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Motivation, panorama et problème de 
la génération d’images
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Pourquoi la génération d’images maintenant ?
● Dans une équipe produit, le goulot = produire des visuels (marketing, UI, catalogues, assets) plus vite que la cadence business
● Génération = accélérer la création (variantes), personnaliser (par audience/pays), industrialiser (templates + prompts)
● Exemples

○ grand public/pro : Adobe Firefly (création/édition d’images intégrée aux workflows créatifs)
○ design à grande échelle : Canva / Magic Media pour produire des images à intégrer directement dans des supports
○ e-commerce : génération/variation de visuels de produits (fonds, déclinaisons) côté Shopify et apps associées

● Même logique en interne entreprise
○ réduire le coût de shooting, accélérer A/B testing créatif, “content ops” plus automatisable

● Problème central du cours
○ contrôler la génération (qualité, style, contraintes) tout en restant robuste et reproductible
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Qu’est-ce qu’on cherche à optimiser, concrètement ?
● But : produire des échantillons x “crédibles” issus d’une distribution p(x) (ou conditionnée p(x∣c))
● 4 axes qui tirent dans des directions différentes : fidélité, diversité, contrôlabilité, coût/latence

○ Fidélité : textures, détails, absence d’artefacts (mains, texte dans l’image, géométrie)
○ Diversité : éviter de “tourner en rond” (pas de mode collapse, pas de répétitions visuelles)
○ Contrôlabilité : respecter une contrainte (prompt, composition, masque, style, identité visuelle)
○ Coût : nombre d’étapes de génération, VRAM, temps GPU, throughput (batching), reproductibilité (seed)

● En pratique : on arbitre selon l’usage (marketing = itération rapide ; imagerie technique = fidélité + contraintes)
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Tâches et workflows usuels
● Unconditional : générer “du plausible” sans consigne (utile surtout en recherche/benchmark)
● Conditional : générer sous contrainte ccc (texte, classe, image, masque, carte)

○ Text-to-Image : prompt → image (création, moodboards, déclinaisons)
○ Image-to-Image : image source + prompt → variation (style transfer moderne, redesign, “restylisation”)
○ Inpainting / Outpainting : masque → compléter / étendre (suppression d’objet, extension de décor)
○ Super-resolution : faible résolution → haute résolution (restauration, upscale, détails plausibles)
○ Editing “guidé” : conserver structure globale, modifier localement (vêtements, arrière-plan, lumière)

5



Trois familles de modèles
● VAE : modèle probabiliste latent ; optimise une borne (ELBO)

○ stable, bonne couverture, mais détails parfois lissés
● GAN : jeu adversarial G vs D

○ échantillons très nets, mais entraînement instable + risque mode collapse
● Diffusion / score-based : débruitage progressif

○ qualité + diversité + conditionnement efficace, mais sampling itératif
● Lecture “ingénieur”

○ chaque famille propose une stratégie différente pour approximer p(x) ou p(x∣c)
● Choix en pratique

○ qualité/contrôle/compute/latence + contraintes d’intégration (pipeline, sécurité, licence)
● À retenir pour la suite : aujourd’hui, la diffusion domine le text-to-image (ex. SDXL)
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De la recherche au produit” : contraintes réelles à garder en tête
● Données

○ distribution web ≠ distribution métier (branding, packaging, imagerie technique) → risques de dérive
● Propriété intellectuelle / conformité

○ “IP-safe” et traçabilité deviennent des exigences produit (ex. Adobe)
● Sécurité

○ filtres (NSFW), refus, watermark/provenance (selon contexte)
● Fiabilité

○ reproductibilité (seed + versions modèles + scheduler), tests de non-régression visuelle
● Performance

○ VRAM (résolution), latence (steps), coût GPU (batch, precision fp16/bf16)
● Évaluation

○ métriques automatiques + protocole humain (sinon optimisation “à l’aveugle”)
● Résultat attendu

○ un pipeline génératif “pilotable” comme un composant logiciel, pas une démo fragile
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Modéliser une distribution d’image
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Le problème commun : apprendre une distribution d’images
● On observe des images x∈RH×W×3 (et parfois une condition c)
● Objectif “génératif” : approximer pθ(x) (unconditional) ou pθ(x∣c) (conditional)
● Générer = échantillonner x∼pθ(⋅) (ou x∼pθ(⋅∣c))
● c peut être : texte, classe, image source, masque, carte (segmentation / edges / pose), etc.
● Deux notions à ne pas confondre :

○ training : ajuster θ pour rapprocher pθ de pdata 
○ sampling : produire un x (coût/latence ≠ coût d’entraînement)

● Question d’ingénierie : quelle famille donne le meilleur compromis qualité / contrôle / coût pour un usage donné ?
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Trois stratégies pour approcher p(x)
● (A) Densité explicite / latent variable : on optimise (une borne de) log (pθ(x))

○ typique des VAE (log-likelihood approximée)
● (B) Modèle implicite : on sait sampler x=Gθ(z), mais pas calculer pθ(x)

○ typique des GAN (pas de vraisemblance)
● (C) Processus itératif : on définit une dynamique qui transforme un bruit en image

○ diffusion / score-based (reverse denoising)
● Coût caché:

○ (A) et (B) peuvent sampler en 1 passe
○ (C) sample en T étapes (scheduler)

● Signal d’apprentissage
○ A) reconstruction + régularisation
○ (B) adversarial
○ (C) prédiction de bruit/score

● Implication pratique
○ les hyperparamètres critiques ne sont pas les mêmes (stabilité vs steps vs guidance)
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Conditionnement : respecter des contraintes
● On passe de p(x) à p(x∣c) : la condition pilote la distribution (pas juste un post-traitement)
● Exemple :

○ c = texte → contraintes sémantiques (“astronaute”, “style photo”, “éclairage”)
○ c = image + paramètre α → interpolation fidelity vs creativity (img2img)
○ c = masque → génération locale (inpainting) : xconnu  figé, xmanquant  généré

● Implémentations typiques du conditionnement :
○ concaténation (channels), FiLM/AdaIN, cross-attention (très courant en diffusion texte→image)

● Point clé : “conditionnement” ≠ “contrôle total” → on parle souvent de soft constraints
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Espace latent : pourquoi on compresse l’image avant de générer
● Générer directement en pixels est coûteux : dimension énorme, textures fines, dépendances longues
● Stratégie moderne : apprendre un encodeur/décodeur (souvent de type VAE) et générer dans z

○ z=E(x), x≈D(z)
● Si diffusion en latent

○ on apprend p(z∣c) puis on reconstruit x=D(z)
● Avantages

○ moins de VRAM, plus rapide, résolutions plus élevées accessibles
● Risque

○ le bottleneck latent peut “jeter” de l’info → artefacts / perte de micro-détails (selon VAE)
● Idée “système” : découpler

○ (1) compression perceptuelle (VAE) et

○ (2) génération stochastique (diffusion)
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Du cadre conceptuel au pipeline logiciel
● Un pipeline = composants + orchestration du sampling (pas juste “un modèle”)
● Pour diffusion

○ model (U-Net), scheduler (règles de pas), conditioning (encodeur texte), decoder (VAE)
● Même modèle, tâches différentes

○ text2img / img2img / inpainting = entrées/contraintes différentes (mêmes briques)
● Paramètres qui changent la distribution échantillonnée

○ seed, steps, guidance, sampler, résolution
● Bon réflexe d’ingénieur

○ logguer tous les paramètres (sinon impossible de reproduire/debugger)
● Transition : on va maintenant détailler ces stratégies via VAE, GAN, puis diffusion
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VAE : générer via variables latentes

14



Pourquoi des VAE (Variational AutoEncoder)?
● Objectif : apprendre un modèle probabiliste génératif (≈ maximum likelihood) plutôt qu’un modèle implicite
● Entraînement généralement stable (pas de jeu min-max comme les GAN)
● Bonus “ingénieur”

○ on obtient un espace latent z exploitable (interpolation, clustering, contrôle simple)
● Génération = “échantillonner un latent” puis décoder (pipeline très clair)
● Les VAE seuls peuvent être “moins nets”, mais ils sont une brique clé des pipelines modernes (latent diffusion)
● Question directrice

○ comment concilier reconstruction + régularisation pour rendre z génératif ?
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Modèle génératif
● Variables : image x, latent z (dimension d<<H⋅W⋅3)
● Prior simple :

○ p(z)=N(0,I) (régularise l’espace latent)
● Décodeur (générateur) :

○ pθ(x∣z) (souvent Gaussien ou Bernoulli selon le prétraitement)
○ Gaussien : pθ (x∣z)=N(μθ (z), σ²I) où le décodeur (un réseau de neurones) prédit μθ(z) (une image) et on fixe σ (ou 

on le paramétrise grossièrement).
○ Bernoulli surtout pour images binaires / jouets (MNIST)

● Problème : 
○ pθ(z∣x) (posterior) est intractable → on l’approxime

● Approx posterior (encodeur) :
○ qϕ(z∣x) (typiquement Gaussien diagonal qϕ (z∣x)=N(μϕ (x), diag(σ²ϕ (x)))

● En génération : on n’a besoin que de p(z) et pθ(x∣z)
● À noter : si on ne génère pas de distributions (Gaussiennes) mais seulement des points, on a un autoencoder 

classique.
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Vue d’ensemble
Kingma, D. P., & Welling, M. (2019). An introduction to 
variational autoencoders.
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Objectif clé : l’ELBO (Evidence Lower Bound)
● On veut maximiser log (pθ(x)), mais log( pθ(x)) = log(  ∫z pθ(x∣z)p(z) dz est difficile
● VAE optimise une borne :

● Lecture pratique :
○ reconstruire x depuis z
○ forcer q(z∣x) à ressembler à N(0,I)

● Si KL ≈ 0 : posterior collapse, z est peu/plus utilisé (le décodeur peut ignorer le latent).
● Si KL trop grand : q(z∣x) s’éloigne du prior → échantillonner z∼p(z) donne des générations médiocres (mismatch 

prior/posterior).
● On souhaite contrôler le compromis reconstruction ↔ régularisation

○ β-VAE : multiplier le terme KL par β pour favoriser des latents plus factorisés/interprétables
● Point d’attention : l’ELBO est un compromis, pas une garantie “qualité perceptuelle”
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Reparameterization trick : backprop à travers l’échantillonnage
● Encodeur produit μϕ(x) et log (σϕ²(x)) (Gaussien diagonal)
● Échantillonner naïvement z∼N(μ, σ²) casse la différentiabilité
● Astuce : écrire l’aléa séparément

ϵ∼N(0,I),    z=μϕ(x)+σϕ(x)⊙ϵ

● On backprop dans μ, σ ; l’aléa est dans ϵ (indépendant des paramètres)
● En pratique : perte = recon_loss+KL ; optimisation SGD/Adam standard
● Résultat : un entraînement “deep learning friendly” malgré les variables latentes
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Reparameterization trick : backprop à travers l’échantillonnage
# Pseudo-code PyTorch (VAE Gaussien diagonal)
mu, logvar = encoder(x)                    # (B, d), (B, d)
std = (0.5 * logvar).exp()
eps = torch.randn_like(std)
z = mu + std * eps                         # reparameterization
x_hat = decoder(z)

recon = F.mse_loss(x_hat, x, reduction="sum")  # ou BCE selon x
kl = -0.5 * torch.sum(1 + logvar - mu**2 - logvar.exp())
loss = recon + kl
loss.backward()
opt.step()
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Échantillonnage et conditionnement (CVAE) : générer “sous 
contrainte”

● Sampling de base :
○ z∼N(0,I), puis x∼pθ(x∣z)

● Conditionnement c (classe/texte/attributs)
○ viser pθ(x∣z, c) et qϕ(z∣x,c)

● Intuition : c fixe “quoi générer”, z gère la stochasticité (variantes)
● Pour images

○ CVAE utile pour génération par classes, attributs (ex. “smiling / not smiling”)
● Limite

○ le texte libre est moins naturel à intégrer en VAE “simple” que via cross-attention (diffusion)
● Pont vers la suite

○ en diffusion latente, le VAE sert surtout à compresser/décompresser, et le conditionnement texte est géré ailleurs
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Limites des VAE et variantes importantes
● “Blurriness” fréquent : vraisemblance pixel simple (Gaussian/Bernoulli) → moyenne de modes visuels
● Posterior collapse : un décodeur trop puissant peut ignorer z (KL≈0)
● β-VAE : pousse l’indépendance des facteurs (meilleur “disentanglement”, recon parfois moins bonne)
● VQ-VAE : latents discrets (vector quantization), réduit certains collapses, ouvre la voie à des priors autoregressifs
● “VAE comme composant système” : dans Latent Diffusion, on diffuse dans z (efficacité) puis on décode en pixels
● Message clé :

○ même si la diffusion domine la génération finale, comprendre le VAE est indispensable pour comprendre Stable Diffusion 
/ SDXL (qualité, artefacts, VRAM, résolution)
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Exemple de sortie d’un VAE (visages)

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.
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GAN : génération par jeu adversarial
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Pourquoi les GAN (Generative Adversarial Networks) ?
● Motivation computer vision : 

○ générer des images très nettes (textures, détails) en une passe (sampling rapide)
● Modèle implicite :

○ on sait générer x=G(z), sans imposer une vraisemblance explicite pθ(x)
● Très bons résultats sur visages / objets / textures (ex. StyleGAN : contrôle multi-échelle des styles)
● Gros impact produit : génération temps réel / interactive (latence faible vs diffusion itérative)
● Tâches où les GAN brillent :

○ génération d’assets, textures, “style transfer”, image-to-image (pix2pix, CycleGAN)
● Mais :

○ entraînement souvent instable (min-max), et risque de mode collapse (diversité)
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Objectif GAN : min-max entre Générateur et Discriminateur
● Deux réseaux : Gθ(z) génère, Dψ(x) discrimine (classification image réelle ou générée)
● Objectif original (Goodfellow 2014) :

● Intuition : D apprend un signal d’apprentissage (gradient) pour pousser G vers la distribution réelle
● On apprend G et D en même temps : le générateur devient meilleur à générer des images, mais le discriminateur s’améliore aussi 

à détecter la fraude
● En pratique : on utilise souvent la “non-saturating loss” pour G (meilleurs gradients)
● Échantillonnage : z∼N(0,I) → x=G(z)
● Lecture ingénieur :

○ qualité = architecture + loss + régularisations + dataset (plus que “la formule”)
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Entraînement : ce qui casse, et les stabilisateurs “classiques”
● Pathologies : mode collapse, gradients faibles, oscillations (jeu min-max)
● Plusieurs solutions proposées:

○ WGAN : remplacer divergence Jensen-Shannon par distance de Wasserstein + contrainte Lipschitz → gradients plus 
utiles, apprentissage plus stable

○ WGAN-GP : imposer 1-Lipschitz (|f(x) - f(y)| <= ||x - y||) via gradient penalty (évite le weight clipping)
○ Spectral Normalization : contraindre le Lipschitz du discriminateur simplement, stabilise souvent très bien
○ Pertes modernes : hinge loss (souvent avec SN) ; + “tricks” (TTUR, data aug, etc.) selon contexte

● Message :
○ les GAN sont “sensibles” → il faut traiter l’entraînement comme un problème de contrôle (monitoring)
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Architectures GAN : de DCGAN à StyleGAN / BigGAN
● DCGAN : règles de design avec des convolutions (strides, BN, ReLU/LeakyReLU) → baseline stable et efficace
● SAGAN : self-attention pour dépendances longues (cohérence globale)
● BigGAN : GAN conditionnel à grande échelle ; truncation trick = régler fidélité vs diversité
● StyleGAN / StyleGAN2 : générateur “style-based” (contrôle multi-échelle, mixing) + meilleure qualité perceptuelle
● Industrialisation : modèles + code de référence souvent publiés (ex. dépôts NVLabs)
● À retenir : GAN = très performant, mais tuning/data/compute déterminent énormément le résultat
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GAN conditionnels pour “image-to-image” : paired vs unpaired
● pix2pix (paired) : apprendre x→y + perte adversariale + (souvent) L1 pour préserver la structure
● Cas d’usage :

○ edges→photo
○ segmentation→photo
○ day→night (quand données alignées disponibles)

● CycleGAN (unpaired) : deux mappings G: X→Y et F:Y→X + cycle-consistency

● SPADE / GauGAN : génération à partir de layouts sémantiques (contrôle fort via segmentation)
● Lecture produit :

○ ces modèles offrent un contrôle structurel très direct (inputs explicites)
● Limite

○ généralisation hors distribution + artefacts si contraintes trop dures / données trop faibles
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Exemple code : boucle d’entraînement GAN (très générique)
# Pseudo-code PyTorch: WGAN-GP (très simplifié)
for x_real in loader:
    for _ in range(n_critic):
        z = torch.randn(B, d, device=x_real.device)
        x_fake = G(z).detach()

        d_real = D(x_real).mean()
        d_fake = D(x_fake).mean()
        loss_D = -(d_real - d_fake)

        # gradient penalty
        eps = torch.rand(B, 1, 1, 1, device=x_real.device)
        x_hat = eps * x_real + (1 - eps) * x_fake
        g = torch.autograd.grad(D(x_hat).sum(), x_hat, create_graph=True)[0]
        gp = ((g.flatten(1).norm(2, dim=1) - 1) ** 2).mean()
        loss_D = loss_D + lam * gp

        opt_D.zero_grad(); loss_D.backward(); opt_D.step()

    z = torch.randn(B, d, device=x_real.device)
    loss_G = -D(G(z)).mean()
    opt_G.zero_grad()
    loss_G.backward()
    opt_G.step()
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Où placer les GAN en 2026 ?
● GAN restent pertinents quand latence et netteté priment (génération “one-shot”)
● Très bons pour des tâches structurées (segmentation/layout → image) type SPADE/GauGAN
● Très utiles en augmentation de données (domaines rares, médical, industriel), mais à valider (biais/artefacts)
● Diffusion domine le text-to-image “open world”, mais les GAN restent une boîte à outils essentielle
● Insight clé :

○ “GAN = sampling rapide, tuning délicat”
○ “diffusion = sampling lent, tuning plus prédictible”

● Transition : on passe aux modèles de diffusion, qui reprennent l’idée de conditionnement mais via débruitage itératif
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Diffusion : génération par débruitage
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Pourquoi la diffusion a “gagné” pour le text-to-image ?
● Objectif pratique : qualité + diversité + conditionnement (texte, masque, image) dans un cadre d’entraînement robuste
● Diffusion = apprendre à inverser un processus de bruitage : du bruit vers une image plausible
● Entraînement sans discriminateur : signal de loss simple (souvent MSE) et stable à grande échelle

○ selon les modèles, on prédit ε (bruit), x₀ (image initiale) ou v (velocity), et la loss peut être repondérée
● Contrôle post-training : on peut guider le sampling (CFG, Classifier-Free Guidance, contraintes) sans réentraîner le modèle
● Très compatible avec “génération conditionnée” : texte via cross-attention, contrôles spatiaux, etc.
● Coût principal : sampling itératif (T étapes) → latence/compute à gérer (scheduler, steps)
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Processus forward : ajouter du bruit de manière contrôlée
● On définit une chaîne markovienne q(xt∣xt−1) qui ajoute du bruit gaussien
● Paramètres : βt∈(0,1), αt=1−βt , ᾱt=∏s=1…tαs 
● Définition typique :

q(xt∣xt−1)=N(sqrt(αt )*xt−1, βtI)
● Intuition : βt = “dose de bruit” au pas t (noise schedule)
● À grand t, xt perd l’info sémantique et tend vers du bruit
● En diffusion latente, on fait la même chose sur un latent z (pas sur les pixels)
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Formule utile : échantillonner xt  directement depuis x0

● Propriété clé (DDPM, Denoising Diffusion Probabilistic Models) : on peut écrire xt  sans simuler tous les pas
● Formule :

xt=sqrt(ᾱt )x0+sqrt(1−ᾱt) ϵ,  ϵ∼N(0, I)
● Lecture : xt  = mélange “signal original” + “bruit pur” avec un poids dépendant de t
● Conséquence : l’entraînement peut tirer des triplets (x0, t, xt) efficacement
● En pratique : on tire t∼Uniform{1..T}, puis on construit xt  via la formule
● Cette équation explique pourquoi la diffusion “ressemble” à du denoising multi-niveaux
● Exemple:

○ Si ᾱt=0.1, alors à t, nous avons des coefficients de 0.316 et 0.949
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Processus reverse : apprendre à enlever le bruit
● But : approximer pθ(xt−1∣xt) pour remonter vers x0 
● On entraîne un réseau ϵθ(xt, t, c) à prédire le bruit ϵ injecté (ou x0)
● Loss standard (version simple) :

○  L(θ)=Ex0,t,ϵ ∥ϵ−ϵθ(xt,t,c)∥2
2

● Pourquoi ça marche
○ si on sait prédire le bruit, on sait reconstruire une direction “vers des images plausibles”

● Sampling : partir de xT∼N(0,I) et appliquer un update T fois (scheduler)
● Conditionnement c : texte / image / masque / contrôle spatial (détails plus loin)
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Architecture du débruiteur : U-Net + embedding de temps + 
(souvent) attention

● Backbone courant : U-Net (down / bottleneck / up) + skip connections (détails + structure)
● Embedding du temps t : t→MLP→injection dans les blocks (FiLM-like)
● Blocs résiduels + normalisations : stabiliser l’apprentissage sur des signaux bruités
● Pour text-to-image : insertion de cross-attention à plusieurs résolutions
● L’entrée/sortie : tenseur image (pixels) ou latent (typiquement 64×64×4 en LDM, Latent Diffusion Model)
● Vue système : le réseau apprend un “prior” visuel + la capacité à appliquer les contraintes c
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Conditionnement texte : embeddings + cross-attention
● Texte → tokens → embeddings (encodeur texte figé ou semi-figé selon modèles)
● Cross-attention :

○ queries = features U-Net

○ keys/values = embeddings texte => injection sémantique
● Effet : le modèle “décide” où/quoi dessiner en fonction des mots, à plusieurs niveaux (coarse→fine)
● Le conditionnement n’impose pas une contrainte dure : il “biaise” la trajectoire de débruitage
● Extensions :

○ conditionnement spatial (edges, pose, depth) via réseaux additionnels (ControlNet)

○ On réutilise la même mécanique pour img2img / inpainting (avec entrée image/masque)
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○ queries = features U-Net

○ keys/values = embeddings texte => injection sémantique
● Effet : le modèle “décide” où/quoi dessiner en fonction des mots, à plusieurs niveaux (coarse→fine)
● Le conditionnement n’impose pas une contrainte dure : il “biaise” la trajectoire de débruitage
● Extensions :

○ conditionnement spatial (edges, pose, depth) via réseaux additionnels (ControlNet)

○ On réutilise la même mécanique pour img2img / inpainting (avec entrée image/masque)
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Classifier-Free Guidance (CFG) : régler “fidélité au prompt” vs 
diversité

● Idée : entraîner le modèle à fonctionner avec et sans condition (dropout de c)
● À l’inférence, on combine deux prédictions :

● w = guidance scale
○ plus haut ⇒ plus “prompt-adherent”, mais risque d’artefacts / moins de variété

● Negative prompt = une façon pratique de définir la branche ‘uncond’ (souvent condition vide, mais on peut la 
remplacer par une condition ‘à éviter’), ce qui change le biais introduit par CFG.

● Dans Diffusers : guidance active quand guidance_scale > 1
● Message clé :

○ CFG est un paramètre majeur de pilotage (qualité perçue ≠ métriques)
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Sampling : DDPM vs DDIM et la notion de scheduler
● La génération dépend fortement du scheduler (la règle de mise à jour xt→xt−1 )
● DDPM (Denoising Diffusion Probabilistic Models) : sampling markovien, historiquement plus lent (beaucoup de pas)
● DDIM (Denoising Diffusion Implicit Models) : processus non-markovien (le forward reste un bruitage markovien), 

sampling accéléré, permet trade-off vitesse/qualité
● Dans la pratique (outils) :

○ Euler/Heun/DPM++ etc. = familles de solveurs numériques (ODE/SDE view)
● Plus de steps (num_inference_steps) ⇒ souvent meilleure qualité, mais plus lent
● Compétence “ingénieur” :

○ traiter scheduler + steps comme des hyperparamètres de production
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Diffusion en latent : pourquoi Stable Diffusion est faisable en 
pratique

● Pixel diffusion (512²) = coûteux
○ latent diffusion = on débruite z dans un espace compressé

● Pipeline LDM (Latent Diffusion Model) :
○ encoder VAE : x→z
○ diffusion : bruit →z
○ decoder VAE : z→x

● Avantages : VRAM ↓, throughput ↑, résolutions plus hautes accessibles
● Le VAE devient un point critique : s’il perd des détails, la sortie peut avoir un aspect particulier
● LDM ajoute cross-attention pour conditionnements génériques (texte, bbox, etc.)
● Conclusion :

○ Stable Diffusion = diffusion moderne rendue “ingénierable” grâce au latent
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Zoom système : Stable Diffusion vs SDXL
● Stable Diffusion = LDM + encodeur texte + U-Net + VAE + scheduler (pipeline modulaire)
● SDXL (Stable Diffusion XL) : U-Net ~3× plus large + plus de blocks d’attention + 2e text encoder
● SDXL : entraînement multi-aspect ratios (meilleure robustesse de composition)
● SDXL : “refiner” (optionnel) pour débruitage fin en fin de chaîne (qualité perçue augmente)
● Implication pratique

○ meilleurs détails à 1024², mais coût VRAM/latence plus élevé (pipeline plus lourd)
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Évolution de Stable diffusion
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Exemple minimal (Diffusers) : text-to-image “reproductible”
● Pipeline standard : from_pretrained + to("cuda") + génération avec seed + steps + guidance
● Paramètres à toujours tracer

○ modèle, scheduler, seed, num_inference_steps, guidance_scale, résolution
● negative_prompt : spécifier ce qu’on veut éviter (artefacts, styles indésirés)
● Attention : mêmes prompts ≠ mêmes images si versions/schedulers/precisions diffèrent (non-régression)
● Objectif : transformer une démo en composant “testable” (logs + seeds + configs)

50



Exemple minimal (Diffusers) : text-to-image “reproductible”
import torch
from diffusers import StableDiffusionPipeline

model_id = "runwayml/stable-diffusion-v1-5"  # exemple
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

g = torch.Generator("cuda").manual_seed(42)

img = pipe(
    prompt="photo réaliste d'un renard vert dans une forêt brumeuse, lumière douce",
    negative_prompt="mauvaise anatomie, texte, watermark, flou",
    num_inference_steps=40,
    guidance_scale=7.5,
    generator=g,
    height=512, width=512,
).images[0]
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“Piloter” un pipeline : text2img, 
img2img, inpainting, super-res, 
editing
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Le pipeline comme API mentale
● Un pipeline diffusion = modèle (U-Net), scheduler, conditionneur (texte/image), VAE decode/encode
● Text2Img : on initialise un latent bruité zT , on débruite → z0 , puis decode → image
● Img2Img : on encode une image x→z0 , on ajoute du bruit (niveau contrôlé), puis débruitage conditionné
● Inpainting : on conserve la partie non masquée, on ne génère que la zone manquante (mais avec cohérence globale)
● Super-res / Upscale : soit modèle dédié SR, soit stratégie “tile + diffusion” pour préserver détails
● Editing : pilotage fin = combiner prompt + image + masque + paramètres (pas “un seul bouton”)
● Règle d’or : pour debugger, on change un paramètre à la fois (sinon impossible d’attribuer la cause)
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Les paramètres principaux
● Seed : reproductibilité ; même seed ≠ même image si modèle/scheduler/precision changent
● num_inference_steps : +steps ⇒ souvent +qualité, -steps ⇒ +vitesse (mais attention aux artefacts)
● guidance_scale (CFG) : +guidance ⇒ +adherence prompt, mais risque d’artefacts / saturation
● scheduler/sampler : apparence et stabilité différentes (Euler vs DDIM vs DPM++), à choisir selon objectif
● résolution : coût ~H×W (en latent aussi) , avec surcoûts liés aux blocs d’attention ; attention aux ratios non vus à 

l’entraînement
● negative_prompt : utile pour éliminer défauts récurrents (texte, watermark, anatomie)
● batch / num_images_per_prompt : exploration vs coût ; utile pour sélectionner (human-in-the-loop)
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Text-to-image : bonnes pratiques “production-like”
● Fixer une template de prompt (contenu, style, contraintes) + champs variables (produit, ambiance)
● Définir une plage raisonnable : steps (20–50), guidance (5–9) pour SD1.5/SDXL (selon modèle)
● Toujours logguer : modèle exact + revision/sha, scheduler, steps, guidance, seed, résolution, prompt complet
● Pour la diversité : générer k variantes (seeds différentes) puis sélectionner via heuristique ou humain
● Si le style doit être constant : préférer LoRA/adapter plutôt que “prompt-only” (sinon instable d’un seed à l’autre)
● Anti-pattern : guidance très élevée + peu de steps → images “cramées” / artefacts
● Vérifier systématiquement : mains, textes, logos, géométrie (zones de faiblesse connues)
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Img2Img : le paramètre “strength” (ou noise level)
● Pipeline : encode image → latent z, ajouter bruit jusqu’à un niveau t, débruiter conditionné → nouveau z
● Paramètre clé : strength ∈[0,1] (ou “denoising_start/end”) : contrôle combien on “s’éloigne” de l’original
● Strength bas (0.2–0.4) : conserve composition/identité, changements subtils (couleurs, style)
● Strength haut (0.6–0.9) : plus créatif, mais structure peut dériver (nouveaux objets, pose qui change)
● Bon usage : style transfer moderne (rendu artistique), variations de packshot, harmonisation d’éclairage
● Debug typique :

○ “ça ne change pas assez” ⇒ augmenter strength ou modifier prompt

○ “ça change trop” ⇒ baisser strength
● Attention : selon scheduler, strength ↔ nombre effectif de steps (interactions non triviales)
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Inpainting / Outpainting : cohérence locale vs globale
● Entrées : image + masque (1 = zone à régénérer, ou l’inverse) + prompt (souvent)
● Inpainting : le modèle doit respecter

○ (1) contexte autour du masque

○ (2) contraintes du prompt

○ (3) style global
● Bonnes pratiques masque :

○ bords légèrement feather (adoucis) pour éviter une couture visible
○ inclure un peu de contexte dans la zone régénérée (masque légèrement plus large)

● Prompting : décrire ce qui doit apparaître dans la zone, pas tout le reste déjà présent
● Outpainting : étendre l’image (ajout de bordures vides + masque)
● Artefacts fréquents : répétition de motifs, incohérences de lumière, “patch” de texture non aligné
● Pour contrôle fort :

○ combiner avec contrôle structurel (edges/depth/pose) via ControlNet (si dispo)
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Inpainting / Outpainting : cohérence locale vs globale
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Inpainting / Outpainting : cohérence locale vs globale



Super-resolution / Upscaling : gagner en taille sans halluciner
● Objectif : augmenter résolution tout en conservant contenu (et éviter “d’inventer” des détails faux)
● Options pratiques :

○ modèles SR dédiés (diffusion SR, ESRGAN-like) pour fidélité contrôlée
○ pipeline diffusion avec “tile” (découper en patches) pour très haute résolution

● Risque : les modèles génératifs peuvent halluciner des détails (médical/technique = dangereux)
● Bon protocole :

○ (1) upscale modéré (×2)

○ (2) vérifier zones critiques (texte, logos, pièces mécaniques)
● En e-commerce/marketing : hallucinations parfois acceptables (tant que visuellement plausibles)
● En imagerie technique : privilégier SR déterministe/physique ou valider avec un expert
● Toujours documenter : méthode SR, facteur d’upscale, seed/paramètres (reproductibilité)
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Editing guidé : “modifier X sans casser le reste”
● Cas typiques : changer arrière-plan, couleur d’objet, retirer un élément, ajouter un accessoire
● Approche simple : inpainting local + prompt précis + seed fixe pour itérer
● Approche plus contrôlée : img2img faible strength + masque pour préserver structure
● Garder l’identité/style :

○ limiter la génération à la zone utile

○ éviter prompts globaux contradictoires
● Méthode de debug : isoler d’abord la zone, réussir le local, puis élargir le masque si nécessaire
● Mesurer :

○ comparer avant/après sur des critères explicites (couleur, forme, absence d’artefact)
● Transition : une fois qu’on sait piloter, il faut évaluer correctement (métriques + protocole humain)
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Évaluation, reproductibilité et debug

66



Pourquoi évaluer est difficile (et indispensable)
● Sortie générative = variable

○ même prompt peut donner plusieurs images plausibles → pas de “vérité terrain” unique
● Objectif réel = compromis entre fidélité visuelle, diversité, alignement au prompt (prompt adherence)
● Une seule métrique ne suffit pas

○ certaines corrèlent mal avec le jugement humain sur le text-to-image.
● En production, l’évaluation sert à

○ (1) comparer versions de modèles

○ (2) prévenir régressions

○ (3) détecter dérives
● Deux niveaux : distribution-level (qualité globale d’un lot) vs sample-level (qualité d’une image)
● Trois familles d’évaluations : métriques automatiques, protocoles humains, tests “contraintes” (mains, texte, 

comptage)
● Bon réflexe : définir un “benchmark interne” de prompts typiques + edge-cases, stable dans le temps (versionné)
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Distribution-level : FID / KID / Precision-Recall (qualité vs 
couverture)

● FID (Fréchet Inception Distance) : compare stats (moyenne/covariance) de features Inception (embedding obtenu en 
prenant un vecteur intermédiaire dans le modèle Inception) entre réel et généré.

● Lecture : FID décroit ⇒ échantillons générés “plus proches” de la distribution réelle (réalisme + diversité)
○ FID corrèle souvent avec qualité/couverture sur un protocole fixe, mais n’isole pas la diversité et dépend fortement du 

domaine et du nombre d’échantillons.
● KID : MMD (Maximum Mean Discrepancy = mesure différence distribution à partir d’échantillons) dans l’espace 

Inception, estimateur (souvent) moins biaisé sur petits échantillons.
● Precision/Recall pour générateurs :

○ sépare “qualité” (precision) et “couverture” (recall)
○ utile pour diagnostiquer mode collapse.
○ différent des métriques de classification : calculées à partir d’échantillons (images réelles vs images générées) + 

comparaison dans un espace de features
● Pièges : dépendance au dataset de référence, au nombre d’échantillons, et au backbone de features (Inception ≠ 

domaine métier)
● Conseil pratique : rapporter au minimum (FID ou KID) + (precision/recall) sur un même protocole fixe
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Alignement au prompt + similarité perceptuelle (sample-level)
● CLIPScore : similarité image-texte via embeddings CLIP (modèle texte + image), pour estimer l’alignement 

sémantique (référence-free).
○ Limite : CLIPScore peut être haut avec des images esthétiquement mauvaises (artefacts), donc à combiner avec une 

métrique “visuelle”
● Human Preference / HPS : score appris à partir de choix humains (pairwise preferences) pour mieux refléter ce que 

les humains préfèrent.
● Pour éditions / restorations : LPIPS (distance perceptuelle apprise) utile quand on a une référence “avant/après” ou 

des variantes à comparer.
● Pour qualité de reconstruction (plus classique) : MS-SSIM (structure multi-échelle), surtout utile en 

compression/restauration.
● En text-to-image “open world”, la mesure la plus fiable reste souvent une évaluation humaine structurée (rubric + 

pairwise).
● Message clé :

○ “bon score” ≠ “bonne image” → on garde un œil sur des défauts connus (anatomie, texte, géométrie)
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Reproductibilité & debug : rendre la génération testable
● En diffusion, la reproductibilité dépend de : seed, modèle exact, scheduler, steps, guidance, résolution, précision 

(fp16/bf16)
● Avec Diffusers : passer un torch.Generator au pipeline ; attention, le Generator est “consommé” (stateful).
● Protocole simple : sérialiser une config (YAML/JSON) + enregistrer les prompts + seeds + hash/revision du modèle
● Debug efficace : ablations contrôlées (changer 1 paramètre) + sauvegarder les latents intermédiaires (si nécessaire)
● Tests “non-régression” : même set de prompts/seeds, comparer

○ CLIPScore moyen

○ FID/KID sur lot

○ audit visuel
● Évaluation humaine reproductible : privilégier pairwise, consignes claires, randomisation, et traçabilité des 

prompts/images.
● Anti-pattern : “ça marche sur ma machine” => sans versioning des poids/scheduler, vous ne pouvez pas expliquer une 

régression
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Cas d’usage concrets et patterns 
produit
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E-commerce & marketing : “content ops” à grande échelle
● Problème business : produire beaucoup de variantes visuelles (A/B tests, saisons, pays) sans multiplier les shootings
● Pattern “packshot → scènes” : détourage + remplacement de fond (studio, lifestyle, saisonnier)
● Exemple Shopify : génération/remplacement de backgrounds directement dans l’éditeur média (scene presets + 

prompt)
● Pattern produit : générer N variantes, puis sélectionner (humain ou heuristique : netteté, texte parasite, cohérence)
● Extension “site complet” : génération guidée de pages / visuels à partir de keywords (accélère la mise en ligne)
● Évaluation en contexte : KPI online (CTR, conversion), + garde-fous (logos, texte, claims) avant publication
● Risques : incohérences produit (couleur), artefacts “trompeurs” → nécessité d’un check qualité + traçabilité
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Suites créatives : intégration au workflow
● Pattern clé : la valeur vient de l’intégration (Photoshop/éditeur Canva/outil temps réel), pas seulement du modèle
● Adobe Firefly : positionnement “commercially safe” (données sous licence + domaine public) + pas d’entraînement sur 

contenu client
● Canva : “Magic Studio / Magic Media” = génération d’images directement dans l’éditeur (itérations rapides + mise en 

page)
○ Signal stratégie : acquisition de Leonardo.Ai par Canva (accélérer l’innovation en “visual AI”)

● NVIDIA Canvas : doodles/segmentation en paysages réalistes (concept exploration, backgrounds)
● Pattern entreprise : modèles custom / brand style (entraîner sur assets internes) pour cohérence visuelle
● Pattern confiance : provenance/étiquetage via Content Credentials / C2PA (métadonnées “tamper-evident”)
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Jeux vidéo / 3D : génération d’assets contrôlés (textures, 
sprites, concept)

● Problème prod : itérer sur énormément d’assets (textures PBR (Physically-Based Rendering), sprites, concepts) avec 
contraintes d’IP + cohérence

● Exemple Ubisoft La Forge : prototype open-source de diffusion entraînée sur assets internes pour générer des 
textures tileables + conditioning (sketch/height maps)

● Pattern “artist-in-the-loop” : IA pour exploration/variantes, puis retouche humaine + validation pipeline (PBR, tiling, 
channels)

● Exemple Unity Muse : génération de textures/sprites dans l’écosystème Unity, avec discours “useful and ethical”
● Exemple Blizzard (reporté) : outil interne “Blizzard Diffusion” pour concept art (assisté, pas forcément livré tel quel)
● Pattern technique : contrôler par inputs structurés (layouts, masques, maps) plutôt que “prompt-only”
● Point produit : droits & acceptabilité (internes/communautaires) → définir clairement ce qui est “référence”, 

“placeholder”, “livrable”
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Industrie / QA / médical : données synthétiques et rareté des 
cas

● Problème : défauts rares, peu d’images annotées, contraintes de confidentialité => modèle de vision sous-entraîné
● Pattern “synthetic defects” : générer des défauts variés (rayures, fissures, manques) + labels parfaits 

(segmentation/boxes)
● Exemple Edge Impulse : génération d’images synthétiques labellisées pour manufacturing (défauts simulés)
● Exemple NVIDIA (médical) : génération de données synthétiques pour augmenter diversité / scénarios difficiles
● Pattern d’évaluation : le bon critère = gain downstream (mAP, recall défauts, taux de faux négatifs), pas “images jolies”
● Risque : “synthetic gap” (données trop propres) → domain randomization, calibration, validation sur réel
● Usage diffusion/GAN : génération ciblée (rare cases) + anonymisation partielle, mais audit biais indispensable
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Patterns produit transverses : du modèle au service “pilotable”
● Pattern UX : templates de prompts + champs structurés (produit, style, fond, lumière) → réduit variance utilisateur
● Pattern contrôle : boutons standards (seed, steps, guidance, strength, masque) + presets par tâche 

(text2img/img2img/inpaint)
● Pattern sélection : “generate → rank → approve” (grille variantes, favoris, history) + logs complets (repro/debug)
● Pattern coût : budgets GPU (steps max, résolution max), batching, files d’attente, priorités (latence vs throughput)
● Pattern conformité : provenance (Content Credentials/C2PA), règles de publication, audit des assets sensibles
● Pattern qualité : tests de non-régression (benchmark prompts internes) + évaluation humaine pairwise sur cas clés
● Pattern sécurité : filtres contenus, “negative prompts” standards, politiques d’usage (ce qui est autorisé/risqué)
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À retenir
● VAE : cadre probabiliste + latent exploitable ; stable ; qualité parfois “lissée” ; brique clé (compression) en latent 

diffusion
● GAN : sampling one-shot très net ; mais entraînement min-max instable + risque mode collapse ; très utile pour 

pipelines contrôlés (image-to-image, textures)
● Diffusion : débruitage itératif ; qualité + diversité + conditionnement texte efficace ; knobs majeurs = 

steps/scheduler/CFG/seed
● Checklist “pilotage” : fixer seed → choisir scheduler → régler steps → ajuster guidance/strength → vérifier artefacts 

→ logguer config
● Checklist “évaluation” : (FID/KID + precision/recall) sur lot + (CLIPScore) + audit humain pairwise sur prompts clés
● Checklist “prod” : versioning modèles + config dump + non-régression sur benchmark interne + 

provenance/credentiels si diffusion externe

80



En route vers le TP
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