&.v'\oh"sc%o INSTITUT TELECOM
;'IO,: POLYTECHNIQUE
.34// P "‘i

* DE PARIS =TT

-
- =~ ~

Data engineering pour le MLOps :
Ingestion, validation & snapshots
temporels

Julien Romero

\5__—¢

De I'importance de l'ingestion de
données

Exemple du TP : StreamFlow

e Vous étes un ingénieur ML dans une entreprise appelée StreamFlow vendant un produit avec un abonnement. On
vous demande de concevoir un modeéle de prédiction de I'attrition (churn) des clients, c’est-a-dire de prédire si un
client va quitter votre service ou non.

O Votre modele doit étre déployable en production
e Tousles mois:

O Vous recevez les données sur les activités des utilisateurs sur votre site
O Vous avez acces aux informations de paiement et les interactions avec le support
O Vous pouvez gérer des labels churn/no churn plus tard
e Nous allons commencer par traiter I'ingestion des données, qui est cruciale pour entrainer un modele

Pourquoi les systemes de ML dépendent de pipelines de
données robustes

e Un modele n'est jamais meilleur que les données utilisées pour I'entrainer.
e Un pipeline d'ingestion doit garantir :
O La cohérence des données (schéma, types, distribution).
O La stabilité temporelle (ce qui est vu a un instant t doit étre reconstruit plus tard).
O Lacomplétude (tous les fichiers, toutes les lignes, toutes les clés étrangeéres).
O Latragabilité (on doit comprendre I'état des données lors de I'entrainement).
e Sans un pipeline solide, méme un excellent modele produit des prédictions incohérentes.

Exemple : corruption silencieuse qui casse le modele de churn

e Casréel typique:
o At0, le modele de churn fonctionne correctement.

o At1,un nouvel export mensuel a introduit un changement discret :
m valeurs manquantes dans nb_sessions,

= nouvelle colonne non gérée,
m type string au lieu de float pour une métrique d’'usage.
Le pipeline ignore ces anomalies et les données “polluées” entrent dans le training set.

o Le modéle dérive, la performance s’effondre, mais aucune erreur n'a été détectée.
e Cetype de bug colte tres cher et met parfois des semaines a diagnostiquer.

(@]

Training-serving skew et ingestion inconsistente

e Le training-serving skew survient lorsque :

o Les données utilisées pendant I'entrainement ne correspondent pas a celles utilisées en production.

o Les features sont calculées différemment entre les environnements.

o L'ingestion mensuelle réécrit accidentellement des valeurs historiques.

o Certaines transformations sont appliquées uniquement lors de I'inférence ou uniquement lors de I'entrainement.
e Uneingestion correcte garantit que les données d’entrainement représentent fidelement le contexte réel de production.

Pourquoi I'ingestion est la premiére étape de la reproductibilité

e Lareproductibilité en MLOps repose sur l'idée suivante :
o A partir des mémes données sources, tout run doit reconstruire exactement le méme état.
e Celaimplique:
O un schéma stable,
O une logique d'ingestion idempotente (faire deux ingestions donne le méme résultat qu'une seule),
O aucune dépendance cachée,
O des transformations déterministes,
O la capacité a rejouer un mois passé (ex: janvier 2024) et obtenir le méme résultat.
e Sans une ingestion reproductible, impossible de garantir la reproductibilité des modéeles.

Principe MLOps : des pipelines déterministes

e Pour un pipeline déterministe :
O Méme input = méme output.
O Pas d'effets de bord (pas de réécriture involontaire, pas de comportements aléatoires).
O Les scripts produisent un état identique, que ce soit sur votre machine, dans Docker ou sur un serveur CI/CD.
O Possibilité de reconstruire une version antérieure des données avec un timestamp donné.
e Ladéterminisme est une condition nécessaire pour obtenir des artefacts de modeles tragables et fiables.

Objectifs pédagogiques du cours d'aujourd’hui

e Alafinducours et du TP, vous serez capables de :

o=

S.

Comprendre la structure d'un pipeline d’'ingestion moderne.

Implémenter une logique d’'upsert fiable dans PostgreSQL.

Appliquer une validation systématique avec Great Expectations.

Produire des snapshots temporels pour garantir la cohérence historique.

Orchestrer 'ensemble avec Prefect pour obtenir un pipeline réexécutable et observable.

o Ces fondations préparent l'introduction au Feature Store (Feast) lors du prochain cours.

Des données brutes a une pipeline de
données structurées

10

Définition : pipeline d’ingestion

e Dans un systeme MLOps, un pipeline d'ingestion est un ensemble d’étapes qui :

O

O

O

O

Recoit des données brutes (CSV, extracts externes).
Les nettoie, valide et structure dans une base relationnelle.
Prépare les données pour le calcul de features et I'entrainement.

Garantit un comportement répétable, auditables et déterministe.

e L'ingestion est la premieére brique d'un pipeline ML fiable.

11

Données brutes, données traitées, données “curées”

Raw data (brutes)
O Issues directement de la source.

O Peu fiables : incohérences, types variés, colonnes manquantes, bruit.
Processed data (traitées)
O Normalisées, typées, stockées dans PostgreSQL.

O Base de travail pour les features et la validation.
Curated data (curées)
O Données stabilisées, enrichies et versionnées (snapshots temporels).

O Utilisées pour I'entrainement, le test, et le Feature Store.
Cette hiérarchie protege le pipeline des erreurs amont.

12

Modes d’ingestion : full, incremental, upsert

e Full reload

O Réécrit entierement les tables.

O Simple mais colteux et risqué pour des volumes croissants.
e Incremental ingestion

O Charge uniquement les nouvelles lignes.

O Nécessite une logique de delta (timestamps, marqueurs).
e Upsertingestion

O Insére ou met a jour selon la clé primaire.

o Evite duplication et perte de données.

O Recommandé pour les pipelines ML récurrents.

13

Pourquoi I'upsert est la norme en production ML

L'upsert ‘update ou insert si n‘existe pas déja) répond directement aux contraintes du ML en production :

O

O

O

O

O

Les fichiers mensuels peuvent contenir des mises a jour d’utilisateurs existants.
La méme ingestion doit pouvoir étre rejouée sans créer de doublons.

Des valeurs tardives ou corrigées doivent remplacer I'existant.

Le modéle se base sur un historique fiable et stable.

L'upsert permet une ingestion idempotente, essentielle pour CI/CD et orchestration automatique.

C’est aujourd’hui le standard des pipelines de données continus.

14

Exemple SQL générique : INSERT ... ON CONFLICT

Modele générique d'upsert PostgreSQL :

INSERT INTO subscriptions (user_id, plan_type, renewal_date, status)
VALUES ($1, $2, $3, $4)
ON CONFLICT (user_id)
DO UPDATE SET
plan_type = EXCLUDED.plan_type,
renewal_date = EXCLUDED.renewal_date,
status = EXCLUDED.status;

Points clés :
o user_id doit étre une clé unique ou primaire.
o EXCLUDED représente les valeurs nouvellement proposées.
o Le comportement est déterministe, méme si la méme ligne est réinsérée plusieurs fois.

15

L’importance de I'idempotence

e L'idempotence signifie :

O

Exécuter deux fois le pipeline produit le méme état final.

e Exemples:

O

O
O
O

Un étudiant relance I'ingestion aprés une erreur => la base reste correcte.

Une tache Prefect échoue au milieu, puis redémarre => pas de doublons.

Un mois passé doit pouvoir étre reconstruit a I'identique pour une analyse ou un audit.

Une ingestion nocturne automatisée doit résister aux interruptions réseau.

e Sansidempotence, la reproductibilité du systeme ML s’effondre.

16

Outils de support : PostgreSQL déja configuré

e Dans notre architecture :
O Toutes les tables relationnelles sont déja définies dans PostgreSQL.
O Chaque table posséde une clé primaire stable (ex: user_id).
O Les schémas sont adaptés a un usage ML (tables agrégées, labels, profils).

L'ingestion se fait depuis Docker via des scripts Python orchestrés par Prefect.
o PostgreSQL sert de backbone structuré au pipeline d’ingestion.

O

17

Pipeline d’ingestion étape par étape

Lecture + Nettoyage Upsert

: léger +
arsin
Y g typage PostgreSQL

Validation
(Great
Expectations)

Snapshots

mensuels
(tables

snapshot)

18

Logique temporelle et les snapshots

19

Pourquoi le machine learning exige une cohérence temporelle

e Un modele de ML doit apprendre sur des données reflétant I'état réel du monde a un instant donné.
e Celaimplique:
O Des features calculées avec les informations disponibles a ce moment-la, pas aprés.
O Une séparation stricte entre passé et futur lors de I'entrainement.
O La capacité de reconstruire I'état des données a n'importe quel mois historique.
e Sans cohérence temporelle, les performances du modele sont artificiellement élevées et trompeuses.

20

Prévenir la data leakage pendant I'entrainement

o Le data leakage survient lorsque I'entrainement utilise des informations qui n’existaient pas encore lors de la
prédiction réelle.
e Exemples typiques:
O Utiliser un agrégat calculé sur une période postérieure au label.
O Incorporer une correction de données faite 3 mois apres les faits.
O Utiliser une version “live” qui a été mise a jour apres la période d’étude.
e Les snapshots permettent d'éviter toute fuite de données en figeant une version strictement datée.

21

Qu’est-ce qu’un “snapshot” en data engineering ?

e Un snapshot est une copie figée, immuable, d'un ensemble de données a un moment précis.
e Propriétés essentielles :

O Versionnée par une date (ex: 2024-01-31).

O Représente I'état exact des tables a cet instant.

O Sert de base pour I'entrainement du modele.

O Ne doit jamais étre modifiée a posteriori.
e Les snapshots sont le fondement d'un pipeline ML fiable et auditable.

22

Exemple réel : snapshots mensuels pour abonnements ou
finance

e Dans les entreprises :
O Les banques conservent des positions financieres mensuelles pour calculer risque, conformité, reporting.

O Les services d'abonnement (Saas, télécoms, streaming) stockent un état mensuel du client pour analyser churn ou
lifetime value.
O Les systemes de scoring nécessitent des vues mensuelles constantes pour garantir I'équité et la comparabilité.
e Les snapshots permettent d’expliquer pourquoi un score ou une décision a été prise a une époque donnée.

23

Le role du timestamp as_of

Le champ as_of indique la date de référence du snapshot.
Fonctions :

@)

Identifie de maniere unique un état figé.
Permet de reconstruire un dataset temporel complet.

o
o Sert d'index logique pour I'entrainement (sélection par mois).
o

Sépare nettement données historiques et données mises a jour.

as_of devient un élément central de la tragabilité du pipeline ML.

24

Tables snapshot vs tables “live”

e Tables live
O Contiennent I'état actuel des entités (abonnements, usage, paiements).
O Se mettent a jour avec chaque ingestion.
o Tables snapshot
O Contiennent une version figée, immuable, datée.
O Permettent de reconstruire un dataset historique complet.
O Sontindexées par (user_id, as_of).
e Les modeles devraient toujours s’entrainer sur les tables snapshot, jamais sur les tables live.

25

Comment Feast utilisera les snapshots plus tard

Feast, notre Feature Store, exploitera ces snapshots pour :
O

O Garantir la correspondance entre features d’entrainement et features d’inférence.

o Eviter automatiquement la data leakage grace & I'alignement temporel des données.

O Reproduire des jeux de données a partir d'un timestamp ou d’'un range de dates.
Les snapshots sont donc une dépendance directe du Feature Store.

Faire des Historical Feature Retrievals : récupérer les features telles qu’elles existaient au moment du label.

26

Pattern SQL pour créer un snapshot

INSERT INTO subscriptions_snapshots
SELECT

user_id,

plan_type,

status,

months_since_signup,

"{AS_OF}' AS as_of # AS_OF est un paramétre donné en entrée
FROM subscriptions;

Principes clés :

. Le snapshot n'écrase pas l'existant : il ajoute une nouvelle partition temporelle.
. Il doit étre idempotent : relancer I'ingestion crée le méme snapshot.
o Aucune transformation imprévisible ne doit intervenir aprés insertion.

27

Patterns de validation des snapshots

e Avant d'accepter un snapshot, on valide :

O

O

O

O

O

Aucune ligne manquante par rapport aux tables live.
Unicité : (user_id, as_of) est unique.
Homogénéité : distributions cohérentes d’'un mois a l'autre.

Cohérence : méme schéma, mémes types, mémes colonnes.

Intégrité temporelle : pas de as_of futur, pas de données hors période.

e Les snapshots doivent étre stables et comparables entre mois.

28

Timeline des snapshots pour I'entrainement

snapshot

mois_000 000

mois_001

snapshot
_001

shapshot

mois_002 002

Dataset
d'entrainement

29

Validation des données avec
Great Expectations

30

Pourquoi la validation est essentielle (failures rapides >
erreurs silencieuses)

e Dans les systemes ML, la majorité des pannes provient de données incorrectes et non détectées.
e Lavalidation permet:
De détecter immédiatement les anomalies.

D’éviter que des données corrompues entrent dans le training set.

o O O

De rendre le pipeline prévisible et controlable.

O D'offrir une garantie de qualité avant les snapshots.
e Une erreur détectée t6t vaut mieux qu'un modele entrainé sur des données fausses.

31

Notions de base : le schema drift

e Le schema drift survient quand le schéma des données change de fagon non prévue :
O Colonnes ajoutées ou supprimées.
O Types qui changent (string — int, int — float).
O Valeurs manquantes nouvellement introduites.
O Ordre des colonnes modifié.
e Le ML est tres sensible a ces dérives : méme un petit changement peut invalider la pipeline.

32

Introduction a Great Expectations

o Great Expectations (GE) est un framework pour :

O

O

O

O

e GE formalise la qualité des données directement dans le pipeline.

Définir des regles explicites sur les données (“expectations”).
Exécuter ces régles automatiquement lors de I'ingestion.
Produire des rapports lisibles par humains et machines.

Arréter ou alerter quand une violation se produit.

33

Expectations : définition et exemples

e Une expectation = une regle déclarative appliquée a une colonne ou une table.

e Exemples:
O “Cette colonne ne doit pas contenir de valeurs nulles.”
O “Cette colonne doit étre comprise entre 0 et 2000.”
O “Le nombre de lignes doit étre au moins 10 000.”
O “Les user_id doivent étre uniques.”
e Collections d’expectations = expectation suite.

34

Exemple d’expectation : aucune valeur NULL sur user_id

expectation_suite.expect_column_values_to_not_be_null("user_id")

Pourquoi cette regle est essentielle :

o Le user_id est la clé primaire.
o Toute valeur NULL rend 'upsert ou le snapshot incohérent.
o Un NULL peut cacher une corruption amont (erreur d’export).

o Cette expectation protege directement I'intégrité du pipeline.

Exemple d’expectation : bornes nhumériques réalistes

expectation_suite.expect_column_values_to_be_between(
"nb_sessions",
min_value=0,
max_value=5000

)

Objectifs :

o Détecter les valeurs impossible (ex: -3 sessions).

e Prévenir les ruptures de distribution.

e Repérer les erreurs d'intégration ou de format (ex: texte a la place d’'un nombre).
Ces contréles stabilisent les features.

36

Echec strict (“hard fail”) vs échec toléré (“soft fail”)

e Hard fail
O Arréte immédiatement la pipeline.
O Utilisé pour les étapes critiques : ingestion => validation => snapshots.
O Garantit que rien de corrompu n’entre dans la base historique.
o Soft fail
O Géneére un avertissement mais la pipeline continue.
O Utilisé pour le monitoring ou les analyses non bloquantes.
e Dans notre cours, I'ingestion utilise exclusivement des hard fails.

37

Output GE : le rapport de validation

e GE produit un objet JSON et/ou un rapport HTML contenant :
O Laliste des expectations testées.
O Leur statut : success / failure.
O Les valeurs problématiques éventuelles.
O Les statistiques de la table (distributions, types).
O Unrésumé lisible pour l'utilisateur.
e Cerapport permet d'auditer chaque ingestion mensuelle.

38

Emplacement de la validation dans la pipeline d’ingestion

e Ordre strict :
1. Upsert des tables live.
2. Validation via GE.
3. Snapshots uniquement si la validation réussit.
e Lavalidation agit comme un garde-fou :
O Siquelque chose ne va pas, la pipeline s’arréte avant d'altérer I'historique.

39

La validation comme porte d'entrée

Validation

Ingestion GE

Upsert
Postgres

Snapshot
(as_of)

40

Exemple : Valeur négative injectée volontairement

e Imaginez qu’'un export mensuel contient :
O nb_sessions =-12 pour un utilisateur.

e Sans validation:

L'erreur passe silencieusement.

Les features agrégées deviennent incohérentes.

o O O

Le modéle interpréte cela comme un comportement atypique => dérive.
O Impossible de comprendre la cause plus tard.
e AvecGE:
O L'expectation “nb_sessions >= 0" échoue immédiatement.
O La pipeline s'arréte.
O Aucune pollution n‘entre dans les snapshots.
o

Le bug est corrigé avant qu'il ne devienne codteux.

Fondamentaux de l'orchestration

Introduction a Prefect

42

Pourquoi a-t-on besoin d’un orchestrateur ?

e Un pipeline de ML moderne implique de nombreuses étapes dépendantes :

o chargement de données, validations, snapshots, extraction de features, entrainement, déploiement.
e Sans orchestrateur :

Ordonnancement manuel fragile.
Pas de mécanisme de reprise apres échec.
Pas de logs centralisés.

Paramétrisation et réplication difficiles.

o O O O O

Aucun moyen de planifier (batch mensuel, quotidien, CI/CD).
e Un orchestrateur garantit un pipeline fiable, tragable et automatisable.

43

Qu'est-ce que Prefect ?

e Prefect est un orchestrateur orienté Python permettant de :

O Définir des unités de travail (“tasks”) et des pipelines (“flows”).
O Exécuter ces flows localement ou dans des environnements distribués.
O Gérer logs, erreurs, états, dépendances et parametres.
O Superviser I'exécution via une interface ou des logs intégrés.
o Il remplace des scripts ad hoc par une infrastructure de workflow robuste.

44

Notre pipeline d’ingestion

e Nous allons partir des données brutes que nous insérerons dans une base de données relationnelle. Ensuite, nous
validerons les tables et créerons des snapshots
e Endétails:

1. Chargement de CSV(s)

2. Upsert (update + insert) dans les tables relationnelles
3. Validation des tables avec Great Expectations

4. Matérialisation des snapshots mensuels

5. Log et orchestration avec Prefect

45

Tasks vs Flows

e Task

O Fonction unitaire, atomique, réutilisable.

O Exemples : lire un CSV, exécuter un upsert, valider une table.
e Flow

O Structure globale orchestrant plusieurs tasks.

O Définit I'ordre d’exécution, les dépendances, la logique métier.

e Un flow assemble plusieurs tasks pour produire un pipeline déterministe.

46

Logging et gestion des échecs dans Prefect

o Prefect enregistre automatiquement :
O L'état de chaque task (success, failed, retry, cancelled).
O Leslogs détaillés (print, exceptions, stack trace).
O Letemps d'exécution et les parametres utilisés.
e Encasderreur:
O Le flow s’arréte, sauf si des retries sont configurés.
O L'erreur est reportée proprement dans les logs.
e Celarend le debug beaucoup plus rapide que dans un script classique.

47

Exemple générique de task Prefect

from prefect import task

@task

def load_csv(path):
import pandas as pd
df = pd.read_csv(path)
return df

Caractéristiques :
e Décorateur @task : instrumentation automatique.
e Retour du dataframe : passage possible entre tasks.
e Fonction pure recommandée pour la reproductibilité (pas d’'appels extérieurs).

48

Exemple générique de flow Prefect

from prefect import flow

@flow

def ingest_month(seed_dir, as_of):
df = load_csv(f"{seed_dir}/users.csv")
upsert_users(df)
validate_users()
create_snapshot(as_of)

Le flow orchestre les tasks et permet de rejouer intégralement une ingestion mensuelle.

49

Passage de parametres a un flow

Les flows acceptent des parametres dynamiques :

ingest_month(
seed_dir="/data/seeds/month_000",
as_of="2024-61-31"

Avantages :
e Rejouer nimporte quel mois passé.
e Automatiser une ingestion planifiée.

o Faciliter le debug (exécuter uniqguement une date spécifique).

Les paramétres rendent la pipeline flexible et réutilisable.

50

Variables d’environnement et configuration

o Prefect s'integre naturellement avec :

O Les variables d’environnement (ex : DB_URL, SEED_DIR).

O Les fichiers .env chargés par Docker.

O Les secrets ou configurations externes (non utilisés dans ce cours mais standard en production).
o Objectif : séparer le code de la configuration, pour plus de robustesse.

51

Logique de retry

Les tasks peuvent étre configurées pour réessayer automatiquement :
@task(retries=3, retry_delay_seconds=10)
Utile lorsque :

e Labase de données met du temps a démarrer.

e Unréseau ou un disque est saturé temporairement.

e Une dépendance externe est momentanément indisponible.

Cela rend la pipeline plus résiliente.

52

Place de Prefect dans I'architecture compléte

Dans notre systeme :

Ingestion — Validation — Snapshots — Feature Store — Training — Serving
(orchestration Prefect)

Prefect orchestre :
o Les flows d'ingestion (aujourd’hui).
e Les flows d'entrainement (cours suivants).
e Les éventuels flows de réentrainement / CI/CD.

Il est la “colonne vertébrale” du pipeline ML.

53

DAG de la pipeline d’ingestion

Les pipelines sont souvent représentées par des DAG (Directed Acyclic Graph), ou chaque nceud représente un tache et
chaque aréte une dépendance (un tache ne peut s'exécuter tant que tout ses dépendances ne sont pas terminées)

Validate
users

Create

shapshot

54

Utilisation locale de Prefect dans Docker Compose

e Dans notre environnement :
O Prefect s’exécute dans son propre conteneur.
O Les flows Python sont présents dans ce conteneur.

O Vous interagissez via:
m docker compose exec prefect python /opt/prefect/flows/ingest_flow.py
e Pas besoin d'interface web : tout se passe dans les logs.

55

Comment vous lancerez la pipeline dans le TP

Dans le TP 2, vous exécuterez :

docker compose exec \
-e SEED_DIR=/data/seeds/month_000 \
-e AS_OF=2024-01-31 \
prefect python /opt/prefect/flows/ingest_flow.py

Le flow :

e Charge les CSV.

e Upsert dans PostgreSQL.

e Valide chaque table.

e Crée les snapshots.
Succes visible via les logs Prefect.

56

Déboguer les tasks Prefect

e Méthodes principales :

O

O

O

O

O

Lire les logs avec docker compose logs -f prefect.
Ajouter des logger.info() dans les tasks.

Interroger PostgreSQL pour vérifier I'état intermédiaire.

Exécuter uniquement certaines tasks dans un notebook/local pour reproduction.

Vérifier les erreurs liées aux fichiers montés dans Docker.

o Prefect fournit une visibilité tres fine sur chaque étape.

57

Architecture d’ingestion de bout en
bout

58

Vue d'ensemble : tout assembler

Lecture + Nettoyage Upsert

: léger +
arsin
Y g typage PostgreSQL

Validation
(Great
Expectations)

Snapshots

mensuels
(tables

snapshot)

59

Séquence complete

Lecture CSV : collecte des données brutes pour le mois courant.
Upsert : insertion ou mise a jour dans les tables live via ON CONFLICT.
Validation : application des expectations définies (GE).

Snapshots : création de vues figées, indexées par as_of.

Hw -

Chaque étape dépend de la précédente. Aucun snapshot n'est créé tant que la validation n'a pas réussi.

60

Ingestion mensuelle déeterministe

e Pour garantir la reproductibilité :
Le méme mois (AS_OF) produit toujours exactement le méme snapshot.
Les réexécutions ne changent rien : upsert + validation = idempotence.

Les transformations sont explicites, versionnées dans le code.

o O O O

e Ladéterminisme est la clé pour auditer les modeles et rejouer I'historique.

Le pipeline ne dépend pas d’un état implicite (notebook, cache, variable globale).

61

Ce qui change lorsque I'on ingere month_001, month_002...

e A chaque nouveau mois :
O Les fichiers bruts contiennent de nouveaux utilisateurs, ou des mises a jour d'utilisateurs existants.
O Les upserts modifient uniquement les lignes nécessaires dans les tables live.

O Une nouvelle entrée snapshot est ajoutée, ex :

m as_of ='2024-02-29' pour month_001
m as_of ='2024-03-31' pour month_002

O Lataille de I'historique augmente progressivement.
e Le systéme construit ainsi une timeline compléte des états successifs.

62

Le role des tables de métadonnées

e Les pipelines ML industriels utilisent souvent des tables de métadonnées pour :
O Enregistrer les dates d’ingestion (ingested_at).
O Suivre I'état de validation : success / failure / warnings.
O Documenter les volumes ingérés, les anomalies, les statistiques.
O Garantir la tragabilité compléte de chaque run.
o Dans notre cours, cet aspect reste simplifié, mais constitue un pilier des systemes de production.

63

Comment cette étape prépare Feast (Cours 3)

o Feast dépend de snapshots cohérents pour:
O Construire des tables de features alignées temporellement.
O Garantir I'absence de data leakage entre features et labels.

O Permettre le Historical Feature Retrieval, fondamental pour entrainer un modéele fiable.

O Donner une définition unique et versionnée des features utilisées par I'API et par le training script.

e Sansingestion + snapshots, un Feature Store est impossible a utiliser correctement.

64

Résume du comportement du systeme d'ingestion

e Le systéeme mis en place garantit :

o O O O

O

Une ingestion fiable et idempotente des données mensuelles.

Une validation systématique de la qualité et du schéma.

La création de snapshots immuables, reconstruisibles et alignés temporellement.
Un pipeline orchestré, tragable, réexécutable a volonté (Prefect).

Une base solide pour la suite du cours : Feature Store, training, service API, monitoring.

e Cette architecture représente la fondation d'un systeme ML reproductible et industrialisable.

65

Résumeé du TP1

e AlafinduTP 1, vous disposez de :

O Un environnement Docker Compose fonctionnel (PostgreSQL, APl minimaliste).

O La capacité a démarrer/arréter les services et lire les logs.

O Une compréhension des concepts essentiels : images, conteneurs, volumes, réseaux.
o Vous étes maintenant préts a construire un pipeline d’ingestion réel.

67

Ce que vous allez implémenter dans le TP 2

Dans le TP 2, vous allez coder les composantes clés suivantes (conceptuellement) :

1.

C

® oA w N

Lecture et chargement des fichiers CSV d’'un mois.
Upsert dans les tables PostgreSQL (idempotence).
Application des expectations (Great Expectations).
Création des snapshots mensuels avec as_of.
Orchestration Prefect d'un flow complet ingest_month.
Vérification des résultats via requétes SQL + logs.

TP assemble toutes les briques de l'ingestion MLOps.

68

Vérifier I'état de PostgreSQL avec des requétes

e Pour valider I'ingestion, utilisez :
O docker compose exec db psql -U demo -d demo
e Requétes utiles:
O Compter les lignes ingérées :
m SELECT COUNT(*) FROM subscriptions;
O Veérifier un utilisateur particulier :
[SELECT * FROM usage_agg_30d LIMIT 5;

O Vérifier un snapshot :
m SELECT * FROM subscriptions_snapshots WHERE as_of = '2024-01-31/,
O Comparer live vs snapshot :
[EXCEPT, INTERSECT, ou simple inspection visuelle.
e Lavalidation SQL fait partie intégrante du débogage.

69

Déboguer validation et création de snapshots

e Méthodes recommandées :

O Inspecter les logs Prefect :
m docker compose logs -f prefect
Exécuter le flow avec des print / logger.info() dans les tasks.

Vérifier les échecs GE (messages d'erreurs explicites).
Vérifier les paths montés dans Docker (erreur fréquente).

S'assurer que AS_OF est passé correctement a la task snapshot.

O O O O O

Rejouer le flow avec un sous-ensemble de tables pour isoler le probleme.
e Le debug doit étre systématique et basé sur des observations précises.

70

Résultat attendu a la fin du TP 2

e Alafin du TP vous devez obtenir :

O Toutes les tables live correctement alimentées pour month_000.

O Un flow Prefect complet capable de :

O Des snapshots cohérents contenant un champ as_of = '2024-01-31".

charger les CSV,

upsert dans PostgreSQL,
valider les données (GE),
créer les snapshots.

O Deslogs Prefect indiquant un run sans échec.
e Cestle premier pipeline ML complet du cours.

71

En route pour le TP

72

