!v’oms\%’a INSTITUT TELECOM
;'0 : POLYTECHNIQUE
’ DE PARIS S0 |

Modern Computer Vision

Julien Romero

Introduction et motivation

Pourquoi la vision “compte” en 2026

° Les capteurs (caméras, vidéos, scanners) sont partout : industrie, retail, mobilité, santé, documents

° La valeur business est souvent directe : réduction colits (controle qualité, back-office), augmentation revenus (personnalisation,
UX), réduction risques (sécurité)

e Les modeles modernes ont changé la donne : pré-entrainement massif + fine-tuning léger + parfois zero-shot

e Enpratique, le probleme n'est pas “juste” le modele : c'est data + pipeline + contraintes prod

e Contraintes typiques en entreprise : latence, robustesse (lumiére, angles), long tail, dérive (drift), RGPD/PI

e Co(t caché majeur : annotation (temps humain) + définition du label (taxonomie, ambiguités)

e Objectif du cours : passer de “¢ca marche en notebook” a “¢a marche dans un produit”

Exemples

labels with postage. For other
inforsation call 1-600-ASC-USPS,

s ——
Get your 5211 shen and where. you v
it o securs Pot e "ot
up for a box cnline at
usps.con/pobcres.
e

sales final on stasos and costane

il sales final on stams and oostane

Définition opérationnelle de “Modern Computer Vision”

Computer Vision : apprendre une fonction f, qui mappe une observation visuelle xxx vers une sortie yyy utile (classe, boites,
masques, texte, trajectoires...)
Spécificité moderne : architectures (ViT / CNN modernes / hybrides) + foundation models (ex : segmentation promptable)
Représentations : embeddings visuels réutilisables (transfer learning), parfois alignés texte—image (multimodal)
Paradigme dominant : pré-entrainement sur grands corpus pour adaptation a une tache via fine-tuning / adapters / prompt
“Dense prediction” vs “global” :

o global: classification (1 label/image)

o dense : détection/segmentation (structure spatiale, multi-objets)
Les erreurs importantes en prod ne sont pas “moyennes” : elles sont dans les cas rares (long tail) et les changements de
contexte
Fil rouge : choix de la tache + métrique + données + modele + intégration impacte la performance produit

Post-traite
ment

Pré-traitem
ent

Logique
métier

Modéle

Interface

Le vrai probleme : optimiser un systeme, pas un score de
benchmark

e Objectif prod : maximiser une utilité U sous contraintes (latence, co(t, risque)
O Exemple de forme : U=Gain-A- CoUt-p - Risque
e Différence critique : benchmark = distribution “propre”, prod = distribution vivante
o Data-centric reality : labels incomplets/incohérents, classes mal définies, domain shift (caméra, site, saison)
e Robustesse : illumination, motion blur, occlusions, arriére-plans, nouveaux objets, adversarial “naturel” (reflets, écrans)
e Choix d'architecture = compromis :
O accuracy vs latence vs mémoire vs facilité de déploiement
e Les trois questions de base avant tout entrainement :
O quelle tache exacte ? quelle métrique ? quel colt d’erreur (FP/FN) ?
e Résultat attendu a la fin de la séance : savoir “designer” un pipeline CV moderne crédible pour une équipe produit

Taches, datasets et métriques

Pourquoi commencer par taches + métriques (avant les
architectures)

En entreprise, on n'optimise pas “un modele”, on optimise une décision (accept/reject, alerte, extraction, tri)
La tache fixe la sortie yyy, donc le design du pipeline (pré/post-traitement, Ul, stockage)
La métrique doit refléter le colt d’erreur (FP vs FN) et le niveau de granularité (image / objet / pixel)
Exemple :

o controle qualité : une FN (défaut non vu) colte plus cher qu’une FP (recontréle humain)

o OCR facture : la qualité “globale” importe moins que la qualité des champs clés (total, TVA)
e Risque majeur : “metric gaming” (bon score, mauvais produit) si la métrique est mal choisie
e Obijectif : savoir écrire un spec clair : tache — données — métriques — seuils — protocole d’éval

Use-case Tache Métriques principales
Inspection segmentation mAP/loU
Retail comptage Détection + tracking MOTA/IDF1
Lecture document OCR CER/WER + field acc.
Médical segmentation DICE/loU
Seécurité classification ROC-AUC

QA produit anomaly PR-AUC

Classification et retrieval

e Single-label : 1 classe/image
o ex:type de défaut, espéce, catégorie produit
e Multi-label : plusieurs tags/image
o ex:“rayure” + “tache” + “logo manquant”
e Meétriques courantes :
o Accuracy, Top-k, Precision/Recall/F1, ROC-AUC (classe rare), PR-AUC (fort déséquilibre)
o En multi-label : seuil par classe, micro/macro-averaging (impact fort sur interprétation)
e Calibration utile : probas fiables => réglage de seuils et tri humain efficace
e Retrieval:
o apprendre un embedding z=f(x)
o similarité cosine
o KPI =Recall@K / mAP retrieval
e Casréel:
o “trouver des produits similaires” = embeddings + ANN (FAISS/Qdrant/Chroma) + régles métier

Détection d'objets : sorties et difficultés réelles

Sortie : ensemble {(bi,ci,si)}iﬂ"N (boite, classe, score), N variable

o Laboite contient I'objet détecté

o bi:(x_l' Yo Xo yz) - Person: 82%
Problémes concrets : petits objets, occlusions, objets collés, arriére-plans “trompeurs” Person: 89%
Post-traitement classique :

o seuil score

o NMS (Non Max Suppression, suppression doublons)

o choix seuil = trade-off FP/FN
Annotation plus colteuse que classification

o boites = temps humain

o ambiguités (bord exact ? objets partiels ?)
Datasets typiques : COCO (généraliste), KITTI/BDD100K (conduite), SKU-110K (densité retail), etc.
Usage industriel fréquent : “détecter puis...” (compter, suivre, segmenter, recadrer pour OCR)
Pipeline mental : détecter = “ou” + “quoi”, mais pas “forme” (c’est la segmentation)

Person: 98%

Person: 98%
Person: 80%

Person: 76%

10

10—

0.8 4 conf-thres 0.9

loU, Precision—Recall, AP et mAP (détection)

0.6 1

Precision

e Overlap boite-vérité : loU 041
o 1oU(B,B)=|BNB’| / IBUB’|
e Définition “match” : une prédiction est TP si loU > T (ex : 0.5) et bonne classe
0.0

conf-thres 0.1
0.2 P=0.2, R=0.9 \

En balayant le seuil de score, on obtient la courbe Precision—Recall (PR)
o utile quand classes rares S
AP = average precision = aire sous la courbe PR (par classe), similaire a AUC (différentes interpolations)
mAP = mean AP = moyenne des AP des classes
COCO-style : mAP moyenné sur T€{0.50,0.55,..,0.95} (plus strict, plus informatif)
Lecture produit :
o mAP haut mais recall faible, alors “on rate des objets”
o mAP bas mais recall haut, alors “trop de FP”
e Aretenir: mAP dépend fortement de la qualité des labels et de la définition de ce qu'est un objet

Segmentation : sémantique, instance, panoptique + métriques

Sémantique : label/pixel (route, ciel)
Instance : objet/pixel (chaque voiture)
Panoptique : mix sémantique + instance
Sortie
o masque M€{0,1}""V (binaire) ou M {1.. KW (multi-classes)
e Maétrique pixel
o loU par classe, moyenne (mloU) ; sensible aux frontiéres et aux petites classes
e Dice (trés utilisé quand objets petits / déséquilibre, ressemble F1)
o DiceMM)=2|MNM’| / (IM[+|M’])
e Pourquoi ga compte : un modele peut “bien classifier” mais rater les contours = mauvais pour mesure/surface
e Exemples
o médical (organes/lésions)
o industrie (défauts surfaciques), e-commerce (détourage produit)
e Pont vers la suite : segmentation moderne = modéles dédiés + modeéles promptables (SAM)

12

Segmentation : sémantique, instance, panoptique + métriques

Sémantique : label/pixel FN =FP =10

Instance : objet/pixel (ch
Panoptique : mix séman
Sortie

o masque ME{0,1)
Métrique pixel

o loU par classe, m
Dice (trés utilisé quand ¢

o Dice(M,M")=2|Mr
Pourquoi ¢a compte : un
Exemples

o médical (organes

o industrie (défauts
Pont vers la suite : segm

FN FP
FN @ FP

Jre/surface

for TP = 1000, for TP = 100,
DSC = 0.99 DSC = 0.91
IoU = 0.98 IoU = 0.83

13

Segmentation : sémantique, instance, panoptique + métriques

Sémanti
Instance
Panoptic
Sortie

D (a) image

(c) instance segmentation (d) panoptic segmentation

14

OCR / Document Al : quand la vision sert le texte et la structure

e Pipeline typique : détection zones texte — reconnaissance séquence — structuration (champs)
° Entrée variée : scan, photo smartphone, pdf rasterisé ; défis : perspective, blur, polices, tampon, handwritten
e Meétriques OCR

O CER (char error rate)
O WER (word error rate)
O mais KPI métier = exactitude champs
e Exemple KPI
O “Total TTC exact” / “Date exacte” / “IBAN exact” (tolérance zéro possible)
e Données
O annotations colteuses (boites lignes/mots + transcription)
O bruit de ground truth fréquent
e Post-traitement indispensable
O regex, validation (TVA, SIRET), contraintes (montants, formats)
e Intégration : human-in-the-loop (validation) + journalisation des cas ambigus

15

OCR / Document Al : quand la vision sert le texte et la structure

« B

¢ § o BB

= Table and

o Pipeli =mm
o Entré - — ———
e Métric
o |
e e —— =
© ST -
5 o TR
e Exem
o
e Donn
o)
o)
e Post-

o - o
e Intégr lll< OCR

Tel: Fax:

‘ . = =
Pl'Cpl’()CcSSll'lg : TC"(t DC tCC ﬂOI]
E===S=== Green — Text
== Red - Table
[

Texts | l
Tables
l anlcs

1
ETTN: 04300195 420w 494 Dele 0.7¢7 181 k1505 1
. . Cell
FTTN: Dafon] 1542 2o e Lolo - H ¢ T 1R 105 .
b St _ Extraction
e wPOS1 ProcEssing —— —

16

Tracking vidéo : suivre des identités

Objectif : associer des détections au fil du temps avec trajectoires + identités stables
Approche dominante : tracking-by-detection (détection par frame + association)
Difficultés

o occlusions, croisements, entrées/sorties, changements d’apparence, motion blur
Intuition des métriques de Multiple object tracking (MOT)

o ID switches (erreurs d'identité), IDF1 (qualité identité), MOTA/HOTA (global)
Sorties utiles

o vitesse/trajectoire, comptage unique, temps passé dans une zone (analytics retail)
Engineering

o latence frame-to-frame, buffering, horodatage, synchronisation caméras (multi-cam)
Bon réflexe : distinguer “erreur de détection” vs “erreur d'association” (debug séparé)

17

Choisir un dataset et un protocole d’évaluation

Dataset public = bon départ, mais attention domain gap (capteur, angle, environnement, classes)
Split correct : train/val/test sans fuite (mémes scénes, mémes objets, mémes documents proches)
Définir la taxonomie
o classes, “autres”, seuil d'ambiguité, regles d’annotation (guidelines)
Evaluer par slices
o taille objet, luminosité, type de fond, rareté
o But: trouver le “long tail”
Mettre une baseline forte
o modele pré-entrainé + fine-tuning minimal + seuils calibrés
Fixer des acceptance criteria produit
o métriques + latence + mémoire + taux d'échec + couverture
Préparer la prod : logging (entrées + sorties), jeux de tests “vivants”, et plan de ré-annotation

18

Du pixel au systéeme :
représentations, pipeline et “points
de rupture”

19

Pourquoi le pipeline compte plus quon ne le croit

° En prod, 50% des bugs CV viennent de I'l/O (décodage, formats, couleurs, tailles), pas du modéle
e Méme modeéle + preprocessing différent donne des outputs différents (ex : RGB/BGR, range [0,255] vs [0,1])
e La"bonne” représentation dépend de la tache
o global (classification) vs dense (detection/segmentation) vs embedding (retrieval)
e Le pipeline complet = prétraitement — modele — post-traitement — décision métier
e Objectif : rendre chaque étape testable, débogable, et contrdlable (seuils, regles, logs)
e Pointclé
o séparer model output (probabilités, logits, masks) de product decision (alerte, extraction)
e Onveut un systeme stable face aux variations “réelles” : capteur, lumiéere, compression, mouvement

Post-traite
ment

Pré-traitem
ent

Logique

Modeéle L Interface
metier

Prétraitement : ce qui casse (souvent) en entreprise

Décodage : JPEG/PNG, EXIF orientation, profils couleur, gamma (différences PIL/OpenCV)

Canaux : BGR vs RGB, ordre des canaux, alpha channel (RGBA), niveaux de gris (1 canal)

Echelles : uint8 [0..255] vs float [0..1], normalisation par canal (mean/std)

Redimensionnement : conserver ratio (letterbox/pad) vs stretch ; impact sur détection/segmentation
Crops/tiles : utile pour trés grandes images (inspection, doc), mais impose une logique d’'assemblage
Augmentations : ok en train, déterministes en eval (sinon métriques instables)

Reproductibilité : fixer seed, versionner transforms, tracer paramétres (pour audit/debug)

21

Abstraction “backbone + head” : lire un modele comme une API

Vue systeme :
o y=head(backbone(x))
Backbone : extrait des features F (maps multi-échelle pour détection/segmentation, ou embedding pour retrieval)
Head : transforme F en sorties task-specific (logits, boxes, masks, keypoints, texte)
Dense prediction : sorties structurées (spatialement) = importance du multi-scale (petits objets)
Embeddings : méme backbone peut servir classification et retrieval (ex : “similarity search”)
Conséquence produit : on peut “swap” un backbone sans casser I'API de la head (si interfaces stables)
Bon réflexe : documenter I/0 du modeéle (shape, dtype, conventions coordonnées, num classes)

22

Post-traitement : transformer une sortie réseau en objet
exploitable

Détection : thresholding + NMS (ou équivalent) + conversion coordonnées = pixels image d'origine
Segmentation : threshold mask, puis nettoyage (composantes connexes, remplissage trous) si besoin métier
Calibration : un score 0.9 n'est pas toujours une “proba fiable”

O FEtude impact sur seuils et tri humain
Regles métier

o filtres (taille min/max, ROI)

O agrégation (compter, mesurer, alerter)
Formats de sortie : JSON “stable” (classes, scores, polygones/RLE, metadata) pour intégration produit
Logs minimaux : version modele, params preprocessing, seuils, top-K sorties + exemples d'images erreurs
Sécurité/qualité : timeouts, “empty outputs”, gestion d'images corrompues, fallback CPU/skip

23

Exemple de pipeline générique (PyTorch + OpenCV)

import cv2, torch
from torchvision import transforms

1) Load (attention: OpenCV = BGR)
bgr = cv2.imread("img.jpg", cv2.IMREAD_COLOR)
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)

2) Preprocess (a versionner)
tfm = transforms.Compose([
transforms.ToTensor (), # uint8[@..255] -> float[@..1], CHW
transforms.Normalize(mean=[0.485,0.456,0.406],
std =[0.229,0.224,0.225]),

)
x = tfm(rgb).unsqueeze(®).cuda() # (1,C,H, W)

3) Model
with torch.inference_mode(), torch.cuda.amp.autocast():
out = model(x) # logits / boxes / masks ...

4) Postprocess (pseudo-code)
pred = postprocess(out, orig_shape=rgb.shape[:2], score_thr=0.25)

5) Business layer
decision = business_rules(pred) # alert / extract / count / export

Pattern clé : fonctions pures preprocess(),
postprocess(), business_rules()
(unit-testable)

Stocker les conventions : format couleur,
resizing, coordonnées, seuils, mapping
classes

Debug rapide : conserver rgb, x stats
(min/max), sorties brutes et finales (avant
régles métier)

24

Architectures modernes

25

Pourquoi les architectures ont (encore) changé

Les taches “dense” (détection/segmentation) demandent du contexte global + du multi-scale
Les CNN ont un inductive bias (présuppositions utilisée pour prédire des sorties pour de nouvelles entrées) fort (localité,
translation)
o efficace, mais parfois limité en contexte long-range
Les Transformers ont un biais plus faible
o scalent mieux avec le pré-entrainement massif et le transfert
En pratique :
o lavictoire ne vient pas d'une “brique magique”, mais de la scalabilité + recettes d’entrainement
Conséquence produit :
o onréutilise des backbones pré-entrainés “généraux” => adaptation rapide (time-to-market)
Objectif : comprendre les choix (ViT/Swin/ConvNeXt) en termes de 1/0, co(t, et compatibilité détection/segmentation

26

Pourquoi les architectures ont (encore) changé

° Les tache

e LesCNN
translatio
o ef

e LesTrans
o sC

e En pratiq
o la

e Conséque
o or

e Objectif:

wosows. .. . N

Evolution of Vision & Hybrid Models (2012 - present)

calité,
Patch tokens + self-attention
AlexNet ConvNeXt / CoAtNet
Deep CNN breakthrough Modern CNN / hybrid with attention
tion
ResNet Foundation Models
Residual connections Large scale pretrain / multi-modal
Swin
Hierarchical windowed attention

T T
2012 2015

T T T T
2020 2021 2022 2023

27

Transformers pour la vision : rappel ciblé

Entrée = séquence de tokens (t,,...,t,) + embeddings positionnels
Bloc Transformer
o Self-Attention + MLP + résidus + LayerNorm
Self-Attention (1 téte) :
o Attn(QK,V) = softmax(QK'/d)V
Intuition vision : chaque patch “regarde” tous les autres => contexte global natif
Cout clé
o attention quadratique en N (nombre de tokens) => gros impact sur images HD
Donc : design moderne = réduire/structurer N (patching, fenétres, hiérarchie)

28

ViT : transformer une image en séquence

e Image x&R™W*C patch size P
e Nombre de tokens : N=H/P * W/P (on découpe I'image en patch)
e Chaque patch est aplati puis projeté :
O t=W-vec(x)+b avec t €RP (transformation linéaire des patchs)
e On ajoute un token spécial [CLS] (souvent) pour classification (comme dans BERT)
e Onajoute un embedding positionnel (appris ou sinusoidal) : t«t+p,
e Sortie classification : head sur [CLS] (on ne garde que [CLS]) ou pooling (mean)
e Point pratique
O Il faut de gros datasets et un long pré-entrainement pour utiliser ViT

29

ViT : transformer une image en séquence

o Image xeR™ Vision Transformer (ViT)

e Nombre de tol
e Chaque patch

o t=W-ve
e Onajouteunt

MLP
Head

e Onajouteunce
e Sortie classific
e Point pratique

o |l faut de

Transformer Encoder

- 6 D08 O0 8 H5 &

Extra learnable = = =
[class] embedding Linear Projection of Flattened Patches

oS
Lpu
' }7.

wER —QEHENERS

30

ViT : implications compute/meémoire

e Attention full : complexité O(N?- D) (temps) et O(N2) (mémoire des poids d'attention)
e Exemple mental
O image 1024x1024, P=16
O N=4096
o matrice attention 40962 = 16,7M par téte
e Pour du “dense” (détection/segmentation), on veut souvent plus de résolution
O Nexplose
e Stratégies
O patch plus gros (N diminue mais perte détails)
O attention locale (Swin)
O pooling/hiérarchie
e Eninference : latence dépend fortement de H, W, P pas juste du nombre de paramétres
o Bon réflexe prod : profiler en conditions réelles (résolution, batch, AMP) avant de choisir backbone

31

Swin Transformer : rendre le Transformer “multi-scale” et

efficace

Idée : attention dans des fenétres MxM (local attention)

o =>colt=0(N -M?)
Architecture hiérarchique : on merge des patchs (downsampling) => niveaux (comme un CNN)
Fenétres “shifted” : on décale les fenétres entre couches pour faire communiquer les régions
Résultat : meilleur pour détection/segmentation (besoin multi-scale + détails locaux)
Lecture systeme

o Swin fournit naturellement des feature maps a plusieurs échelles
Trade-off : localité imposée (bias) mais compute contrélé — bonne compatibilité prod

32

Swin Transformer : rendre le Transformer “multi-scale” et
efficace

. @ ®

Classification

Segmentation Layer/+1

Alocal window to
perform selfattention

33

rendre le Transformer “multi-scale” et

Swin Transformer

efficace

a ana Nt

’
1 1
1 = !
1y v | & !
Pl Zldd B 1 Zld
"/n.\ = = /U\ W. = lz"
& o n 1
| '~ N ¥
N e o o . S . - . P
\\ ||||||||||||||||||| II
] 1
] 1
] A 1
Y Y
Narll Jarn sl !
D8 5[« M.Almﬂ,%_
1N N = N
\ /

SN

|

" Stage3

Block

—» Transformer [

ﬁ SuiSIa|y yored _

X6

ﬁ SuwiSIo| yored H

| Transformer =9

ﬁ SuISIa\ yored H

—» Transformer

— Surppequuy Iesury _

— uonnIed yored _

HxWx3

Images [}

- -

(b) Two Successive Swin Transformer Blocks

(a) Architecture

34

CNN modernes : pourquoi ConvNeXt existe

e Message : “Transformer vs CNN" est trop binaire
O des CNN modernisés restent tres compétitifs
e ConvNeXt (famille) : reprend ResNet et applique des recettes “Transformer-like”
O normalisation, tailles de kernel, design stage
e Avantage prod fréquent
O opérations convolutionnelles trés optimisées (latence stable, kernels matures)
e Pour certains budgets (edge)
O CNN bien congu = meilleur colt/perf que ViT full attention
e Pourdense tasks : CNN + FPN (Feature Pyramid Networks) + head bien réglée = baseline solide et industrialisable
e Conclusion pratique : choisir backbone = contrainte compute/latence + disponibilité des poids + compatibilité head

Feature Pyramid Networks (FPN) : multi-scale “bien fait” pour la
détection/segmentation

e Probléme motivation
o objets de tailles tres différentes
o une seule résolution de features ne suffit pas (petits objets vs grands)
° Idée : construire une pyramide de features {Pz, P, P, PS} riches sémantiquement a toutes les échelles
° Entrée typique : features backbone {Cz, C, C, C5} (résolutions décroissantes, sémantique croissante)
e Top-down + lateral connections :
o P=Conv, ,(Up(P,,) + Conv__.(C))
O Up =upsampling
e Effetclé
o on “injecte” la sémantique des couches profondes vers les couches haute résolution
o meilleur recall sur petits objets
e Utilisation
o heads de détection/segmentation consomment P, (anchors/queries/points) selon la taille attendue des objets
e Lecture ingénierie
o FPN = colt modéré (upsample + conv), gain robuste ; devient souvent une brique standard (Faster/Mask R-CNN,
RetinaNet...)

36

Feature Pvramid Networks (FPN) : multi-scale “bien fait” pour la

d et1 Backbone Feature Pyramid Predictions

Scale 1

Scale 2

Scale 3

..

Pré-entrainement : le “vrai moteur” de la généralisation

e Paradigme : apprendre une représentation f, sur un grand corpus puis transférer sur tache cible
e Supervised large-scale : fonctionne, mais dépend de labels massifs (colt + biais)
o Self-supervised vision : apprentissage sans labels (contraste, reconstruction) — trés bon transfert
e Exemples conceptuels :
O reconstruction (type masked modeling) : prédire des patches masqués
O contraste : rapprocher vues augmentées d'une méme image, éloigner les autres
e Impact entreprise : moins de data labellisée requise pour démarrer un POC robuste
o Aretenir: “quel prétrain ?” est souvent plus important que “quel backbone exact ?”

38

Fine-tuning : stratégies concreétes (et quand les utiliser)

Linear probe : geler backbone, entrainer seulement la head
o rapide, baseline, peu de risque
Full fine-tune : tout entrainer
o meilleur perf, mais plus de compute et plus de risque d'overfit
Adapters / LoRA : n'entrainer que de petits modules
o bon compromis, versioning plus simple
Heuristique :
o dataset petit — commencer par linear probe / adapters
o dataset moyen/grand — full FT possible
“Catastrophic forgetting” : si FT agressif sur petite data, on peut dégrader la généralité
Prod : adapters facilitent A/B tests et rollback (on change de “delta” plutét que tout le modéle)

39

Exemple code : charger un backbone ViT et extraire des
features (générique)

import torch
from transformers import AutoImageProcessor, AutoModel

name = "google/vit-base-patch16-224" # exemple
proc AutoImageProcessor.from_pretrained(name)
vit AutoModel.from_pretrained(name).cuda().eval()

inputs = proc(images=pil_image, return_tensors="pt").to("cuda")

with torch.inference_mode(), torch.cuda.amp.autocast():
out = vit(**inputs) # out.last_hidden_state: (B, N+1, D)

cls = out.last_hidden_state[:, 0] # token [CLS]
feat = torch.nn.functional.normalize(cls, dim=-1) # embedding utilisable pour retrieval

e Pattern: backbone pré-entrainé — embedding D — head (classif/det/seg) ou retrieval
e Important : garder trace du preprocessing associé au checkpoint (sinon “silent failure”)

Comment choisir (ViT vs Swin vs CNN moderne) en contexte
apprentissage/entreprise

Si détection/segmentation + résolution variable : Swin (ou backbones hiérarchiques) souvent plus naturel

Si classification/retrieval avec gros prétrain dispo : ViT simple et trés performant

Si edge/latence stricte : CNN moderne (ou ViT compact) + quantization/AMP (auto mix precision) — plus prévisible
Si équipe produit : privilégier écosystéme, checkpoints, tooling (export ONNX, compat TensorRT)

Démarrer “pragmatique” : baseline forte (modéle populaire) + protocole d'éval + profiling

Ensuite seulement : itérer architecture (le gain vient souvent de data + seuils + slices)

41

Comment choisir (ViT vs Swin vs CNN moderne) en contexte
apprentissage/entreprise

Critieres (prod) ViT Swin CNN moderne
Latence stable / edge ~ + ++
Haute résolution (HD) sans) + +
exploser
Multi-scale natif pour det/seg ~ ++ ++
Classification / retrieval ++ + +
Détection temps réel “simple” ~ + +
Segmentation dense (qualité - + +
contours)

T!'ansfgr learning (poids + + +
disponibles)
Tooling prod (ONNX/TensorRT,

~ + ++
kernels matures)
Corrlplexne d’intégration + + +
(pré/post)

Transition vers la suite (détection/segmentation modernes)

e Backbones = représentations ; “le vrai travail” dense est dans la head + losses + matching + postprocess
e Deux familles a comparer ensuite :
o Détecteurs “prod” rapides : YOLO-like (one-stage)
o Détecteurs end-to-end : DETR-like (set prediction)
e Et segmentation moderne : du mask supervisé au promptable (SAM)
e Prochain objectif : relier architecture — tache — métrique — pipeline, sans perdre le fil “produit”

43

Détection & segmentation modernes :
YOLO, DETR, SAM

44

Pourquoi la déetection/segmentation est le cceur de beaucoup

de produits CV

Beaucoup de produits = localiser “ol” (objets) et/ou “quelle forme” (masques), pas juste classer
Cas typiques : inspection (défaut local), retail (comptage), mobilité (piétons/voies), doc Al (zones)
Contraintes prod : latence (fps), recall sur petits objets, robustesse (blur, occlusions), stabilité post-traitement
Pipeline standard

o backbone (multi-scale/FPN-like) — head (boxes/masks) — postprocess (NMS / seuils) — décision
Deux familles a connaitre : YOLO-like (dense, NMS) vs DETR-like (set prediction, end-to-end)
Et une 3e voie récente : segmentation promptable (SAM) pour annotation/POC rapides et workflows hybrides
Objectif : comprendre les abstractions 1/0 + les “points de colt” (compute, postprocess, labels)

45

YOLO : pourquoi c’est (encore) la baseline industrielle

e Design “one-stage”
o prédire directement des boites + classes sur une grille multi-échelle (dense prediction)
o basée sur CNN
e Trés bon compromis vitesse/précision
o adoption massive en POC et intégration produit
e Ecosystéme pragmatique
o modéles pré-entrainés, APIs simples, export (ONNX/TensorRT selon stack)
e Tendance récente
o heads anchor-free / décorrélées (classification vs régression) pour simplifier et gagner en robustesse
e YOLOvV7 (2022) met I'accent sur 'amélioration de I'entrainement + performance temps réel
e Ultralytics YOLOv8 (2023) popularise une head anchor-free “split”; YOLO11 (2024) poursuit I'industrialisation (doc + tooling)
e Point d'attention produit
o la performance réelle dépend beaucoup de NMS/seuils + calibration + distribution terrain

46

YOLO : sortie, head “découplée” et pertes

Sortie typique par niveau | : (b,c,s) pour chaque point (ou cellule) de la grille
Head découplée : branche cls (classes) + branche box (régression)
o convergence plus stable (souvent)
“Anchor-free” : on prédit offsets/boites sans choisir un set d'anchors a la main (moins de tuning)
Perte globale (simplifiée)
© L= }\clchls+)\bobeox+}\objLobj
L., Souvent basée loU/GloU/CloU (régression “géométrique” plus alignée métrique)
Pour classes rares / déséquilibre

o focal loss devient pertinente, surtout en détection dense
O focal loss = variante de la cross-entropy qui se concentre sur les exemples difficiles
Debug pratique : inspecter séparément erreurs “cls” vs “loc” (boites) vs “obj” (confidences)

47

YOLO : sortie, head “découplée” et pertes

. 'YOLOv8'Head T

Conv2ad /7 ciou |
k=3s=1p=0 — +DFL |

: “ c=4xregmax | BhoxLloss

—

Conv2d . /7 BCE

- c=4xreg max E‘ Cls.Loss

-

NMS : le post-traitement qui fait (souvent) la différence

NMS = supprimer doublons de boites trés proches (méme objet) aprés tri par score
Pseudo-régle : garder la meilleure boite, supprimer celles avec loU > seuil avec une boite déja gardée
Effets prod
o latence (CPU/GPU)
o instabilité pres des seuils
o difficulté a rendre le pipeline “end-to-end”
NMS mal réglé donne
o trop de doublons (FP)
o objets ratés (FN) dans scénes denses
Variantes : Soft-NMS, class-agnostic NMS, batched NMS (accélération)
Tendance récente :
o détecteurs “end-to-end” qui éliminent NMS (DETR, RT-DETR) ou proposent entrainement NMS-free (YOLOv10)
Bon réflexe : profiler “model time” vs “postprocess time” (sur vos images, pas sur COCO)

49

NMS : le post-traitement qui fait (souvent) la différence

Person: 98% 1
Person: 82% Rerson.@8% Person: 80%

Person: 89%

Person: 76%

YOLO en pratique : inference “propre” et intégrable

from ultralytics import YOLO

model = YOLO("yolov8s.pt") # ou yololls.pt selon standard équipe
res = model("img.jpg", imgsz=640, conf=0.25, iou=0.7) # iou = NMS

boxes = res[@].boxes.xyxy.cpu().numpy()

scores = res[@].boxes.conf.cpu().numpy()

labels = res[@].boxes.cls.cpu().numpy().astype(int)

=> sérialiser en JSON stable, logguer version + params + latence

Parameétres produit : imgsz, conf, iou (NMS), classes autorisées

Industrialisation : batch inference, AMP, export ONNX/TensorRT, tests de non-régression (slices)
Observabilité : log “nb boxes”, top scores, taux de vides, latence p50/p95/p99

Point clé : rendre le postprocess (NMS + mapping coords) déterministe et versionné

o1

DETR : détection comme prédiction d’ensemble (set prediction)

e Motivation : simplifier le pipeline (moins d’heuristiques)
o pas danchors, pas de NMS dans la formulation
e Idée: prédire un ensemble de taille fixe N de “slots objets” via des object queries
e Architecture : backbone — encoder (context global) — decoder + queries — sorties (b,c) (boxes + classes)
e Chaque query produit au plus un objet (ou “no-object”)
o onvise des prédictions uniques
e Avantage conceptuel : end-to-end, clair a déboguer (matching explicite, losses structurées)
e Limite historique : entrainement plus lent / plus colteux sans tricks (d'ou Deformable, DINO, RT-DETR...)
e Tres utile pour relier Transformer aux contraintes d'un détecteur moderne

52

DETR : détection comme prédiction d’ensemble (set prediction)

e Motivation : simplifier le pipeline (moins d’heuristiques)

backbone E: encoder

}
. class,
(\ FEN » o

no
FRN o o

transformer transformer

:'“ encoder decoder I _,I cgos:,"
| [N 4

: oo OoH 0 o odd

: object queries

- - ————— ————————————— = b = b -

53

Hungarian matching : la brique math qui remplace
NMS/anchors

Ground truth = ensemble Y={(b. c)}J 1w Prédictions = Y'={(b",c")}._,
On cherche une permutation o qui minimise un codt de matching :

O o*=argmin_ (sumjﬂwM (CoGt((b c) (b'o(J), 00)))))
Codt typique

o classification + distance boites (L1) + terme loU/GloU (selon papier)
Perte finale (simplifiée)

O loss cls + loss box sur les paires matchées + “no-object” sur le reste
Intuition : chaque objet GT “réserve” une query

O unicité garantie sans NMS
Conséquence prod

O sorties plus stables en scenes denses, mais compute c6té encoder/decoder a maitriser
Point debug

O visualiser la matrice de colt (GT x queries) sur quelques images pour comprendre échecs

54

RT-DETR : rendre DETR réellement temps réel

Probléme : DETR “pur” colte cher ; RT-DETR vise le temps réel sans NMS (end-to-end)
Idées clés (niveau systéme)
o encoder hybride efficace sur features multi-échelle + sélection de queries “de qualité”
Résultats rapportés (COCO)
o ex. RT-DETR-R50 ~53% AP (Average precision) et ~108 FPS sur GPU T4 (ordre de grandeur)
Lecture ingénierie
o onrécupere la stabilité “NMS-free” tout en restant compétitif en latence
Ecosystéme
o implémentations PyTorch open-source
o variantes (v2/v3) apparaissent
Quand considérer RT-DETR : scénes denses, besoin de sorties plus stables, volonté d’'un pipeline end-to-end
Attention : toujours profiler avec vos tailles d'images et vos contraintes (CPU postprocess vs GPU compute)

55

Segmentation supervisée : ou elle s’insére (et pourquoi c’est
coliteux)

Sémantique vs instance : en produit, I'instance segmentation sert souvent a mesurer et extraire (forme)
Approche classique

o backbone + FPN + head masques (ex : Mask R-CNN-like) : performant, mais labels colteux
Labels masques = colt humain élevé + ambiguités (bord, transparence, “partiel” vs “complet”)
Métriques (rappel) : mloU/Dice ; en instance segmentation : AP masque (COCO mask AP)
Pattern produit fréquent

o “détecter d'abord, segmenter ensuite” (boite — masque) pour réduire compute
Pour “petites structures”

o pertes type Dice (ou hybrides) deviennent importantes
Transition : foundation models changent le workflow (moins de training, plus de prompting)

56

SAM : segmentation promptable

Idée : un modele unique qui segmente “ce que vous désignez” via un prompt (points, boite, masque grossier)
Architecture (haut niveau)

o image encoder + prompt encoder + mask decoder — masque(s) + score(s)
SAM (2023) + dataset SA-1B (ordre de grandeur : ~11M images, ~1B masks) : base “foundation”
Comportement clé

o zero-shot souvent tres solide — utile pour POC et pour accélérer I'annotation
Limites

o pas “magique” sur domaines trés spécifiques (IRMs, micro-déauts) sans adaptation/contréle qualité
Pattern entreprise

o annotation assistée, détourage produit, isolation ROI (region of interest) avant OCR, mesure de surfaces/contours
Point ingénierie

o postprocess simple (choix du meilleur masque, nettoyage composantes, export COCO/RLE)

57

white checkered shirt

@ atree @ thefabric a sheet of corrugated metal @ white sack [ayellow shirt @ flip-flop tail light @ plaid sarong @ the white license plate @) @ !ong-sleeved blue and

£

. o -
white Persian cat @ a decorative trim @ gravel path @ aneatly trimmed bush

{ @ theblue-green eye thered velvet chair @ the gold finial @ a dome-shaped roof
@ the white metal frame @ thetrellis @ the large, yellow estate
@ the small, white building

"’1

@ plastic bag) pomegranate @ achain

@ acardboard sign @ the blue basket @ plastic basket

@ the persimmon a white basket blue bowl blue carpet @ black display stand @ a MacBook white iPhone
cardboard box @ mango, bread bag, a small glass bowl, ... a vibrant orange 1973 Plymouth Barracuda person’s left hand

SAM 2 : étendre la segmentation promptable a la vidéo

e Motivation : en vidéo, segmentation = cohérence temporelle + occlusions + contraintes temps réel
e SAM 2 (2024) vise “Segment Anything” images + vidéos, avec mémoire “streaming” pour suivi temps réel
e Abstraction produit

o prompt initial (frame 0) — propagation masques sur frames suivantes (avec corrections)
e Casdusage

o rotoscopie/édition

o suivi d'objet pour analytics

o annotation vidéo accélérée
e Risque prod

o dérive du masque dans le temps (drift)

o besoin de mécanismes de correction (human-in-the-loop)
e Intégration

o penser “cache mémoire”, latence frame-to-frame, et stratégie de ré-initialisation

59

SAM 2 : étendre la segmentation promptable a la vidéo

e

60

Choisir la bonne famille : regles de décision pragmatiques

YOLO : meilleur “default” pour détection temps réel + intégration simple + écosysteme mature
DETR/RT-DETR : intéressant si vous voulez réduire/éliminer NMS, gagner en stabilité sur scénes denses
SAM/SAM2 : idéal pour segmentation “a la demande”, accélération annotation, workflows hybrides (detect—segment)
Pattern trés réaliste : YOLO (boite) — SAM (masque) — mesures/export — dataset — modéle spécialisé si besoin
En prod

o profiler end-to-end (préprocess + modeéle + postprocess) et tester par slices (petits objets, blur, nuit)
e Gouvernance

o versionner seuils/NMS/prompts et logguer pour pouvoir expliquer une décision

e Regledor
o "baseline forte + protocole d’éval + profiling” avant d'optimiser I'architecture

61

Ingénierie et industrialisation : faire
passer un modele de vision en
production

62

Pourquoi cette section (et pourquoi maintenant)

En entreprise, la valeur est souvent dans l'intégration : API, latence, robustesse, monitoring, maintenance
Un modele SOTA en notebook peut étre inutilisable si le pipeline est instable (I/0, postprocess, drift)
Objectif

o une checklist “ingénieur” pour livrer une brique CV exploitable (POC — MVP — prod)
Contraintes fréquentes

o colts GPU, SLA (Service Level Agreement) latence, volumes, edge/cloud, sécurité, RGPD, reproductibilité
Approche

o optimiser end-to-end (préprocess + modeéle + postprocess + transport + Ul)
Indicateurs de réussite

o p95/p99 latence, taux d'échecs, stabilité des seuils, taux d’'alertes utiles
Lien direct avec le TP : mémes patterns (inference, postprocess, export, logs)

63

Profiling : mesurer avant d'optimiser (sinon on perd du temps)

Toujours séparer : temps préprocess, inférence GPU, postprocess, I/0 (lecture/écriture)
e Mesurer p50/p95/p99 (pas juste “moyenne”)
o la prod souffre sur la queue de distribution
e Attention au warm-up GPU (premiéres itérations demande de charger le modéle) et aux sync implicites (CPU«GPU)
e Micro-bench. Tester:
o batch size, résolution, AMP on/off, device (A10/T4/RTX), thread CPU
e Vérifier mémoire
o VRAM peak, fragmentation, risque OOM (Out Of Memory) sous charge
e Sortie attendue
o “budget latence” par étape et priorités d'optimisation
e Exemple : parfois NMS ou decoding JPEG codte plus que le forward pass

64

Accélérations “sans douleur” : AMP, batching, compilation

AMP (FP16/BF16) : gain débit + baisse VRAM, souvent sans perte ; vérifier mAP/loU aprés
Batching : augmente le throughput serveur, mais peut augmenter la latence ; utile si SLA le permet
torch.inference_mode() + model.eval() : éviter overhead autograd/dropout

torch.compile (selon versions) : peut accélérer, mais attention compatibilité ops/export

Pin memory + prefetch data loader (si pipeline vidéo/flux), threads CPU pour décodage

Optimiser les transferts : garder tensors sur GPU, éviter .cpu() trop tot

Toujour: valider qualité apres optimisation (régressions subtiles possibles)

65

Export et runtimes : ONNX / TensorRT / Runtime unifié

o Objectif : exécuter plus vite et plus stable via un moteur d’inférence optimisé (et portable)

e Export ONNX: figer graphe + shapes (ou dynamic shapes) + vérifier opérateurs supportés

e ONNX Runtime : providers CPU/CUDA/TensorRT ; bon pour déploiement cross-platform

e TensorRT : treés performant (fusion, kernels, INT8) mais demande calibration/validation

e Points durs : NMS custom, ops non supportées, dynamic shapes complexes (notamment en det/seg)

e Approche pragmatique : exporter d'abord le backbone + head simple, puis intégrer postprocess séparément
e Toujours faire une “parité” : comparer sorties PyTorch vs runtime (tolérance, top-K, loU)

66

Quantization : quand et comment (INT8, PTQ vs QAT)

Pourquoi : réduire taille mémoire et accélérer (surtout edge), parfois nécessaire pour tenir le SLA
PTQ (Post Training Quantization)

o rapide (pas de ré-entrainement), nécessite un set de calibration représentatif
QAT (Quantization aware training)

o pluslong (ré-entrainement), souvent meilleure précision finale, utile si PTQ dégrade trop
Choisir périmeétre : quantifier backbone + head, parfois garder certaines ops en FP16/FP32
Risques

o pertes sur petits objets

o contrastes faibles (détection)

o instabilités sur certaines couches
Méthode : mesurer la perte de perf sur vos slices critiques (petits objets, nuit, blur)

Décision produit : “gain latency” vs “perte recall” (et cot de FP/FN)

67/

Robustesse : le long tail et le “domain shift”

Drift = changement de distribution
o nouveau site, nouvelle caméra, saison, packaging, illumination
La performance globale cache souvent des poches d’échecs
o slices (petits objets, fonds spécifiques)
Stratégie : définir des “edge cases” et constituer un jeu de tests vivant (échantillonnage continu)
Détection OOD (Out Of Distribution, pragmatique)
o seuil sur confiance
o détection d'anomalies sur embeddings
o regles de sanity
Human-in-the-loop
o circuit de revue pour cas incertains + feedback vers data/labels
Versionner taxonomie + guidelines d’annotation : sinon dérive des labels (label drift)
En prod, I'objectif est la stabilité autant que le score maximal

68

Monitoring : quoi logger et comment alerter

Mesurer : latence p50/p95/p99, taux d'erreurs (décodage, timeouts), taux de sorties vides

Mesurer qualité indirecte : distribution des scores, nb objets/image, tailles de boites, taux de masques min/max
Drift monitoring : changements de distribution (histogrammes), embeddings shift, data quality checks

Stocker des exemples : top erreurs / faible confiance / cas 00D (avec respect RGPD)

Alerting : seuils sur métriques systéme + dérive statistique, pas juste “accuracy”

Tests de non-régression : images canoniques + expected outputs (golden set) + tolérances

Gouvernance : tragabilité version modele + preprocessing + seuils + config runtime

69

RGPD / sécurité / Pl : points a traiter des le design

e Données : minimisation (ne pas stocker plus que nécessaire), durée de rétention, anonymisation si possible
e Images de personnes : base légale, information, floutage/masquage, acces restreint, audit

e Modeles et datasets : vérifier licences (poids, datasets, images), droits d'usage en contexte produit

e Sécurité : protection contre inputs malveillants (fichiers corrompus), rate limiting, sandboxing

e Logging : attention aux images sensibles ; privilégier hash + métriques + échantillons contrélés

o “Explainability” pragmatique : overlays (bbox/masques), scores, regles métier — auditabilité

e Risque réputationnel : biais (démographie, environnement) — évaluer par sous-populations quand pertinent

70

Conclusion opérationnelle : la checklist “POC — prod”

I W W S WA Wy

Définir tache + métrique + seuils d'acceptation (y compris latence/mémoire)

Baseline forte (modele pré-entrainé) + protocole d’éval + slices

Pipeline déterministe : preprocess/postprocess versionnés, tests unitaires, JSON stable
Profiling end-to-end, puis optimisations (AMP/batching/export/quantization)
Observabilité minimale + jeu de tests vivant + boucle de ré-annotation

Plan de déploiement : A/B test, rollback, gestion versions, documentation

Résultat : un systéme CV maintenable, pas une démo fragile

71

Conclusion

72

Conclusion : une “recette” CV moderne

Toujours commencer par tache — métrique — colit d’erreur (FP/FN) : c’est le contrat produit
Choisir une baseline forte (pré-entrainée) avant d’innover : ViT/Swin/CNN moderne selon contraintes
Pour le dense : penser multi-scale (FPN/hiérarchie) + postprocess (NMS ou set prediction)
Familles a retenir :
o YOLO = détection temps réel pragmatique, écosysteme prod
o DETR/RT-DETR = pipeline plus “end-to-end”, stabilité, moins d’heuristiques
o SAM = segmentation promptable, accélere POC/annotation et workflows hybrides
La performance utile se gagne en prod via : pipeline déterministe, profiling end-to-end, observabilité, slices
Anticiper le réel : drift, long tail, qualité labels, test set vivant, boucle de ré-annotation
Industrialiser “propre” : versionner modele + preprocessing + seuils + exports, et intégrer RGPD/licences

73

En route vers le TP

74

