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Introduction et motivation
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Pourquoi la vision “compte” en 2026
● Les capteurs (caméras, vidéos, scanners) sont partout : industrie, retail, mobilité, santé, documents
● La valeur business est souvent directe : réduction coûts (contrôle qualité, back-office), augmentation revenus (personnalisation, 

UX), réduction risques (sécurité)
● Les modèles modernes ont changé la donne : pré-entraînement massif + fine-tuning léger + parfois zero-shot
● En pratique, le problème n’est pas “juste” le modèle : c’est data + pipeline + contraintes prod
● Contraintes typiques en entreprise : latence, robustesse (lumière, angles), long tail, dérive (drift), RGPD/PI
● Coût caché majeur : annotation (temps humain) + définition du label (taxonomie, ambiguïtés)
● Objectif du cours : passer de “ça marche en notebook” à “ça marche dans un produit”
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Exemples
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Définition opérationnelle de “Modern Computer Vision”
● Computer Vision : apprendre une fonction fθ  qui mappe une observation visuelle xxx vers une sortie yyy utile (classe, boîtes, 

masques, texte, trajectoires…)
● Spécificité moderne : architectures (ViT / CNN modernes / hybrides) + foundation models (ex : segmentation promptable)
● Représentations : embeddings visuels réutilisables (transfer learning), parfois alignés texte–image (multimodal)
● Paradigme dominant : pré-entraînement sur grands corpus pour adaptation à une tâche via fine-tuning / adapters / prompt
● “Dense prediction” vs “global” :

○ global : classification (1 label/image)
○ dense : détection/segmentation (structure spatiale, multi-objets)

● Les erreurs importantes en prod ne sont pas “moyennes” : elles sont dans les cas rares (long tail) et les changements de 
contexte

● Fil rouge : choix de la tâche + métrique + données + modèle + intégration impacte la performance produit
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Le vrai problème : optimiser un système, pas un score de 
benchmark

● Objectif prod : maximiser une utilité U sous contraintes (latence, coût, risque)
○ Exemple de forme : U=Gain−λ⋅Coût−μ⋅Risque

● Différence critique : benchmark = distribution “propre”, prod = distribution vivante
● Data-centric reality : labels incomplets/incohérents, classes mal définies, domain shift (caméra, site, saison)
● Robustesse : illumination, motion blur, occlusions, arrière-plans, nouveaux objets, adversarial “naturel” (reflets, écrans)
● Choix d’architecture = compromis :

○ accuracy vs latence vs mémoire vs facilité de déploiement
● Les trois questions de base avant tout entraînement :

○ quelle tâche exacte ? quelle métrique ? quel coût d’erreur (FP/FN) ?
● Résultat attendu à la fin de la séance : savoir “designer” un pipeline CV moderne crédible pour une équipe produit
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Tâches, datasets et métriques
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Pourquoi commencer par tâches + métriques (avant les 
architectures)

● En entreprise, on n’optimise pas “un modèle”, on optimise une décision (accept/reject, alerte, extraction, tri)
● La tâche fixe la sortie yyy, donc le design du pipeline (pré/post-traitement, UI, stockage)
● La métrique doit refléter le coût d’erreur (FP vs FN) et le niveau de granularité (image / objet / pixel)
● Exemple :

○ contrôle qualité : une FN (défaut non vu) coûte plus cher qu’une FP (recontrôle humain)
○ OCR facture : la qualité “globale” importe moins que la qualité des champs clés (total, TVA)

● Risque majeur : “metric gaming” (bon score, mauvais produit) si la métrique est mal choisie
● Objectif : savoir écrire un spec clair : tâche → données → métriques → seuils → protocole d’éval
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Use-case Tâche Métriques principales
Inspection segmentation mAP/IoU

Retail comptage Détection + tracking MOTA/IDF1
Lecture document OCR CER/WER + field acc.

Médical segmentation DICE/IoU
Sécurité classification ROC-AUC

QA produit anomaly PR-AUC



Classification et retrieval
● Single-label : 1 classe/image

○ ex : type de défaut, espèce, catégorie produit
● Multi-label : plusieurs tags/image

○ ex : “rayure” + “tache” + “logo manquant”
● Métriques courantes :

○ Accuracy, Top-k, Precision/Recall/F1, ROC-AUC (classe rare), PR-AUC (fort déséquilibre)
○ En multi-label : seuil par classe, micro/macro-averaging (impact fort sur interprétation)

● Calibration utile : probas fiables => réglage de seuils et tri humain efficace
● Retrieval : 

○ apprendre un embedding z=fθ(x)
○ similarité cosine
○ KPI = Recall@K / mAP retrieval

● Cas réel :
○ “trouver des produits similaires” = embeddings + ANN (FAISS/Qdrant/Chroma) + règles métier
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Détection d’objets : sorties et difficultés réelles
● Sortie : ensemble {(bi,ci,si)}i=1..N  (boîte, classe, score), N variable

○ La boîte contient l’objet détecté
○ bi=(x1, y1, x2, y2)

● Problèmes concrets : petits objets, occlusions, objets collés, arrière-plans “trompeurs”
● Post-traitement classique :

○ seuil score
○ NMS (Non Max Suppression, suppression doublons)
○ choix seuil = trade-off FP/FN

● Annotation plus coûteuse que classification
○ boîtes = temps humain
○ ambiguïtés (bord exact ? objets partiels ?)

● Datasets typiques : COCO (généraliste), KITTI/BDD100K (conduite), SKU-110K (densité retail), etc.
● Usage industriel fréquent : “détecter puis…” (compter, suivre, segmenter, recadrer pour OCR)
● Pipeline mental : détecter = “où” + “quoi”, mais pas “forme” (c’est la segmentation)
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IoU, Precision–Recall, AP et mAP (détection)
● Overlap boîte-vérité : IoU

○ IoU(B,B’)=∣B∩B’∣ / ∣B∪B’∣ 
● Définition “match” : une prédiction est TP si IoU ≥ τ (ex : 0.5) et bonne classe
● En balayant le seuil de score, on obtient la courbe Precision–Recall (PR)

○ utile quand classes rares
● AP = average precision = aire sous la courbe PR (par classe), similaire à AUC (différentes interpolations)
● mAP = mean AP = moyenne des AP des classes
● COCO-style : mAP moyenné sur τ∈{0.50,0.55,…,0.95} (plus strict, plus informatif)
● Lecture produit :

○ mAP haut mais recall faible, alors “on rate des objets” 
○ mAP bas mais recall haut, alors “trop de FP”

● À retenir : mAP dépend fortement de la qualité des labels et de la définition de ce qu’est un objet
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Segmentation : sémantique, instance, panoptique + métriques
● Sémantique : label/pixel (route, ciel)
● Instance : objet/pixel (chaque voiture)
● Panoptique : mix sémantique + instance
● Sortie

○ masque M∈{0,1}H×W (binaire) ou M∈{1..K}H×W (multi-classes)
● Métrique pixel

○ IoU par classe, moyenne (mIoU) ; sensible aux frontières et aux petites classes
● Dice (très utilisé quand objets petits / déséquilibre, ressemble F1)

○ Dice(M,M’)=2∣M∩M’∣ / (∣M∣+∣M’∣) 
● Pourquoi ça compte : un modèle peut “bien classifier” mais rater les contours = mauvais pour mesure/surface
● Exemples

○ médical (organes/lésions)
○ industrie (défauts surfaciques), e-commerce (détourage produit)

● Pont vers la suite : segmentation moderne = modèles dédiés + modèles promptables (SAM)

12



Segmentation : sémantique, instance, panoptique + métriques
● Sémantique : label/pixel (route, ciel)
● Instance : objet/pixel (chaque voiture)
● Panoptique : mix sémantique + instance
● Sortie

○ masque M∈{0,1}H×W (binaire) ou M∈{1..K}H×W (multi-classes)
● Métrique pixel

○ IoU par classe, moyenne (mIoU) ; sensible aux frontières et aux petites classes
● Dice (très utilisé quand objets petits / déséquilibre, ressemble F1)

○ Dice(M,M’)=2∣M∩M’∣ / (∣M∣+∣M’∣) 
● Pourquoi ça compte : un modèle peut “bien classifier” mais rater les contours = mauvais pour mesure/surface
● Exemples

○ médical (organes/lésions)
○ industrie (défauts surfaciques), e-commerce (détourage produit)

● Pont vers la suite : segmentation moderne = modèles dédiés + modèles promptables (SAM)

13



Segmentation : sémantique, instance, panoptique + métriques
● Sémantique : label/pixel (route, ciel)
● Instance : objet/pixel (chaque voiture)
● Panoptique : mix sémantique + instance
● Sortie

○ masque M∈{0,1}H×W (binaire) ou M∈{1..K}H×W (multi-classes)
● Métrique pixel

○ IoU par classe, moyenne (mIoU) ; sensible aux frontières et aux petites classes
● Dice (très utilisé quand objets petits / déséquilibre, ressemble F1)

○ Dice(M,M’)=2∣M∩M’∣ / (∣M∣+∣M’∣) 
● Pourquoi ça compte : un modèle peut “bien classifier” mais rater les contours = mauvais pour mesure/surface
● Exemples

○ médical (organes/lésions)
○ industrie (défauts surfaciques), e-commerce (détourage produit)

● Pont vers la suite : segmentation moderne = modèles dédiés + modèles promptables (SAM)

14



OCR / Document AI : quand la vision sert le texte et la structure
● Pipeline typique : détection zones texte → reconnaissance séquence → structuration (champs)
● Entrée variée : scan, photo smartphone, pdf rasterisé ; défis : perspective, blur, polices, tampon, handwritten
● Métriques OCR

○ CER (char error rate)

○ WER (word error rate)

○ mais KPI métier = exactitude champs
● Exemple KPI

○ “Total TTC exact” / “Date exacte” / “IBAN exact” (tolérance zéro possible)
● Données

○ annotations coûteuses (boîtes lignes/mots + transcription)

○ bruit de ground truth fréquent
● Post-traitement indispensable

○ regex, validation (TVA, SIRET), contraintes (montants, formats)
● Intégration : human-in-the-loop (validation) + journalisation des cas ambigus
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Tracking vidéo : suivre des identités
● Objectif : associer des détections au fil du temps avec trajectoires + identités stables
● Approche dominante : tracking-by-detection (détection par frame + association)
● Difficultés

○ occlusions, croisements, entrées/sorties, changements d’apparence, motion blur
● Intuition des métriques de Multiple object tracking (MOT)

○ ID switches (erreurs d’identité), IDF1 (qualité identité), MOTA/HOTA (global)
● Sorties utiles

○ vitesse/trajectoire, comptage unique, temps passé dans une zone (analytics retail)
● Engineering

○ latence frame-to-frame, buffering, horodatage, synchronisation caméras (multi-cam)
● Bon réflexe : distinguer “erreur de détection” vs “erreur d’association” (debug séparé)
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Choisir un dataset et un protocole d’évaluation
● Dataset public = bon départ, mais attention domain gap (capteur, angle, environnement, classes)
● Split correct : train/val/test sans fuite (mêmes scènes, mêmes objets, mêmes documents proches)
● Définir la taxonomie

○ classes, “autres”, seuil d’ambiguïté, règles d’annotation (guidelines)
● Évaluer par slices

○ taille objet, luminosité, type de fond, rareté
○ But : trouver le “long tail”

● Mettre une baseline forte
○ modèle pré-entraîné + fine-tuning minimal + seuils calibrés

● Fixer des acceptance criteria produit
○ métriques + latence + mémoire + taux d’échec + couverture

● Préparer la prod : logging (entrées + sorties), jeux de tests “vivants”, et plan de ré-annotation
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Du pixel au système : 
représentations, pipeline et “points 
de rupture”
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Pourquoi le pipeline compte plus qu’on ne le croit
● En prod, 50% des bugs CV viennent de l’I/O (décodage, formats, couleurs, tailles), pas du modèle
● Même modèle + preprocessing différent donne des outputs différents (ex : RGB/BGR, range [0,255] vs [0,1])
● La “bonne” représentation dépend de la tâche

○ global (classification) vs dense (detection/segmentation) vs embedding (retrieval)
● Le pipeline complet = prétraitement → modèle → post-traitement → décision métier
● Objectif : rendre chaque étape testable, débogable, et contrôlable (seuils, règles, logs)
● Point clé 

○ séparer model output (probabilités, logits, masks) de product decision (alerte, extraction)
● On veut un système stable face aux variations “réelles” : capteur, lumière, compression, mouvement
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Prétraitement : ce qui casse (souvent) en entreprise
● Décodage : JPEG/PNG, EXIF orientation, profils couleur, gamma (différences PIL/OpenCV)
● Canaux : BGR vs RGB, ordre des canaux, alpha channel (RGBA), niveaux de gris (1 canal)
● Échelles : uint8 [0..255] vs float [0..1], normalisation par canal (mean/std)
● Redimensionnement : conserver ratio (letterbox/pad) vs stretch ; impact sur détection/segmentation
● Crops/tiles : utile pour très grandes images (inspection, doc), mais impose une logique d’assemblage
● Augmentations : ok en train, déterministes en eval (sinon métriques instables)
● Reproductibilité : fixer seed, versionner transforms, tracer paramètres (pour audit/debug)
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Abstraction “backbone + head” : lire un modèle comme une API
● Vue système :

○ y=head(backbone(x))
● Backbone : extrait des features F (maps multi-échelle pour détection/segmentation, ou embedding pour retrieval)
● Head : transforme F en sorties task-specific (logits, boxes, masks, keypoints, texte)
● Dense prediction : sorties structurées (spatialement) ⇒ importance du multi-scale (petits objets)
● Embeddings : même backbone peut servir classification et retrieval (ex : “similarity search”)
● Conséquence produit : on peut “swap” un backbone sans casser l’API de la head (si interfaces stables)
● Bon réflexe : documenter I/O du modèle (shape, dtype, conventions coordonnées, num classes)
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Post-traitement : transformer une sortie réseau en objet 
exploitable

● Détection : thresholding + NMS (ou équivalent) + conversion coordonnées = pixels image d’origine
● Segmentation : threshold mask, puis nettoyage (composantes connexes, remplissage trous) si besoin métier
● Calibration : un score 0.9 n’est pas toujours une “proba fiable”

○ Étude impact sur seuils et tri humain
● Règles métier

○ filtres (taille min/max, ROI)

○ agrégation (compter, mesurer, alerter)
● Formats de sortie : JSON “stable” (classes, scores, polygones/RLE, metadata) pour intégration produit
● Logs minimaux : version modèle, params preprocessing, seuils, top-K sorties + exemples d’images erreurs
● Sécurité/qualité : timeouts, “empty outputs”, gestion d’images corrompues, fallback CPU/skip
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Exemple de pipeline générique (PyTorch + OpenCV)
import cv2, torch
from torchvision import transforms

# 1) Load (attention: OpenCV = BGR)
bgr = cv2.imread("img.jpg", cv2.IMREAD_COLOR)
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)

# 2) Preprocess (à versionner)
tfm = transforms.Compose([
    transforms.ToTensor(),  # uint8[0..255] -> float[0..1], CHW
    transforms.Normalize(mean=[0.485,0.456,0.406],
                         std =[0.229,0.224,0.225]),
])
x = tfm(rgb).unsqueeze(0).cuda()  # (1,C,H,W)

# 3) Model
with torch.inference_mode(), torch.cuda.amp.autocast():
    out = model(x)  # logits / boxes / masks ...

# 4) Postprocess (pseudo-code)
pred = postprocess(out, orig_shape=rgb.shape[:2], score_thr=0.25)

# 5) Business layer
decision = business_rules(pred)  # alert / extract / count / export
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● Pattern clé : fonctions pures preprocess(), 
postprocess(), business_rules() 
(unit-testable)

● Stocker les conventions : format couleur, 
resizing, coordonnées, seuils, mapping 
classes

● Debug rapide : conserver rgb, x stats 
(min/max), sorties brutes et finales (avant 
règles métier)



Architectures modernes
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Pourquoi les architectures ont (encore) changé
● Les tâches “dense” (détection/segmentation) demandent du contexte global + du multi-scale
● Les CNN ont un inductive bias (présuppositions utilisée pour prédire des sorties pour de nouvelles entrées) fort (localité, 

translation)
○ efficace, mais parfois limité en contexte long-range

● Les Transformers ont un biais plus faible
○ scalent mieux avec le pré-entraînement massif et le transfert

● En pratique :
○ la victoire ne vient pas d’une “brique magique”, mais de la scalabilité + recettes d’entraînement

● Conséquence produit :
○ on réutilise des backbones pré-entraînés “généraux” => adaptation rapide (time-to-market)

● Objectif : comprendre les choix (ViT/Swin/ConvNeXt) en termes de I/O, coût, et compatibilité détection/segmentation
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Transformers pour la vision : rappel ciblé
● Entrée = séquence de tokens (t1,…,tN) + embeddings positionnels
● Bloc Transformer

○ Self-Attention + MLP + résidus + LayerNorm
● Self-Attention (1 tête) :

○ Attn(Q,K,V) = softmax(QKT/d)V
● Intuition vision : chaque patch “regarde” tous les autres => contexte global natif
● Coût clé

○ attention quadratique en N (nombre de tokens) => gros impact sur images HD
● Donc : design moderne = réduire/structurer N (patching, fenêtres, hiérarchie)
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ViT : transformer une image en séquence
● Image x∈RH×W×C, patch size P
● Nombre de tokens : N=H/P * W/P (on découpe l’image en patch)
● Chaque patch est aplati puis projeté :

○ ti=W⋅vec(xi)+b avec ti∈RD (transformation linéaire des patchs)
● On ajoute un token spécial [CLS] (souvent) pour classification (comme dans BERT)
● On ajoute un embedding positionnel (appris ou sinusoidal) : ti←ti+pi
● Sortie classification : head sur [CLS] (on ne garde que [CLS]) ou pooling (mean)
● Point pratique

○ Il faut de gros datasets et un long pré-entraînement pour utiliser ViT
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ViT : implications compute/mémoire
● Attention full : complexité O(N2⋅D) (temps) et O(N²) (mémoire des poids d’attention)
● Exemple mental

○ image 1024×1024, P=16

○ N=4096

○ matrice attention 4096² ≈ 16,7M par tête
● Pour du “dense” (détection/segmentation), on veut souvent plus de résolution

○ N explose
● Stratégies

○ patch plus gros (N diminue mais perte détails)

○ attention locale (Swin)

○ pooling/hiérarchie
● En inference : latence dépend fortement de H, W, P pas juste du nombre de paramètres
● Bon réflexe prod : profiler en conditions réelles (résolution, batch, AMP) avant de choisir backbone
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Swin Transformer : rendre le Transformer “multi-scale” et 
efficace

● Idée : attention dans des fenêtres M×M (local attention)
○ => coût ≈ O(N⋅M²)

● Architecture hiérarchique : on merge des patchs (downsampling) => niveaux (comme un CNN)
● Fenêtres “shifted” : on décale les fenêtres entre couches pour faire communiquer les régions
● Résultat : meilleur pour détection/segmentation (besoin multi-scale + détails locaux)
● Lecture système

○ Swin fournit naturellement des feature maps à plusieurs échelles
● Trade-off : localité imposée (bias) mais compute contrôlé → bonne compatibilité prod
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CNN modernes : pourquoi ConvNeXt existe
● Message : “Transformer vs CNN” est trop binaire

○ des CNN modernisés restent très compétitifs
● ConvNeXt (famille) : reprend ResNet et applique des recettes “Transformer-like”

○ normalisation, tailles de kernel, design stage
● Avantage prod fréquent

○ opérations convolutionnelles très optimisées (latence stable, kernels matures)
● Pour certains budgets (edge)

○ CNN bien conçu = meilleur coût/perf que ViT full attention
● Pour dense tasks : CNN + FPN (Feature Pyramid Networks) + head bien réglée = baseline solide et industrialisable
● Conclusion pratique : choisir backbone = contrainte compute/latence + disponibilité des poids + compatibilité head
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Feature Pyramid Networks (FPN) : multi-scale “bien fait” pour la 
détection/segmentation

● Problème motivation
○ objets de tailles très différentes
○ une seule résolution de features ne suffit pas (petits objets vs grands)

● Idée : construire une pyramide de features {P2, P3, P4, P5} riches sémantiquement à toutes les échelles
● Entrée typique : features backbone {C2, C3, C4, C5} (résolutions décroissantes, sémantique croissante)
● Top-down + lateral connections :

○ Pl=Conv3×3( Up(Pl+1)  +  Conv1×1(Cl))
○ Up = upsampling

● Effet clé
○ on “injecte” la sémantique des couches profondes vers les couches haute résolution
○ meilleur recall sur petits objets

● Utilisation
○ heads de détection/segmentation consomment Pl  (anchors/queries/points) selon la taille attendue des objets

● Lecture ingénierie
○ FPN = coût modéré (upsample + conv), gain robuste ; devient souvent une brique standard (Faster/Mask R-CNN, 

RetinaNet…)
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Feature Pyramid Networks (FPN) : multi-scale “bien fait” pour la 
détection/segmentation

● Problème motivation
○ objets de tailles très différentes
○ une seule résolution de features ne suffit pas (petits objets vs grands)

● Idée : construire une pyramide de features {P2, P3, P4, P5} riches sémantiquement à toutes les échelles
● Entrée typique : features backbone {C2, C3, C4, C5} (résolutions décroissantes, sémantique croissante)
● Top-down + lateral connections :

○ Pl=Conv3×3( Up(Pl+1)  +  Conv1×1(Cl))
○ Up = upsampling
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Pré-entraînement : le “vrai moteur” de la généralisation
● Paradigme : apprendre une représentation fθ sur un grand corpus puis transférer sur tâche cible
● Supervised large-scale : fonctionne, mais dépend de labels massifs (coût + biais)
● Self-supervised vision : apprentissage sans labels (contraste, reconstruction) → très bon transfert
● Exemples conceptuels :

○ reconstruction (type masked modeling) : prédire des patches masqués
○ contraste : rapprocher vues augmentées d’une même image, éloigner les autres

● Impact entreprise : moins de data labellisée requise pour démarrer un POC robuste
● À retenir : “quel prétrain ?” est souvent plus important que “quel backbone exact ?”
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Fine-tuning : stratégies concrètes (et quand les utiliser)
● Linear probe : geler backbone, entraîner seulement la head

○ rapide, baseline, peu de risque
● Full fine-tune : tout entraîner

○ meilleur perf, mais plus de compute et plus de risque d’overfit
● Adapters / LoRA : n’entraîner que de petits modules

○ bon compromis, versioning plus simple
● Heuristique :

○ dataset petit → commencer par linear probe / adapters
○ dataset moyen/grand → full FT possible

● “Catastrophic forgetting” : si FT agressif sur petite data, on peut dégrader la généralité
● Prod : adapters facilitent A/B tests et rollback (on change de “delta” plutôt que tout le modèle)
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Exemple code : charger un backbone ViT et extraire des 
features (générique)
import torch
from transformers import AutoImageProcessor, AutoModel

name = "google/vit-base-patch16-224"  # exemple
proc  = AutoImageProcessor.from_pretrained(name)
vit   = AutoModel.from_pretrained(name).cuda().eval()

inputs = proc(images=pil_image, return_tensors="pt").to("cuda")

with torch.inference_mode(), torch.cuda.amp.autocast():
    out = vit(**inputs)  # out.last_hidden_state: (B, N+1, D)

cls = out.last_hidden_state[:, 0]      # token [CLS]
feat = torch.nn.functional.normalize(cls, dim=-1)  # embedding utilisable pour retrieval

● Pattern : backbone pré-entraîné → embedding D → head (classif/det/seg) ou retrieval
● Important : garder trace du preprocessing associé au checkpoint (sinon “silent failure”)
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Comment choisir (ViT vs Swin vs CNN moderne) en contexte 
apprentissage/entreprise

● Si détection/segmentation + résolution variable : Swin (ou backbones hiérarchiques) souvent plus naturel
● Si classification/retrieval avec gros prétrain dispo : ViT simple et très performant
● Si edge/latence stricte : CNN moderne (ou ViT compact) + quantization/AMP (auto mix precision) → plus prévisible
● Si équipe produit : privilégier écosystème, checkpoints, tooling (export ONNX, compat TensorRT)
● Démarrer “pragmatique” : baseline forte (modèle populaire) + protocole d’éval + profiling
● Ensuite seulement : itérer architecture (le gain vient souvent de data + seuils + slices)
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Comment choisir (ViT vs Swin vs CNN moderne) en contexte 
apprentissage/entreprise

42

Critières (prod) ViT Swin CNN moderne

Latence stable / edge ~ + ++

Haute résolution (HD) sans 
exploser - ++ +

Multi-scale natif pour det/seg ~ ++ ++

Classification / retrieval ++ + +

Détection temps réel “simple” ~ + +

Segmentation dense (qualité 
contours) ~ ++ ++

Transfer learning (poids 
disponibles) ++ ++ ++

Tooling prod (ONNX/TensorRT, 
kernels matures) ~ + ++

Complexité d’intégration 
(pré/post) + + ++



Transition vers la suite (détection/segmentation modernes)
● Backbones = représentations ; “le vrai travail” dense est dans la head + losses + matching + postprocess
● Deux familles à comparer ensuite :

○ Détecteurs “prod” rapides : YOLO-like (one-stage)
○ Détecteurs end-to-end : DETR-like (set prediction)

● Et segmentation moderne : du mask supervisé au promptable (SAM)
● Prochain objectif : relier architecture → tâche → métrique → pipeline, sans perdre le fil “produit”
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Détection & segmentation modernes : 
YOLO, DETR, SAM
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Pourquoi la détection/segmentation est le cœur de beaucoup 
de produits CV

● Beaucoup de produits = localiser “où” (objets) et/ou “quelle forme” (masques), pas juste classer
● Cas typiques : inspection (défaut local), retail (comptage), mobilité (piétons/voies), doc AI (zones)
● Contraintes prod : latence (fps), recall sur petits objets, robustesse (blur, occlusions), stabilité post-traitement
● Pipeline standard

○ backbone (multi-scale/FPN-like) → head (boxes/masks) → postprocess (NMS / seuils) → décision
● Deux familles à connaître : YOLO-like (dense, NMS) vs DETR-like (set prediction, end-to-end)
● Et une 3e voie récente : segmentation promptable (SAM) pour annotation/POC rapides et workflows hybrides
● Objectif : comprendre les abstractions I/O + les “points de coût” (compute, postprocess, labels)
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YOLO : pourquoi c’est (encore) la baseline industrielle
● Design “one-stage”

○ prédire directement des boîtes + classes sur une grille multi-échelle (dense prediction)
○ basée sur CNN

● Très bon compromis vitesse/précision
○ adoption massive en POC et intégration produit

● Écosystème pragmatique
○ modèles pré-entraînés, APIs simples, export (ONNX/TensorRT selon stack)

● Tendance récente
○ heads anchor-free / décorrélées (classification vs régression) pour simplifier et gagner en robustesse

● YOLOv7 (2022) met l’accent sur l’amélioration de l’entraînement + performance temps réel
● Ultralytics YOLOv8 (2023) popularise une head anchor-free “split” ; YOLO11 (2024) poursuit l’industrialisation (doc + tooling)
● Point d’attention produit

○ la performance réelle dépend beaucoup de NMS/seuils + calibration + distribution terrain
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YOLO : sortie, head “découplée” et pertes
● Sortie typique par niveau l : (b,c,s) pour chaque point (ou cellule) de la grille
● Head découplée : branche cls (classes) + branche box (régression)

○ convergence plus stable (souvent)
● “Anchor-free” : on prédit offsets/boîtes sans choisir un set d’anchors à la main (moins de tuning)
● Perte globale (simplifiée)

○ L = λclsLcls+λboxLbox+λobjLobj
● Lbox  souvent basée IoU/GIoU/CIoU (régression “géométrique” plus alignée métrique)
● Pour classes rares / déséquilibre

○ focal loss devient pertinente, surtout en détection dense
○ focal loss = variante de la cross-entropy qui se concentre sur les exemples difficiles

● Debug pratique : inspecter séparément erreurs “cls” vs “loc” (boîtes) vs “obj” (confidences)
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NMS : le post-traitement qui fait (souvent) la différence
● NMS = supprimer doublons de boîtes très proches (même objet) après tri par score
● Pseudo-règle : garder la meilleure boîte, supprimer celles avec IoU > seuil avec une boîte déjà gardée
● Effets prod

○ latence (CPU/GPU)
○ instabilité près des seuils
○ difficulté à rendre le pipeline “end-to-end”

● NMS mal réglé donne
○ trop de doublons (FP)
○ objets ratés (FN) dans scènes denses

● Variantes : Soft-NMS, class-agnostic NMS, batched NMS (accélération)
● Tendance récente : 

○ détecteurs “end-to-end” qui éliminent NMS (DETR, RT-DETR) ou proposent entraînement NMS-free (YOLOv10)
● Bon réflexe : profiler “model time” vs “postprocess time” (sur vos images, pas sur COCO)
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YOLO en pratique : inference “propre” et intégrable
from ultralytics import YOLO

model = YOLO("yolov8s.pt")  # ou yolo11s.pt selon standard équipe
res = model("img.jpg", imgsz=640, conf=0.25, iou=0.7)  # iou = NMS

boxes = res[0].boxes.xyxy.cpu().numpy()
scores = res[0].boxes.conf.cpu().numpy()
labels = res[0].boxes.cls.cpu().numpy().astype(int)
# => sérialiser en JSON stable, logguer version + params + latence

● Paramètres produit : imgsz, conf, iou (NMS), classes autorisées
● Industrialisation : batch inference, AMP, export ONNX/TensorRT, tests de non-régression (slices)
● Observabilité : log “nb boxes”, top scores, taux de vides, latence p50/p95/p99
● Point clé : rendre le postprocess (NMS + mapping coords) déterministe et versionné
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DETR : détection comme prédiction d’ensemble (set prediction)
● Motivation : simplifier le pipeline (moins d’heuristiques)

○ pas d’anchors, pas de NMS dans la formulation
● Idée : prédire un ensemble de taille fixe N de “slots objets” via des object queries
● Architecture : backbone → encoder (context global) → decoder + queries → sorties (bi,ci) (boxes + classes)
● Chaque query produit au plus un objet (ou “no-object”)

○ on vise des prédictions uniques
● Avantage conceptuel : end-to-end, clair à déboguer (matching explicite, losses structurées)
● Limite historique : entraînement plus lent / plus coûteux sans tricks (d’où Deformable, DINO, RT-DETR…)
● Très utile pour relier Transformer aux contraintes d’un détecteur moderne
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Hungarian matching : la brique math qui remplace 
NMS/anchors

● Ground truth = ensemble Y={(bj,cj)}j=1..M , prédictions = Y’={(b’i,c’i)}i=1..N
● On cherche une permutation σ qui minimise un coût de matching :

○ σ* = arg min σ (sumj=1…M (Coût((bj,cj), (b’σ(j), c’σ(j)))))
● Coût typique

○ classification + distance boîtes (L1) + terme IoU/GIoU (selon papier)
● Perte finale (simplifiée)

○ loss cls + loss box sur les paires matchées + “no-object” sur le reste
● Intuition : chaque objet GT “réserve” une query

○ unicité garantie sans NMS
● Conséquence prod

○ sorties plus stables en scènes denses, mais compute côté encoder/decoder à maîtriser
● Point debug

○ visualiser la matrice de coût (GT × queries) sur quelques images pour comprendre échecs
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RT-DETR : rendre DETR réellement temps réel
● Problème : DETR “pur” coûte cher ; RT-DETR vise le temps réel sans NMS (end-to-end)
● Idées clés (niveau système)

○ encoder hybride efficace sur features multi-échelle + sélection de queries “de qualité”
● Résultats rapportés (COCO)

○ ex. RT-DETR-R50 ~53% AP (Average precision) et ~108 FPS sur GPU T4 (ordre de grandeur)
● Lecture ingénierie

○ on récupère la stabilité “NMS-free” tout en restant compétitif en latence
● Écosystème

○ implémentations PyTorch open-source
○ variantes (v2/v3) apparaissent

● Quand considérer RT-DETR : scènes denses, besoin de sorties plus stables, volonté d’un pipeline end-to-end
● Attention : toujours profiler avec vos tailles d’images et vos contraintes (CPU postprocess vs GPU compute)
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Segmentation supervisée : où elle s’insère (et pourquoi c’est 
coûteux)

● Sémantique vs instance : en produit, l’instance segmentation sert souvent à mesurer et extraire (forme)
● Approche classique

○ backbone + FPN + head masques (ex : Mask R-CNN-like) : performant, mais labels coûteux
● Labels masques = coût humain élevé + ambiguïtés (bord, transparence, “partiel” vs “complet”)
● Métriques (rappel) : mIoU/Dice ; en instance segmentation : AP masque (COCO mask AP)
● Pattern produit fréquent

○ “détecter d’abord, segmenter ensuite” (boîte → masque) pour réduire compute
● Pour “petites structures”

○ pertes type Dice (ou hybrides) deviennent importantes
● Transition : foundation models changent le workflow (moins de training, plus de prompting)
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SAM : segmentation promptable
● Idée : un modèle unique qui segmente “ce que vous désignez” via un prompt (points, boîte, masque grossier)
● Architecture (haut niveau)

○ image encoder + prompt encoder + mask decoder → masque(s) + score(s)
● SAM (2023) + dataset SA-1B (ordre de grandeur : ~11M images, ~1B masks) : base “foundation”
● Comportement clé

○ zero-shot souvent très solide → utile pour POC et pour accélérer l’annotation
● Limites

○ pas “magique” sur domaines très spécifiques (IRMs, micro-déauts) sans adaptation/contrôle qualité
● Pattern entreprise

○ annotation assistée, détourage produit, isolation ROI (region of interest) avant OCR, mesure de surfaces/contours
● Point ingénierie

○ postprocess simple (choix du meilleur masque, nettoyage composantes, export COCO/RLE)
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SAM 2 : étendre la segmentation promptable à la vidéo
● Motivation : en vidéo, segmentation = cohérence temporelle + occlusions + contraintes temps réel
● SAM 2 (2024) vise “Segment Anything” images + vidéos, avec mémoire “streaming” pour suivi temps réel
● Abstraction produit

○ prompt initial (frame 0) → propagation masques sur frames suivantes (avec corrections)
● Cas d’usage

○ rotoscopie/édition
○ suivi d’objet pour analytics
○ annotation vidéo accélérée

● Risque prod
○ dérive du masque dans le temps (drift)
○ besoin de mécanismes de correction (human-in-the-loop)

● Intégration
○ penser “cache mémoire”, latence frame-to-frame, et stratégie de ré-initialisation
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Choisir la bonne famille : règles de décision pragmatiques
● YOLO : meilleur “default” pour détection temps réel + intégration simple + écosystème mature
● DETR/RT-DETR : intéressant si vous voulez réduire/éliminer NMS, gagner en stabilité sur scènes denses
● SAM/SAM2 : idéal pour segmentation “à la demande”, accélération annotation, workflows hybrides (detect→segment)
● Pattern très réaliste : YOLO (boîte) → SAM (masque) → mesures/export → dataset → modèle spécialisé si besoin
● En prod

○ profiler end-to-end (préprocess + modèle + postprocess) et tester par slices (petits objets, blur, nuit)
● Gouvernance

○ versionner seuils/NMS/prompts et logguer pour pouvoir expliquer une décision
● Règle d’or

○ “baseline forte + protocole d’éval + profiling” avant d’optimiser l’architecture
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Ingénierie et industrialisation : faire 
passer un modèle de vision en 
production
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Pourquoi cette section (et pourquoi maintenant)
● En entreprise, la valeur est souvent dans l’intégration : API, latence, robustesse, monitoring, maintenance
● Un modèle SOTA en notebook peut être inutilisable si le pipeline est instable (I/O, postprocess, drift)
● Objectif

○ une checklist “ingénieur” pour livrer une brique CV exploitable (POC → MVP → prod)
● Contraintes fréquentes

○ coûts GPU, SLA (Service Level Agreement) latence, volumes, edge/cloud, sécurité, RGPD, reproductibilité
● Approche

○ optimiser end-to-end (préprocess + modèle + postprocess + transport + UI)
● Indicateurs de réussite

○ p95/p99 latence, taux d’échecs, stabilité des seuils, taux d’alertes utiles
● Lien direct avec le TP : mêmes patterns (inference, postprocess, export, logs)

63



Profiling : mesurer avant d’optimiser (sinon on perd du temps)
● Toujours séparer : temps préprocess, inférence GPU, postprocess, I/O (lecture/écriture)
● Mesurer p50/p95/p99 (pas juste “moyenne”)

○ la prod souffre sur la queue de distribution
● Attention au warm-up GPU (premières itérations demande de charger le modèle) et aux sync implicites (CPU↔GPU)
● Micro-bench. Tester :

○ batch size, résolution, AMP on/off, device (A10/T4/RTX), thread CPU
● Vérifier mémoire

○ VRAM peak, fragmentation, risque OOM (Out Of Memory) sous charge
● Sortie attendue

○ “budget latence” par étape et priorités d’optimisation
● Exemple : parfois NMS ou decoding JPEG coûte plus que le forward pass

64



Accélérations “sans douleur” : AMP, batching, compilation
● AMP (FP16/BF16) : gain débit + baisse VRAM, souvent sans perte ; vérifier mAP/IoU après
● Batching : augmente le throughput serveur, mais peut augmenter la latence ; utile si SLA le permet
● torch.inference_mode() + model.eval() : éviter overhead autograd/dropout
● torch.compile (selon versions) : peut accélérer, mais attention compatibilité ops/export
● Pin memory + prefetch data loader (si pipeline vidéo/flux), threads CPU pour décodage
● Optimiser les transferts : garder tensors sur GPU, éviter .cpu() trop tôt
● Toujour: valider qualité après optimisation (régressions subtiles possibles)
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Export et runtimes : ONNX / TensorRT / Runtime unifié
● Objectif : exécuter plus vite et plus stable via un moteur d’inférence optimisé (et portable)
● Export ONNX : figer graphe + shapes (ou dynamic shapes) + vérifier opérateurs supportés
● ONNX Runtime : providers CPU/CUDA/TensorRT ; bon pour déploiement cross-platform
● TensorRT : très performant (fusion, kernels, INT8) mais demande calibration/validation
● Points durs : NMS custom, ops non supportées, dynamic shapes complexes (notamment en det/seg)
● Approche pragmatique : exporter d’abord le backbone + head simple, puis intégrer postprocess séparément
● Toujours faire une “parité” : comparer sorties PyTorch vs runtime (tolérance, top-K, IoU)
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Quantization : quand et comment (INT8, PTQ vs QAT)
● Pourquoi : réduire taille mémoire et accélérer (surtout edge), parfois nécessaire pour tenir le SLA
● PTQ (Post Training Quantization)

○ rapide (pas de ré-entraînement), nécessite un set de calibration représentatif
● QAT (Quantization aware training)

○ plus long (ré-entraînement), souvent meilleure précision finale, utile si PTQ dégrade trop
● Choisir périmètre : quantifier backbone + head, parfois garder certaines ops en FP16/FP32
● Risques

○ pertes sur petits objets
○ contrastes faibles (détection)
○ instabilités sur certaines couches

● Méthode : mesurer la perte de perf sur vos slices critiques (petits objets, nuit, blur)
● Décision produit : “gain latency” vs “perte recall” (et coût de FP/FN)
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Robustesse : le long tail et le “domain shift”
● Drift = changement de distribution

○ nouveau site, nouvelle caméra, saison, packaging, illumination
● La performance globale cache souvent des poches d’échecs

○ slices (petits objets, fonds spécifiques)
● Stratégie : définir des “edge cases” et constituer un jeu de tests vivant (échantillonnage continu)
● Détection OOD (Out Of Distribution, pragmatique)

○ seuil sur confiance
○ détection d’anomalies sur embeddings
○ règles de sanity

● Human-in-the-loop
○ circuit de revue pour cas incertains + feedback vers data/labels

● Versionner taxonomie + guidelines d’annotation : sinon dérive des labels (label drift)
● En prod, l’objectif est la stabilité autant que le score maximal
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Monitoring : quoi logger et comment alerter
● Mesurer : latence p50/p95/p99, taux d’erreurs (décodage, timeouts), taux de sorties vides
● Mesurer qualité indirecte : distribution des scores, nb objets/image, tailles de boîtes, taux de masques min/max
● Drift monitoring : changements de distribution (histogrammes), embeddings shift, data quality checks
● Stocker des exemples : top erreurs / faible confiance / cas OOD (avec respect RGPD)
● Alerting : seuils sur métriques système + dérive statistique, pas juste “accuracy”
● Tests de non-régression : images canoniques + expected outputs (golden set) + tolérances
● Gouvernance : traçabilité version modèle + preprocessing + seuils + config runtime
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RGPD / sécurité / PI : points à traiter dès le design
● Données : minimisation (ne pas stocker plus que nécessaire), durée de rétention, anonymisation si possible
● Images de personnes : base légale, information, floutage/masquage, accès restreint, audit
● Modèles et datasets : vérifier licences (poids, datasets, images), droits d’usage en contexte produit
● Sécurité : protection contre inputs malveillants (fichiers corrompus), rate limiting, sandboxing
● Logging : attention aux images sensibles ; privilégier hash + métriques + échantillons contrôlés
● “Explainability” pragmatique : overlays (bbox/masques), scores, règles métier → auditabilité
● Risque réputationnel : biais (démographie, environnement) → évaluer par sous-populations quand pertinent
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Conclusion opérationnelle : la checklist “POC → prod”
❏ Définir tâche + métrique + seuils d’acceptation (y compris latence/mémoire)
❏ Baseline forte (modèle pré-entraîné) + protocole d’éval + slices
❏ Pipeline déterministe : preprocess/postprocess versionnés, tests unitaires, JSON stable
❏ Profiling end-to-end, puis optimisations (AMP/batching/export/quantization)
❏ Observabilité minimale + jeu de tests vivant + boucle de ré-annotation
❏ Plan de déploiement : A/B test, rollback, gestion versions, documentation
❏ Résultat : un système CV maintenable, pas une démo fragile

71



Conclusion
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Conclusion : une “recette” CV moderne
● Toujours commencer par tâche → métrique → coût d’erreur (FP/FN) : c’est le contrat produit
● Choisir une baseline forte (pré-entraînée) avant d’innover : ViT/Swin/CNN moderne selon contraintes
● Pour le dense : penser multi-scale (FPN/hiérarchie) + postprocess (NMS ou set prediction)
● Familles à retenir :

○ YOLO = détection temps réel pragmatique, écosystème prod
○ DETR/RT-DETR = pipeline plus “end-to-end”, stabilité, moins d’heuristiques
○ SAM = segmentation promptable, accélère POC/annotation et workflows hybrides

● La performance utile se gagne en prod via : pipeline déterministe, profiling end-to-end, observabilité, slices
● Anticiper le réel : drift, long tail, qualité labels, test set vivant, boucle de ré-annotation
● Industrialiser “propre” : versionner modèle + preprocessing + seuils + exports, et intégrer RGPD/licences
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En route vers le TP
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