&.v'\oh"sc%e IN S TIT U T TELECOM
a_.lo,: POLYTECHNIQUE
.%/ P "‘i

* DE PARIS =TT

= ==
” ~~

Fondamentaux du MLOps et mise
en place de I'environnement

Julien Romero

\h__—’



Vue d’ensemble du cours

e 6 cours ou nous allons apprendre a créer un systeme pour le machine learning de bout en bout
O  Des données brutes au réentrainement automatique
e Nous allons voir des outils utiles a divers niveaux pour le systeme
O Prefect, Feast, MLflow, FastAPI
O Docker, Docker Compose
O Prometheus, Grafana
O Evidently, Great Expectations
O  PostgreSQL
o Evaluation
O 2 points sur des quizz
O 6 points sur des comptes rendus de TP

O 12 points sur un contrdle final sur table



Pourquoi le MLOps ?

e Le machine learning en production est différent du machine learning dans un notebook
e Problemes classiques:
O Ladistribution des données change avec le temps
Différence entre les données d’entrainement et d'inférence
Mangque de versionnage (données, code, modeles)
Environnement d’exécution flou et conflit de dépendances

o O O O

Pas de monitoring

e Le MLOps (ou systémes pour le machine learning) vise les objectifs suivants :
Reproductibilité

Automatisation

Monitoring

Scalabilité

O O O O



Exemple d’un cas d'erreur

e Vous entrainez un modele sur votre machine, mais les prédictions en production sont mauvaises. Cela peut venir :
Une différence de calcul des features entre I'entrainement et la production

Préprocessing non synchronisé entre les deux environnements

Données manquantes ou arrivant trop tard a l'inférence

Différents environnements (0S, bibliothéques)

O O O O O

Pas de monitoring: les erreurs passent inapergues

Déployer un modele est plus difficile qu'il n'y parait



Le cycle de vie d’'un systéeme pour le machine learning

Un systeme moderne de machine learning n'est pas un script, mais une pipeline:
1. Ingestion des données

Validation des données

Calcul des features

Entrainement du modele

Suivi des expériences

Evaluation

Sauvegarde du modele et code associé

Déploiement en production
9.  Mise a disposition du modele

10.  Monitoring

11.  Détection du drift

12.  Ré-entrainement

13.  Déploiement continu

© N o gk w DN



Le cycle de vie d’'un systéeme pour le machine learning

Un systeme moderne de machine learning n'est pas un script, mais une pipeline:
1. Ingestion des données

Sauvegarde du modele et code associé
Déploiement en production
9.  Mise a disposition du modele
10.  Monitoring
11.  Détection du drift
12.  Ré-entrainement
13.  Déploiement continu

2. Validation des données

3. Calcul des features Etapes vues jusqu’a présent (du moins en
4.  Entrainement du modele partie)

5.  Suivi des expériences

6. Evaluation

7.

8.



Systeme ML = logiciel + données

e Quand vous créez et maintenez un systeme pour le ML, vous devez gérer :
O Lacomplexité logicielle : APIs, conteneurs, qualité du code
O La complexité des données : qualité, versionage, recalcul, fuite de données
O L'infrastructure : orchestration, reproductibilité, scalabilité

e Le MLOps et al'intersection de ces trois domaines



L ‘architecture que nous allons construire

o Dansle TP, nous allons construire un systeme de bout-en-bout en utilisant :
O PostgreSQL pour les données structurées

Prefect pour l'ingestion et les pipelines d'entrainement

Great Expectations pour la validation des données

Feast pour la gestion des features en ligne/hors ligne

MLflow for tracking + registry

FastAPI for serving

o O O O O O

Evidently + Prometheus for drift & metrics
O Docker Compose to run everything locally
e Maitriser le systeme de bout en bout demande de maitriser beaucoup d'outils !



Les problemes de non reproductibilité

e Lareproductibilité, c'est-a-dire la capacité de pouvoir obtenir de maniéere déterministe les mémes résultats
facilement, est cruciale pour la mise en production

e Sources de non-reproductibilité :

Différentes versions de Python

Différentes dépendance a I'OS

Pas de versions précises pour les bibliotheques

Etats cachés dans un notebook

O O O O O

“Ca marche sur ma machine”
O Sources de données non-déterministiques

e Nous avons besoin de construire des environnements controlés et isolés
O Solution : les conteneurs



Qu'est-ce qu’un conteneur ? Qu'est-ce que Docker ?

e Un conteneur est:

O
O
O
O

O

O

O
O
O

Un environnement d’exécution léger et isolé

Contient le code applicatif, des dépendences, les bibliotheques systeme
Partage le noyau de I'OS héte

S'exécute de la méme maniere partout (Linux, Windows, Mac)

Idéal pour reproduire des pipelines de machine learning
e Dockerest: d k
Le plus populaire moteur de conteneur OC Q r

Construit des conteneurs a partir de Dockerfiles
Gere les images (conteneurs que l'on peut créer) et les conteneurs en cours d’exécution

Donne des outils pour :

[ Grouper tous les éléments de I'environnement
n Exécuter des services isolés
m  Partager des images (DockerHub)

e En bref, un conteneur Docker est un environnement d'exécution de code cohérent et bien emballé

10



Pourquoi utiliser des conteneurs ?

° Les conteneurs assurent :

O

O

O

(@)

(@)

Le méme environnement pour tout le monde

Un environnement d’exécution portable et autonome

Une isolation par rapport a I'OS

Reproductibilité des artéfacts et déploiements

Facilité de l'orchestration pour les architectures avec plusieurs services

e Docker joue un réle fondamental dans ce cours

11



Conteneur vs machine virtuelle

e Une machine virtuelle :

O Contient un OS complet

O Tres lourd

O  Lent au démarrage

O Consomme beaucoup de ressources
e Unconteneur:

O Utilise le noyau de I'OS héte

O  Léger

O  Rapide au démarrage

o

Idéal pour les micro-services et les pipelines de machine learning

12



Image vs conteneur

o Dans Docker, il faut différencier une image d'un conteneur
e Uneimage:

O

O

O

O

Est un modéle immuable d’'un environnement
Est construite a partir d'un Dockerfile (une sorte de recette)
Contient du code, des dépendances, une configuration, un systeme de fichier

Est comparable a une classe en orienté-objet

° Un conteneur :

O

O
O
O

Est une instance en cours d’exécution d'une image
A son propre systeme de fichier, ses propres processus, et son propre réseau
Peut étre démarré, arrété, redémarré

Comparable a un objet instancié en programmation orientée objet

13



Anatomie d’un Dockerfile

e Un DockerFile est un fichier décrivant comment construire un image. Typiquement, il contient :
O Uneimage de base que I'on va modifier (ex: un linux, une image spécialisée pour Python, ...=
O Un dossier de travalil
O Des copies de fichiers dans I'image
O  L'installation des dépendances
O Lacommande a exécuter au lancement d’'un conteneur (ex: démarrer une pipeline ou un site web)

e Cela permet d'avoir un environnement reproductible pour exécuter du code
e Exemple:

FROM python:3.11-slim
WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt
COPY ..

CMD ["python", "main.py"]




Commandes utiles d’'un Dockerfile

o FROM <image>: Spécifie I'image de base. Ex: python:3.11-slim, ubuntu:22.04
o WORKDIR <path>: Définit le dossier de travail dans le conteneur. Les commandes suivantes s'exécuteront dans ce
dossier
o COPY <src> <dest>: Copie des fichiers depuis I'h6te dans I'image, typiquement du code, le requirements.txt, des
fichiers de config, ...
e RUN <command>: Exécute une commande au moment de la création de I'image. Ex: pip install, apt-get install.
o ENV <key>=<value>: Définit des variables d’environnement. Utile pour les configurations par défaut.
o EXPOSE <port>: Documente le port utilisé par le conteneur, pour information uniqguement.
e CMD]...]: Commande a exécuter au démarrage du conteneur. Ex:
O CMD ["python", "main.py"]
O CMD ["uvicorn”, "app:app", "--host", "0.0.0.0"]
o ENTRYPOINT [...]: Similaire 8 CMD, mais n'est pas supprimé avec un docker run.

15



Les systeme de couches de Docker

e Uneimage Docker est construite par une superposition de couches
O Chaque instruction du Dockerfile crée une nouvelle couche immuable
e Propriétés clefs :

Ogresihaye'layers “Onions have Iayers
Youjget.it7.We bothshave:layers. . %

O  Cache de couches : Si une couche n'a pas changé, Docker la réutilise
[ Builds rapide, mais ¢a prend de la place en mémoire
O  Dépendance de haut en bas : Changer une ligne/couche invalide le cache de toutes les suivantes

O Types de couches : Couche de base (avec FROM), installation de packages (RUN), Copie de code (COPY),
Configuration (ENV, EXPOSE, etc.)

O Immutabilité: Les couches ne peuvent pas étre modifiées apres la création, on les réécrit
e Optimisation: Toujours mettre les commandes qui changent le plus a la fin.
O Installation de bibliotheques Python vers le début = dans le cache

O  Copie du code a la fin = build plus rapides

16



Construire une image

Pour construire une image, Docker va:

1.
2.
3.
4.

Lire le Dockerfile (fichier appelé Dockerfile par défaut)
Exécuter chaque instruction dans l'ordre
Créer les couches

docker build -t my-app .

Produire une image finale (nommée my-app, ici)

Options utiles :

(@]

O

—-no-cache : reconstruit tout
-f <Dockerfile> : Si le nom du Dockerfile ne s'appelle pas Dockerfile

17



Démarrer un conteneur

o Pour démarrer un conteneur a partir d'une image my-app | docker run my-app

e Options utiles :
O -p 8000:8000 : Associe un port a l'intérieur du réseau Docker a un port sur votre machine héte
m  Format port_hote:port_conteneur
O -—-name api : nom du conteneur
O -e VAR=value : injection d'une variable d’environnement
O -v host:container : pour monter des volumes (voir plus tard)
e Exemples:
O docker run -p 8000:8000 my-api
O docker run -name db -e POSTGRES_PASSWORD=demo postgres

18



Interagir avec des conteneurs en cours d'exécution

e Commandes utiles :

O docker ps : liste les conteneurs en cours d’exécution
docker ps -a: liste tous les conteneurs (dont ceux arrétés)
docker logs <nom_conteneur> : Lit le logs d'un conteneur

docker exec -it <nom_conteneur> bash : ouvre un terminal bash dans un conteneur

o O O O

docker stop <nom_conteneur> : Arréte un conteneur

O docker rm <nom_conteneur> : Supprime un conteneur
o docker logs et docker exec -it sont souvent utilisées pour le debug

19



Le réseau pour les conteneurs

o Par défaut chaque conteneur est sur son propre réseau
e Les conteneurs peuvent exposer des ports qui sont accessibles depuis I'héte (votre machine)
O  Les ports ne sont pas forcément les mémes
e Exemple
O docker run -p 5432:5432 postgres
O Hoéte: localhost:5432
O  Conteneur: listens on port 5432
e Nous allons pouvoir aller un peu plus loin (facilement) avec Docker compose (voir plus tard)

20



Les volumes : Pourquoi en a-t-on besoin ?

Le systeme de fichier d’'un conteneur est éphémere

O Quand un conteneur s'arréte, ses fichiers propres sont supprimés
Les volumes Docker permettent de :

O Persister les données (ex, bases de données, logs, modeles)

O Isoler le stockage (controlé par Docker)
O  Découpler le stocker du conteneur
e Nous avons deux types de volumes
O Les volumes nommeés : on donne un nom a un volume comme on donne un nom a une image

O Les bind mounts : on peut lier un dossier sur I'héte a un dossier dans le conteneur (utile pour le débug et pour partager
du code)
Exemple:

O docker run -v db_data:/var/lib/postgresql/data postgres

O lci, le volume s'appelle db_data

21



Pourquoi a-t-on besoin de plus que Docker ?

e Dans un systeme de machine learning, nous avons besoin de nombreux services qui communiquent entre eux
o  API

Base de données
MLflow tracking

Feature store

o O O O

Orchestrator
O Monitoring
e Lancer tous ces services avec docker run est fastidieux, sujet a erreur, difficile a reproduire, et ne passe pas a I
échelle
e Nous avons besoin d'un outil pour définir les services et les orchestrer
O Docker compose



Introduction a Docker Compose

o Docker compose est un outil pour définir des applications avec plusieurs conteneurs
e Docker compose permet de :

O

o O O O

Définir plusieurs services dans un seul fichier YAML (docker-compose.yml par défaut)
Partager un réseau et la découverte de services

Partager des volumes de stockage

Facilement démarrer et éteindre notre systeme

Produire des environnement de développement cohérents

e Une seule commande va démarrer tout notre systeme

23



Anatomie d’un fichier docker-compose.yml

L'exemple de droite :

O

O

O

Crée automatiquement un réseau
Les services sont accessibles par nom (ex: db)

L'ordre de déploiement peut-étre spécifié

Chaque conteneur est défini dans la section “services” et a:

O

O

Un nom (indentation 1)

Une image, soit construite avec un Dockerfile (build: ./api),
soit une image existante (image: postgres:16)

Mapping des post (ports: “host:conteneur”)

Variable d’environnement (environment: ...)

Volumes pour stocker des fichiers
[ volumes: PATH_HOST:PATH_CONTENEUR

On peut aussi définir des volumes nommeés dans la section
“volumes”

De méme, on peut définir plusieurs réseaux avec “networks”
(un seul commun par défaut)

services:
api:
build: ./api
ports:
- "8000:8000"
depends_on:
-db

db:

image: postgres:16

environment:
POSTGRES_USER: demo
POSTGRES_PASSWORD: demo
POSTGRES_DB: demo

ports:
- "5432:5432"

volumes:
- db_data:/var/lib/postgresql/data

volumes:
db_data:

24




Le réseau de Docker compose

e Quand Docker compose démarre, il va :
O Créer un unique réseau (par défaut)
O Ajouter au réseau tous les services (comportement par défaut)
O Rendre accessible chaque service uniqguement avec son nom
o Par exemple, I'api peut se connecter a la base de donnée avec
O db:5432 (pas besoin d'avoir I'adresse IP)

25



Commandes classiques de Docker Compose

o Démarrer les services : docker compose up -d (lit par défaut docker-compose.yml)
e Arréter les services : docker compose down

e Voirles logs : docker compose logs -f api

e Listerles services en cours d’exécution : docker compose ps

e Redémarrer un service : docker compose restart api

26



Le projet des TP

27



Le systeme complet que nous allons construire

e Composantes principales et réle :

O

o O O O O O

O

e Tout sera géré par un seul Docker Compose, qui permettra de simuler un cloud sur votre machine

O

Postgres : stockage des données brutes et pré-traitées

Prefect : exécution des scripts d’'ingestion de données et d’entrainement de modéle
Great Expectations : validation de la qualité des données

Feast : gestion des features hors ligne et en ligne

MLflow : suivi des expériences et gestion des versions de modeles

FastAPI : accés au modele pour la prédiction en temps réel

Prometheus / Grafana : monitoring du systeme et des métriques

Evidently : Détection du drift dans les données et les prédictions

En pratique, plusieurs machines, potentiellement avec Kubernetes

e Beaucoup d'outils a maitriser en MLOps !

28



Pourquoi les notebooks ne sont pas suffisants

e Les notebooks sont trés utiles pour:

O

O

e Cependant, ils sont insuffisants en production

O

© O O O O

L'exploration et la visualisation

Le prototypage rapide d'idées

Création des états cachés, non reproductible
Pas de controéle sur I'environnement

Pas automatisable

e
_|QUAND JEXPLIQUE L'ORDRE
Pas testable D'EXECUTION DE MON JUPYTER NOTEBOOK

Pas d'intégration avec les features stores, le déploiement

Difficile a monitorer ou a logger

e Laproduction demande du code structuré (génie logiciel), des pipelines, et des services, pas des notebooks

29



Qu'est-ce qu'une API ?

e Une API (Application Programming Interface) REST (souvent sous-entendu) est un systéme qui :
O  Expose des fonctionnalités a travers des points d'acces HTTP
O Accepte des requétes et renvoie (souvent) des données structurées (souvent JSON)
O Sert ala communication entre les clients et les services
e Exemple d'une API classique en ML :
O /predict: retourne la prédiction d'un modéle
O /health : retourne le statut d'un service
O /metrics : donne des métriques a Prometheus

e En ML, les API permettent de rendre les modeles accessibles en production aux applications, aux dashboards, et
aux autres services

30



Pourquoi FastAPI ?

Dans les TPs, nous allons utiliser FastAPI pour rapidement définir des APl en Python
O Bonnes performances

Syntaxe déclarative for le schéma des requétes et réponses

Validation automatique des entrées

Documentation automatique (Swagger Ul)

o O O O

Intégration facile avec I'écosystéeme ML riche de Python
O Léger, facile a conteneuriser
FastAPI est largement adopté dans l'industrie

31



Comment fonctionne FastAPI ?

e Idées principales
O On défini une application

O On utilise des décorateurs Python (@... avant une fonction) pour

définir les points d'entrée HTTP
[ On a des get et des post

O On peut renvoyer des dictionnaires Python, compatibles
naturellement avec JSON

O S’exécute avec uvicorn dans un conteneur

from fastapi import FastAPI
app = FastAPI()

@app.get("/health")
def health():
return {"status": "ok"}

32




FastAPI dans une pipeline pour servir un modele ML

e Nous allons utiliser FastAPI pour :

1.  Gérer les entrées (user_id, features, un JSON)
Récupérer les features en ligne avec Feast
Charger un modele en production avec MLflow
Calculer les prédictions

Retourner un JSON avec les résultats

o N

Exposer des métriques pour le monitoring

33



Apercudu TP 1

e AlafinduTP vous aurez:

O

o O O O O

Construit une image Docker avec un Dockerfile
Démarré un conteneur et exposé des ports

Compris les commandes de base de Docker
Démarré plusieurs conteneurs avec Docker Compose
Etabli une connexion avec une base de données

Créé la structure du projet de base

Le premier TP sert de base a tous les autres

A la fin du TP, il faudra m'envoyer un lien vers votre dépét Git et y mettre le code et rapport du premier TP

34



En réesumeé

Nous avons vu

O

o O O O O O

Pour le MLOps existe

A quoi un cycle de vie de machine learning ressemble

Ce que sont les conteneurs et pourquoi nous les utilisons

Comment les Dockerfiles permettent de créer des environnements reproductibles
Comment Docker Compose permet de gérer et orchestrer plusieurs services

Ce que sont les APIs et pourquoi elles sont utilisées en ML

La structure de base du projet

35



En route vers le TP

36



