la définition des features.
● Registry : base interne stockant la configuration versionnée (entities, FV…).
● Offline Store : source historique (PostgreSQL dans notre cas).
● Online Store : stockage rapide (Redis ou SQLite) pour l’inférence temps réel.
● Flux standard :

1. Définir features

2. feast apply (synchronise registry)

3. Materialize offline puis online

4. Serve features à l’API et au training.

17

Concept 1 : Entities

● Une Entity identifie l’unité principale pour laquelle on calcule des features.
○ Exemples : user, device, transaction, produit.

○ Dans notre projet : user.
● Propriétés essentielles :

○ nom unique

○ clé primaire (user_id)
■ stable dans le temps
■ correspondant aux clefs dans PostgreSQL

○ type (int, string, UUID…)
● Sert de pivot pour toutes les jointures temporelles.
● Pseudo-Python (exemple) :

○ user = Entity(name="user", join_keys=["user_id"], description="Identifie un utilisateur
StreamFlow")

18

Concept 2 : Data Sources (PostgreSQL dans le TP)

● Une Data Source décrit où les features brutes/historiques sont stockées.
○ Dans le TP : tables snapshot dans PostgreSQL.

● Contient :
○ connexion DB

○ table ou requête SQL

○ timestamp field (as_of)
■ récupération historique
■ alignement avec les labels
■ exclusion automatique des données postérieures (anti-data leakage)

○ mapping des champs
● Importance : la validité temporelle dépend de cette source.
● Pseudo-Python :

PostgresSource(
 table="subscriptions_profile_snapshots",
 timestamp_field="as_of"
)

19

Concept 3 : Feature Views

● Un Feature View regroupe les features associées à une entity.
● Contient :

○ entities target : liste d’Entities liées
○ data source : table snapshot (PostgresSource ici)
○ liste des features (nom + type)
○ timestamp
○ TTL : période de validité en online store
○ tags : pour la documentation

● Acte central : déclarer les features plutôt que les calculer à la main.
● Correspond entièrement aux tables snapshot que nous avons construites.
● Pseudo-Python :

subscriptions_fv = FeatureView(
 name="subscriptions_profile",
 entities=["user"],
 schema=[Field("plan_type", String), Field("status", Int64)],
 source=subscriptions_source
)

20

Best practices : granularité des FeatureViews

● On ne fait pas un FeatureView par un modèle. Un FV = un bloc logique homogène.
● Éviter :

○ un FV gigantesque avec 100+ features

○ fusionner des domaines hétérogènes (ex : paiements + support)
● Favoriser :

○ regroupements naturels (durées, fenêtres temporelles)

○ modularité pour réutiliser des FV dans plusieurs modèles

21

Best practices : stabilité de schéma (liée à GE)

● Les FeatureViews supposent un schéma stable, d’où validation GE en amont.
● Modifier un FV :

○ ajouter feature = OK

○ supprimer ou renommer = versionner
● Feast ne valide pas la qualité des données : GE reste indispensable.

22

Concept 4 : Feature Service

● Un Feature Service regroupe plusieurs FeatureViews logiquement liés.
● Permet d’exposer un ensemble cohérent de features pour :

○ un modèle spécifique (ex : modèle churn)

○ un endpoint API
● Abstraction clé : un modèle ne dépend pas de la structure interne du Feature Store.
● Pseudo-Python :

churn_service = FeatureService(
 name="churn_service",
 features=[subscriptions_fv, usage_fv, payments_fv]
)

23

Concept 5 : Offline Store (training et historique)

● L’offline store est utilisé pour :
○ récupération historique (training)

○ backtesting

○ génération de datasets volumineux
● Dans le TP : PostgreSQL, alimenté par nos snapshots mensuels.
● Feast exécute automatiquement les point-in-time joins entre labels et features.
● Pas de recalcul lourd dans le code d’entraînement : Feast gère la reconstruction du dataset.

24

Concept 6 : Online Store (inférence)

● L’online store sert les features pour l’API en temps réel.
● Caractéristiques :

○ faible latence, lookup direct

○ stockage clé/valeur basé sur entity_id + timestamp

○ contenu mis à jour via la matérialisation
● Dans le TP : petit online store local.
● Permet à FastAPI de récupérer 10-20 features en quelques millisecondes.

25

Concept 7 : Materialization (offline -> online)

● Étape centrale : transférer les données snapshot vers le online store.
● Effectuée via :

○ feast materialize <start> <end>
● Permet d’éviter les recalculs au moment de l’inférence.
● Assure :

○ faible latence

○ cohérence avec les données historiques

○ refresh programmé (ex : quotidien, mensuel)
● Dans notre TP : matérialisation mensuelle basée sur les snapshots.

26

Cycle de vie d’un feature dans Feast

1. Ingestion & validation dans PostgreSQL (TP1–TP2).
2. Création d’un snapshot mensuel (as_of).
3. Déclaration du FeatureView (schema + source).
4. feast apply => mise à jour du registry.
5. Materialize => remplissage du online store.
6. Offline retrieval => construction du dataset d’entraînement.
7. Online retrieval -> FastAPI -> modèle -> prédiction.

Cycle entièrement reproductible et versionné.

27

Utilisation de feast apply

● Commande clé :
○ feast apply

● Effets :
○ synchronise le registry avec les FV déclarés

○ détecte les ajouts/modifications

○ avertit si des changements cassent la compatibilité
● Exécution à chaque changement de configuration.

28

Fichiers du repo Feast dans le projet

● Dans services/feast_repo/repo :
○ feature_store.yaml

■ configuration globale (offline store, online store).
○ entities.py

■ définition des entities.
○ data_sources.py

■ configuration des tables PostgreSQL.
○ feature_views.py

■ un fichier par FeatureView (une seule ici)
○ services.py

■ Feature Services (groupement logique).
○ Registry (généré après feast apply).

● L’ensemble constitue la spécification déclarative des features.

29

Résultat : un registry versionné

● Après feast apply, Feast génère :
○ un registry.db (ou fichier équivalent)

○ contenant toutes les versions des FV, Entities, Sources
● Un registry :

○ permet la reproductibilité des entraînements

○ garantit que l’API et le pipeline training utilisent la même définition
● Le Feature Store devient la vérité unique des features du système.

30

Flux : snapshots -> Feast offline -> retrieval

Snapshots
PostgreSQL

(as_of)

Historical
Retrieval
(training)

Offline Store
(Feast)

Materializati
on

Online Store API FastAPI get_online_fe
atures

Points importants :
● Un seul pipeline de features, deux modes de

consommation.
● Toujours basé sur les mêmes définitions =>

pas de duplication de logique.

31

Pourquoi Feast résout le skew

● Une seule déclaration de features utilisée partout.
● Serving offline/online basé sur la même source, garantissant cohérence.
● Jointures temporelles automatiques, impossibles à maintenir manuellement.
● Versionnage du registry → reproductibilité du modèle.
● Matérialisation contrôlée pour garantir la fraîcheur.
● Découplage : data engineers, ML engineers, API engineers utilisent la même base fonctionnelle.
● Le modèle voit exactement les mêmes features en entraînement et en production.

32

Offline Feature Retrieval (Training +
Temporal Correctness)

33

Objectif : reconstruire un jeu d’entraînement

● Pour entraîner un modèle, il faut un dataset contenant :
○ un label (ex : churn / non churn)

○ un timestamp correspondant à la date du label

○ Toutes les features valides à ce moment-là
● Le rôle de Feast :

○ reconstruire automatiquement les features telles qu’elles existaient à une date passée

○ garantir une cohérence temporelle et structurelle
● L’ensemble forme un dataset utilisable pour un entraînement reproductible.

34

Labels + timestamp = clé d’alignement

● Chaque label est associé à :
○ un user_id

○ un label_value (ex : churn = 1)

○ un label_timestamp (date de référence)
● Le Feature Store utilise ce timestamp pour :

○ chercher les features correspondantes à cette date

○ Ignorer toute donnée future
● Alignement essentiel pour éviter le biais de fuite de données.

35

Rôle du timestamp dans l’historisation

● Les snapshots construits dans TP2 forment un historique mensuel.
● Chaque ligne de feature est datée par as_of.
● Feast reconstruit l’historique complet en choisissant :

○ le snapshot le plus récent avant le timestamp du label
● Cela permet de :

○ refaire un entraînement identique plusieurs mois ou années plus tard

○ auditer une prédiction passée

36

Point-in-time join

● Pour chaque (user_id, label_timestamp) :
○ sélectionner dans les snapshots les features valides au moment du label

● Condition :
○ feature_timestamp <= label_timestamp

● Et choisir la plus récente :
○ ORDER BY feature_timestamp DESC LIMIT 1

● Feast automatise cela : aucune jointure SQL manuelle nécessaire.

37

Pseudo-Python : get_historical_features

from feast import FeatureService

training_df = store.get_historical_features(
 entity_df=labels_df, # contient user_id + event_timestamp + label
 features=FeatureService("churn_service")
).to_df()

● entity_df = DataFrame contenant user_id + event_timestamp (timestamp du label) + label.
● Feast renvoie un DataFrame fusionné :

○ user_id, label, et toutes les features correctes à la date donnée.

38

Exemple : jointure snapshots + labels

● Labels :
○ user_id = 42, churn = 1, event_timestamp = 2024-02-05

● Snapshots disponibles :
○ as_of = 2024-01-31

○ as_of = 2024-02-29
● Résultat du retrieval :

○ Feast prend 2024-01-31, car c’est le dernier snapshot avant 2024-02-05.
● L’utilisateur ne voit jamais cette logique.
● Feast applique automatiquement la règle temporelle.

39

Gestion des valeurs manquantes / users inconnus

● Users absents dans certains FeatureViews :
○ Feast renvoie NULL (ou NaN) => à gérer dans le pipeline de training.

● Features manquantes dans certaines fenêtres temporelles :
○ typique des nouveaux utilisateurs

○ acceptable tant que le modèle sait gérer ces cas
● Users totalement inconnus :

○ Feast renvoie une ligne vide => peut être filtré en prétraitement.
● Bonnes pratiques :

○ appliquer des imputations simples (0, médiane, catégorie “unknown”) dans le pipeline ML.

40

Résultat : un dataset cohérent et reproductible

● Le retrieval garantit que :
○ toutes les features proviennent de la même définition versionnée (registry).

○ aucun calcul n’est refait manuellement.

○ aucune information future n’est injectée.

○ si l’ingénierie de features change, alors un nouveau registry versionné est utilisé.

○ le dataset est recréable à l’identique dans 6 mois.
● C’est le fondement de la reproductibilité en MLOps.

41

Préparation pour l’entraînement

● Le résultat du offline retrieval :
○ DataFrame complet : labels + features + user_id

○ ordres de colonnes uniformes

○ dataset prêt à être :
■ nettoyé (imputation, normalisation)
■ splitté (train/test/validation)
■ Loggé dans MLflow pour traçabilité

○ Le cours 4 montrera :
■ l’entraînement du modèle
■ l’enregistrement dans MLflow
■ le passage en production

42

Lien avec la future API (FastAPI + online store)

● L’API en production appellera :
○ store.get_online_features(feature_service, {"user_id": X})

● Les features récupérées online doivent correspondre exactement à celles utilisées offline.
● Grâce à :

○ la définition unique des FeatureViews

○ la matérialisation régulière du online store
● Conséquence :

○ Pas de recalcul manuel dans l’API

○ Plus de training-serving skew

○ Modèle robuste et cohérent

43

Online Features & Materialization

44

Pourquoi un Online Store ?

● Le modèle en production doit accéder aux features en temps réel.
● Impossible de recalculer des agrégations complexes à chaque requête.
● Le Online Store fournit :

○ lookup très rapide (ms) basé sur user_id

○ features déjà préparées via la matérialisation

○ cohérence avec l’historique (même définition que l’offline)
● C’est un cache structuré, versionné, optimisé pour l’inférence.

45

Matérialisation périodique : offline vers online

● Étape consistant à pousser les snapshots (offline store) dans le online store.
● Utilisée pour :

○ préparer les features avant les requêtes de l’API

○ synchroniser offline et online

○ garantir que le modèle en production utilise les données les plus récentes
● Exécutée :

○ manuellement

○ automatiquement (cron, orchestrateur Prefect dans les cours suivants)

○ Périodicité dépend du système (mensuelle dans notre TP).

46

Pseudo-Python : materialize(start, end)

from feast import FeatureStore

store = FeatureStore(repo_path=".")

store.materialize(
 start_date="2024-01-01",
 end_date="2024-02-01"
)

● Feast récupère toutes les lignes offline entre start_date et end_date.
● Les insère dans l’online store sous forme de clés (entity_id => features).
● Aucun recalcul : simplement un transfert.

47

Structure du Online Store dans notre TP

● Store local, léger :
○ Redis (optionnel selon config)

○ SQLite (par défaut en mode local)

○ PostgreSQL dans le TP
● Organisation clé-valeur :

○ key = (entity, user_id)

○ value = { "feature_1": ..., "feature_2": ..., ... }
● Stockage déterminé par :

○ FeatureViews déclarés

○ TTL éventuel
● Vidange ou refresh déclenché par de nouvelles matérialisations.

48

Online retrieval : get_online_features

features = store.get_online_features(
 feature_service="churn_service",
 entity_rows=[{"user_id": 42}]
).to_dict()

 Retourne un dictionnaire :

{
 "nb_sessions_30d": 12,
 "total_paid_90d": 29.99,
 "status": 1,
 ...
}

Appelé directement dans l’API FastAPI.

Latence extrêmement faible.

49

Exemple d’accès en temps réel (pseudo-API)

@app.post("/predict")
def predict(request: PredictRequest):
 features = store.get_online_features(
 "churn_service",
 [{"user_id": request.user_id}]
).to_dict()

 model = mlflow.pyfunc.load_model("models:/churn_model/Production")
 y_pred = model.predict(features)

 return {"prediction": float(y_pred)}

● Aucune transformation métier dans l’API.
● Le Feature Store fournit déjà les valeurs prêtes.
● Assure rigidité et cohérence.

50

Contrainte de fraîcheur (“freshness”)

● Les features online doivent être :
○ suffisamment fraîches pour être pertinentes

○ mais pas recalculées à chaque requête
● Paramètres influençant la fraîcheur :

○ fenêtre de matérialisation

○ fréquence des mises à jour

○ TTL éventuel sur certaines FeatureViews
● Dans le TP : données mensuelles, fraîcheur = “dernier snapshot disponible”.

51

Connexion avec le futur modèle servi

● Le modèle servira les prédictions via FastAPI + online store.
● Conséquences de Feast :

○ même définition des features utilisée en entraînement et en production

○ réduction drastique du risque de training-serving skew

○ pipeline API minimal et propre
● Étape suivante (Lecture 4) :

○ entraîner un modèle

○ l’enregistrer dans MLflow

○ connecter FastAPI à MLflow + Feast

52

Introduction TP 3

53

Objectifs du TP 3

● À la fin du TP, vous saurez :
○ Définir une Entity pour l’utilisateur.

○ Déclarer des DataSources PostgreSQL basées sur les snapshots (TP2).

○ Créer plusieurs FeatureViews cohérentes.

○ Appliquer la configuration avec feast apply.

○ Matérialiser les features dans l’online store.

○ Effectuer un offline retrieval simple pour visualiser les features récupérées.
● Le but : connecter l’ingestion (TP2) au futur pipeline d’entraînement (TP4).

54

