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Motivation, panorama et probleme de
la génération d'images




Pourquoi la génération d’'images maintenant ?

e Dans une équipe produit, le goulot = produire des visuels (marketing, Ul, catalogues, assets) plus vite que la cadence business
e  Génération = accélérer la création (variantes), personnaliser (par audience/pays), industrialiser (templates + prompts)
e Exemples
o grand public/pro : Adobe Firefly (création/édition d'images intégrée aux workflows créatifs)
o  design a grande échelle : Canva / Magic Media pour produire des images a intégrer directement dans des supports
o e-commerce : génération/variation de visuels de produits (fonds, déclinaisons) cété Shopify et apps associées
e Méme logique en interne entreprise
o réduire le colt de shooting, accélérer A/B testing créatif, “content ops” plus automatisable
e  Probléme central du cours
o controler la génération (qualité, style, contraintes) tout en restant robuste et reproductible
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Qu'est-ce qu'on cherche a optimiser, concretement ?

e  But: produire des échantillons x “crédibles” issus d'une distribution p(x) (ou conditionnée p(x|c))
e 4 axes qui tirent dans des directions différentes : fidélité, diversité, controlabilité, colt/latence

o  Fidélité : textures, détails, absence d’artefacts (mains, texte dans I'image, géométrie)

o Diversité : éviter de “tourner en rond” (pas de mode collapse, pas de répétitions visuelles)

o  Controlabilité : respecter une contrainte (prompt, composition, masque, style, identité visuelle)

o Coat: nombre d'étapes de génération, VRAM, temps GPU, throughput (batching), reproductibilité (seed)
e Enpratique : on arbitre selon I'usage (marketing = itération rapide ; imagerie technique = fidélité + contraintes)



Taches et workflows usuels

e Unconditional : générer “du plausible” sans consigne (utile surtout en recherche/benchmark)
e Conditional : générer sous contrainte ccc (texte, classe, image, masque, carte)

o  Text-to-lmage : prompt — image (création, moodboards, déclinaisons)
Image-to-Image : image source + prompt — variation (style transfer moderne, redesign, “restylisation”)
Inpainting / Outpainting : masque — compléter / étendre (suppression d'objet, extension de décor)
Super-resolution : faible résolution — haute résolution (restauration, upscale, détails plausibles)
Editing “guidé” : conserver structure globale, modifier localement (vétements, arriére-plan, lumiére)
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Trois familles de modeéles

e VAE: modele probabiliste latent ; optimise une borne (ELBO)

o  stable, bonne couverture, mais détails parfois lissés
e GAN:jeu adversarial Gvs D

o échantillons trés nets, mais entrainement instable + risque mode collapse
e Diffusion / score-based : débruitage progressif

o qualité + diversité + conditionnement efficace, mais sampling itératif
e  Lecture “ingénieur”

o chaque famille propose une stratégie différente pour approximer p(x) ou p(x|c)
e  Choix en pratique

o qualité/controle/compute/latence + contraintes d'intégration (pipeline, sécurité, licence)
e Aretenir pour la suite : aujourd’hui, la diffusion domine le text-to-image (ex. SDXL)



De la recherche au produit” : contraintes réelles a garder en téte

e Données
o distribution web # distribution métier (branding, packaging, imagerie technique) — risques de dérive
e Propriété intellectuelle / conformité
O “IP-safe” et tragabilité deviennent des exigences produit (ex. Adobe)
e Sécurité
o filtres (NSFW), refus, watermark/provenance (selon contexte)
e Fiabilité
O reproductibilité (seed + versions modeles + scheduler), tests de non-régression visuelle
e Performance
O VRAM (résolution), latence (steps), colt GPU (batch, precision fp16/bf16)
o Evaluation
O métriques automatiques + protocole humain (sinon optimisation “a I'aveugle”)
e Résultat attendu
O un pipeline génératif “pilotable” comme un composant logiciel, pas une démo fragile



Modéliser une distribution d’'image




Le probleme commun : apprendre une distribution d'images

On observe des images x € RMW*3 (et parfois une condition c)
Objectif “génératif” : approximer p,(x) (unconditional) ou p,(x | c) (conditional)
Générer = échantillonner x~p8(-) (ou x~p8(- | c))
C peut étre : texte, classe, image source, masque, carte (segmentation / edges / pose), etc.
Deux notions a ne pas confondre :
o training : ajuster 6 pour rapprocher p, de p,,.
o sampling : produire un x (coGt/latence # colt d’entrainement)
e  Question d'ingénierie : quelle famille donne le meilleur compromis qualité / contréle / colt pour un usage donné ?

AN
~
Apprendre .
Dataset > Py > sampling




Trois stratégies pour approcher p(x)

e (A) Densité explicite / latent variable : on optimise (une borne de) log(p,(x))
o typique des VAE (log-likelihood approximée)
e  (B) Modéle implicite : on sait sampler x=G,(z), mais pas calculer p,(x)
o typique des GAN (pas de vraisemblance)
e (C) Processus itératif : on définit une dynamique qui transforme un bruit en image
o diffusion / score-based (reverse denoising)
e Cout caché:
o (A)et(B) peuvent sampler en 1 passe
o (C) sample en T étapes (scheduler)
e Signal d'apprentissage
o A)reconstruction + régularisation
o (B) adversarial
o (C) prédiction de bruit/score
e Implication pratique
o les hyperparamétres critiques ne sont pas les mémes (stabilité vs steps vs guidance)
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Conditionnement : respecter des contraintes

e On passe de p(x) a p(x|c) : la condition pilote la distribution (pas juste un post-traitement)
e Exemple:
o ¢ =texte — contraintes sémantiques (“astronaute”, “style photo”, “éclairage”)
o c=image + paramétre a — interpolation fidelity vs creativity (img2img)
o ¢ =masque — génération locale (inpainting) : x figé, X nanquant généré
e Implémentations typiques du conditionnement :
o concaténation (channels), FiLM/AdalN, cross-attention (trés courant en diffusion texte—image)
e Point clé : “conditionnement” # “contréle total” — on parle souvent de soft constraints

connu
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Espace latent : pourquoi on compresse I'image avant de générer

e Générer directement en pixels est colteux : dimension énorme, textures fines, dépendances longues
e Stratégie moderne : apprendre un encodeur/décodeur (souvent de type VAE) et générer dans z
o z=E(x), x=D(2)
e Sidiffusion en latent
O on apprend p(z|c) puis on reconstruit x=D(z)
e Avantages
O moins de VRAM, plus rapide, résolutions plus élevées accessibles
e Risque
O le bottleneck latent peut “jeter” de I'info — artefacts / perte de micro-détails (selon VAE)
e |dée “systeme” : découpler
O (1) compression perceptuelle (VAE) et

O (2) génération stochastique (diffusion)
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Du cadre conceptuel au pipeline logiciel

Un pipeline = composants + orchestration du sampling (pas juste “un modele”)
Pour diffusion

o model (U-Net), scheduler (régles de pas), conditioning (encodeur texte), decoder (VAE)
Méme modeéle, taches différentes

o text2img/img2img / inpainting = entrées/contraintes différentes (mémes briques)
Parametres qui changent la distribution échantillonnée

o  seed, steps, guidance, sampler, résolution
Bon réflexe d’ingénieur

o logguer tous les paramétres (sinon impossible de reproduire/debugger)
Transition : on va maintenant détailler ces stratégies via VAE, GAN, puis diffusion
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VAE : générer via variables latentes
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Pourquoi des VAE (Variational AutoEncoder)?

e  Obijectif : apprendre un modeéle probabiliste génératif (=~ maximum likelihood) plutét qu'un modele implicite
e  Entrainement généralement stable (pas de jeu min-max comme les GAN)
e  Bonus “ingénieur”
o on obtient un espace latent z exploitable (interpolation, clustering, controle simple)
e  Génération = “échantillonner un latent” puis décoder (pipeline trés clair)
e Les VAE seuls peuvent étre “moins nets”, mais ils sont une brique clé des pipelines modernes (latent diffusion)
e  Question directrice
o comment concilier reconstruction + régularisation pour rendre z génératif ?

—»| Encoder ——®| Espace latent ——®| Decoder [P

z-N(O,l) | Decoder
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Modéle génératif

e Variables : image x, latent z (dimension d<<H W 3)
e Prior simple:
o p(z)=N(0,l) (régularise I'espace latent)
e Décodeur (générateur) :
o py(x]z) (souvent Gaussien ou Bernoulli selon le prétraitement)
o Gaussien : py(x|z)=N(u,(2), 02l) ou le décodeur (un réseau de neurones) prédit py(z) (une image) et on fixe o (ou
on le paramétrise grossiérement).
o Bernoulli surtout pour images binaires / jouets (MNIST)
e Probléeme:
o py(zlx) (posterior) est intractable — on I'approxime
e  Approx posterior (encodeur) :
o q¢(z |X) (typiquement Gaussien diagonal q¢(z!x)=N(u¢(x), diag(02¢(x)))
e  Engénération : on n'a besoin que de p(z) et p,(x|2)
e Anoter: sion ne génére pas de distributions (Gaussiennes) mais seulement des points, on a un autoencoder
classique.
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Vue d’ensemble

Kingma, D. P, & Welling, M. (2019). An introduction to
variational autoencoders.

Prior distribution: pe(z)

Z-space

.
.
‘e
.

Encoder: qq4(z|x)

Decoder: pe(x|z)

A

X-space

Dataset: D
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Objectif clé : 'ELBO (Evidence Lower Bound)

e Onveut maximiser log(p,(x)), mais log(p,(x)) = log( [, py(x| 2)p(z) dz est difficile
e VAE optimise une borne:

N v

log pp(z) > I\E%(m) logpy(z | 2)] — KL(gy(z | z)[|lp(2))

>

-~ Ve

reconstruction régularisation latent

e Lecture pratique:

o  reconstruire x depuis z

o  forcer q(z|x) a ressembler a N(0,I)
e SiKL = 0: posterior collapse, z est peu/plus utilisé (le décodeur peut ignorer le latent).
e SiKL trop grand : q(z|x) s’éloigne du prior — échantillonner z~p(z) donne des générations médiocres (mismatch

prior/posterior).

e  On souhaite contréler le compromis reconstruction < régularisation

o B-VAE : multiplier le terme KL par B pour favoriser des latents plus factorisés/interprétables
e Point d’attention : 'ELBO est un compromis, pas une garantie “qualité perceptuelle”



Reparameterization trick : backprop a travers I'échantillonnage

e Encodeur produit p¢(x) et Iog(0¢2(x)) (Gaussien diagonal)
e Echantillonner naivement z~N(y, 62) casse la différentiabilité
e Astuce: écrire 'aléa séparément

e~N(0,1), z=p¢(x)+0¢(x)®e

e On backprop dans y, 0; I'aléa est dans € (indépendant des parametres)
e En pratique : perte = recon_loss+KL ; optimisation SGD/Adam standard
e Résultat : un entrainement “deep learning friendly” malgré les variables latentes
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Reparameterization trick : backprop a travers I'échantillonnage

# Pseudo-code PyTorch (VAE Gaussien diagonal)

mu, logvar = encoder(x) # (B, d), (B, d)

std = (0.5 * logvar).exp()

eps = torch.randn_like(std)

z =mu + std * eps # reparameterization
x_hat = decoder(z)

recon = F.mse_loss(x_hat, x, reduction="sum") # ou BCE selon x
kl = -0.5 * torch.sum(1 + logvar - mu**2 - logvar.exp())

loss = recon + kl

loss.backward()

opt.step()
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Echantillonnage et conditionnement (CVAE) : générer “sous
contrainte”

e Sampling de base:
o z-N(0,1), puis x~p,(x|2)
e Conditionnement c (classe/texte/attributs)
o viserpy(x|z c) et q,(z [ x,C)
e Intuition : c fixe “quoi générer”, z gére la stochasticité (variantes)
e  Pourimages
o CVAE utile pour génération par classes, attributs (ex. “smiling / not smiling”)
° Limite
o le texte libre est moins naturel a intégrer en VAE “simple” que via cross-attention (diffusion)
e  Pontvers la suite
o endiffusion latente, le VAE sert surtout a compresser/décompresser, et le conditionnement texte est géré ailleurs
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Limites des VAE et variantes importantes

“Blurriness” fréquent : vraisemblance pixel simple (Gaussian/Bernoulli) — moyenne de modes visuels
Posterior collapse : un décodeur trop puissant peut ignorer z (KL=0)
B-VAE : pousse l'indépendance des facteurs (meilleur “disentanglement”, recon parfois moins bonne)
VQ-VAE : latents discrets (vector quantization), réduit certains collapses, ouvre la voie a des priors autoregressifs
“VAE comme composant systeme” : dans Latent Diffusion, on diffuse dans z (efficacité) puis on décode en pixels
Message clé :
o méme si la diffusion domine la génération finale, comprendre le VAE est indispensable pour comprendre Stable Diffusion
/ SDXL (qualité, artefacts, VRAM, résolution)
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Exemple de sortie d’'un VAE (visages)

Figure 4.4: VAEs can be used for image resynthesis. In this example by White,
2016, an original image (left) is modified in a latent space in the direction of a smile
vector, producing a range of versions of the original, from smiling to sadness.

Kingma, D. P, & Welling, M. (2019). An introduction to variational autoencoders.
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GAN : génération par jeu adversarial

24



Pourquoi les GAN (Generative Adversarial Networks) ?

Motivation computer vision :

o générer des images trés nettes (textures, détails) en une passe (sampling rapide)
Modéele implicite :

o on sait générer x=G(z), sans imposer une vraisemblance explicite p,(x)
Trés bons résultats sur visages / objets / textures (ex. StyleGAN : controle multi-échelle des styles)
Gros impact produit : génération temps réel / interactive (latence faible vs diffusion itérative)
Taches ou les GAN brillent :

o génération d'assets, textures, “style transfer”, image-to-image (pix2pix, CycleGAN)
Mais :

o entrainement souvent instable (min-max), et risque de mode collapse (diversité)

Espace latent [——®>| Générateur 9
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Objectif GAN : min-max entre Générateur et Discriminateur

e  Deuxréseaux: Gy(z) génere, Dq,(X) discrimine (classification image réelle ou générée)
e  Obijectif original (Goodfellow 2014) :

ming maxp K., [logD(z)] +E, ) [log(1 — D(G(2)))]

e Intuition : D apprend un signal d’apprentissage (gradient) pour pousser G vers la distribution réelle
e Onapprend G et D en méme temps : le générateur devient meilleur a générer des images, mais le discriminateur s'améliore aussi
a détecter la fraude
e Enpratique : on utilise souvent la “non-saturating loss” pour G (meilleurs gradients)
e Echantillonnage : z-N(0,) — x=G(2)
e Lecture ingénieur:
o qualité = architecture + loss + régularisations + dataset (plus que “la formule”)

Vraie
image

Quelle est la vraie
image ?

Discriminateur

z~N(0,l) ——p» Générateur
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Entrainement : ce qui casse, et les stabilisateurs “classiques

e Pathologies : mode collapse, gradients faibles, oscillations (jeu min-max)
e  Plusieurs solutions proposées:
o  WGAN : remplacer divergence Jensen-Shannon par distance de Wasserstein + contrainte Lipschitz — gradients plus
utiles, apprentissage plus stable
o WGAN-GP : imposer 1-Lipschitz (If(x) - f(y)| <= |Ix - yl|) via gradient penalty (évite le weight clipping)
o  Spectral Normalization : contraindre le Lipschitz du discriminateur simplement, stabilise souvent trés bien
o Pertes modernes : hinge loss (souvent avec SN) ; + “tricks” (TTUR, data aug, etc.) selon contexte
° Message :
o les GAN sont “sensibles” — il faut traiter I'entrainement comme un probléme de contrdle (monitoring)
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Architectures GAN : de DCGAN a StyleGAN / BigGAN

DCGAN : régles de design avec des convolutions (strides, BN, ReLU/LeakyReLU) — baseline stable et efficace
SAGAN : self-attention pour dépendances longues (cohérence globale)

BigGAN : GAN conditionnel a grande échelle ; truncation trick = régler fidélité vs diversité

StyleGAN / StyleGAN2 : générateur “style-based” (contréle multi-échelle, mixing) + meilleure qualité perceptuelle
Industrialisation : modeles + code de référence souvent publiés (ex. dépots NVLabs)

A retenir : GAN = trés performant, mais tuning/data/compute déterminent énormément le résultat
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Architectures GAN : de DCGAN a StyleGAN / BigGAN
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GAN conditionnels pour “image-to-image” : paired vs unpaired

e  pix2pix (paired) : apprendre x—y + perte adversariale + (souvent) L1 pour préserver la structure
e Casdusage:

o  edges—photo

o  segmentation—photo

o day—night (quand données alignées disponibles)
e  CycleGAN (unpaired) : deux mappings G: X—Y et F.Y—X + cycle-consistency

Leyete = Ee||F(G(z)) — zll1 + Ey|G(F(y)) -yl

e  SPADE / GauGAN : génération a partir de layouts sémantiques (controle fort via segmentation)
e  Lecture produit :
o ces modeles offrent un contrdle structurel trés direct (inputs explicites)
e Limite
o généralisation hors distribution + artefacts si contraintes trop dures / données trop faibles

30



GAN conditionnels pour “image-to-image” : paired vs unpaired

Labels to Street Scene Labels to Facade BW to Color

fortier

Aenal to Map G

°
input output input output
__ Edges to Photo
[\

° iy 1
° £\
°

input output input output input output
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Exemple code : boucle d’entrainement GAN (trés générique)

# Pseudo-code PyTorch: WGAN-GP (trés simplifié€)
for x_real in loader:
for _ in range(n_critic):
z = torch.randn(B, d, device=x_real.device)
x_fake = G(z).detach()

d_real = D(x_real).mean()
d_fake = D(x_fake).mean()
loss_D = -(d_real - d_fake)

# gradient penalty

eps = torch.rand(B, 1, 1, 1, device=x_real.device)

x_hat = eps * x_real + (1 - eps) * x_fake

g = torch.autograd.grad(D(x_hat).sum(), x_hat, create_graph=True)[0]
gp = ((g.flatten(1).norm(2, dim=1) - 1) ** 2).mean()

loss_D = loss_D + lam * gp

opt_D.zero_grad(); loss_D.backward(); opt_D.step()

z = torch.randn(B, d, device=x_real.device)
loss_G = -D(G(z)).mean()

opt_G.zero_grad()

loss_G.backward()

opt_G.step()
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Ou placer les GAN en 2026 ?

GAN restent pertinents quand latence et netteté priment (génération “one-shot”)
Trés bons pour des taches structurées (segmentation/layout — image) type SPADE/GauGAN
Trés utiles en augmentation de données (domaines rares, médical, industriel), mais a valider (biais/artefacts)
Diffusion domine le text-to-image “open world”, mais les GAN restent une boite a outils essentielle
Insight clé :
o “GAN = sampling rapide, tuning délicat”
o  “diffusion = sampling lent, tuning plus prédictible”
e Transition : on passe aux modeles de diffusion, qui reprennent I'idée de conditionnement mais via débruitage itératif
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Diffusion : génération par débruitage
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Pourquoi la diffusion a “gagné” pour le text-to-image ?

e  Obijectif pratique : qualité + diversité + conditionnement (texte, masque, image) dans un cadre d’entrainement robuste
e Diffusion = apprendre a inverser un processus de bruitage : du bruit vers une image plausible
e Entrainement sans discriminateur : signal de loss simple (souvent MSE) et stable a grande échelle
o  selon les modeéles, on prédit € (bruit), x, (image initiale) ou v (velocity), et la loss peut étre repondérée
e  Controle post-training : on peut guider le sampling (CFG, Classifier-Free Guidance, contraintes) sans réentrainer le modele
e Tres compatible avec “génération conditionnée” : texte via cross-attention, contréles spatiaux, etc.
e  Codt principal : sampling itératif (T étapes) — latence/compute a gérer (scheduler, steps)

IO

Data noise —> Noise
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Processus forward : ajouter du bruit de maniére controlée

e On définit une chaine markovienne q(x, | X,_,) qui ajoute du bruit gaussien

e Parametres: BtE(0'1)' a,=1-B, &=

e Définition typique :

o83

s=1 ...tas

Timestep t

q(x,Ix,_,)=N(sart(a,)*x,_,, B,)
e Intuition : B, = “dose de bruit” au pas t (noise schedule)
o Agrandt, x, perd l'info sémantique et tend vers du bruit
o Endiffusion latente, on fait la méme chose sur un latent z (pas sur les pixels)

Ot

—— Linear

—— Cosine

Timestep t

log SNR;

Timestep t
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Formule utile : echantillonner x_directement depuis x,

o Propriété clé (DDPM, Denoising Diffusion Probabilistic Models) : on peut écrire x, sans simuler tous les pas
e Formule:
x,=sqrt(@, )x,+sqrt(1-a,) €, €~N(0, I)
e Lecture: x, = mélange “signal original” + “bruit pur” avec un poids dépendant de t
o Conséquence : I'entrainement peut tirer des triplets (x, t, x,) efficacement
e Enpratique : on tire t~Uniform{1..T}, puis on construit x, via la formule
e Cette équation explique pourquoi la diffusion “ressemble” a du denoising multi-niveaux
e Exemple:
o 8Siaz=0.1,alors at, nous avons des coefficients de 0.316 et 0.949
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Processus reverse : apprendre a enlever le bruit

o  But:approximer py(x,_, |x,) pour remonter vers x
e On entraine un réseau €,(x, t, ¢) a prédire le bruit € injecté (ou x,)
e Loss standard (version simple) :
O L(®)=E,q,, /€€ (xtte) //?,
e Pourquoi ga marche
O sion sait prédire le bruit, on sait reconstruire une direction “vers des images plausibles”
e Sampling : partir de x,~N(0,I) et appliquer un update T fois (scheduler)
e Conditionnement c : texte / image / masque / controle spatial (détails plus loin)

38



Architecture du débruiteur : U-Net + embedding de temps +
(souvent) attention

Backbone courant : U-Net (down / bottleneck / up) + skip connections (détails + structure)

Embedding du temps t : t—=MLP—injection dans les blocks (FiLM-like)

Blocs résiduels + normalisations : stabiliser I'apprentissage sur des signaux bruités

Pour text-to-image : insertion de cross-attention a plusieurs résolutions

L'entrée/sortie : tenseur image (pixels) ou latent (typiquement 64x64x4 en LDM, Latent Diffusion Model)
Vue systeme : le réseau apprend un “prior” visuel + la capacité a appliquer les contraintes ¢
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Architecture du débruiteur : U-Net + embedding de temps +
(souvent) attention

° Backbom /
e Blocsrés :
643 64:64° 1:64°
° Pour text 1:64° g
° L'entrée/.
e  Vue syst¢

- 3
64:32° 128+128 32° 128:32

= >
%"" i l
128:16"  256:16° 256 + 256:16° 256:16°

1 DownSampleBlock
M‘= 0={7 (Residual + Attention)
256:8" 512:8° 512 + 512:8" 512:8° ' UpSampleBlock

-) UpBlock
(Residual -+ Attention)
g ﬂ'.v a 2 !.

) MiddleBlock

l 512:4% 1024:4% 1024:4°

Add Time Embeding




Conditionnement texte : embeddings + cross-attention

o Texte — tokens — embeddings (encodeur texte figé ou semi-figé selon modéles)
e Cross-attention:

O queries = features U-Net
O  keys/values = embeddings texte => injection sémantique
o Effet:le modele “décide” ou/quoi dessiner en fonction des mots, a plusieurs niveaux (coarse—fine)

e Le conditionnement n'impose pas une contrainte dure : il “biaise” la trajectoire de débruitage
e Extensions:

o conditionnement spatial (edges, pose, depth) via réseaux additionnels (ControlNet)

O On réutilise la méme mécanique pour img2img / inpainting (avec entrée image/masque)
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Conditionnement texte : embeddings + cross-attention

Texte — tokens — embeddinas (encodeur texte fiaé ou semi-fiaé selon modéles)

e Cross-attention: - ~ Latent Space ) Eonditioning

O queries = featul @_E}%——Loiﬁusbn Process f)' Eemﬂ"@

B M

O  keys/values =€ - ( Denoising U-Net €5 2r Text
o Effet:le modéle “déc S \ - - - Repres »—fine)
e Le conditionnement ﬂ ; eratons
e Extensions: @(-El-d %

O conditionneme >

o  Onréutiliselan Pixel Space, \ . )
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Classifier-Free Guidance (CFG) : régler “fidélité au prompt” vs
diversité

e Idée: entrainer le modele a fonctionner avec et sans condition (dropout de c)
o Alinférence, on combine deux prédictions :

€ = GQ(ZEt, t, ®) Tw- (Ge(aft, t, C) - 69(33157 t, @))

e W = guidance scale

O plus haut = plus “prompt-adherent”, mais risque d’artefacts / moins de variété
e Negative prompt = une fagon pratique de définir la branche ‘uncond’ (souvent condition vide, mais on peut la

remplacer par une condition ‘a éviter’), ce qui change le biais introduit par CFG.

e Dans Diffusers : guidance active quand guidance_scale > 1
e Messageclé:

O CFG est un paramétre majeur de pilotage (qualité pergue # métriques)



Classifier-Free Guidance (CFG) : régler “fidélité au prompt” vs
diversité

mais on peut la
remplacer
e Dans Diffu
e Messagec

o CFG

Cfg: 9 Cfg: 10

Prompt = Tom Cruise with a red suit

44



Sampling : DDPM vs DDIM et la notion de scheduler

o Lageénération dépend fortement du scheduler (la régle de mise a jour x —x,_,)
o« DDPM (Denoising Diffusion Probabilistic Models) : sampling markovien, historiquement plus lent (beaucoup de pas)
o DDIM (Denoising Diffusion Implicit Models) : processus non-markovien (le forward reste un bruitage markovien),
sampling accéléré, permet trade-off vitesse/qualité
o Dans la pratique (outils) :
O Euler/Heun/DPM++ etc. = familles de solveurs numériques (ODE/SDE view)
e Plus de steps (num_inference_steps) = souvent meilleure qualité, mais plus lent
e Compétence “ingénieur” :
O traiter scheduler + steps comme des hyperparametres de production
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Diffusion en latent : pourquoi Stable Diffusion est faisable en

pratique

Pixel diffusion (5122) = colteux

O latent diffusion = on débruite z dans un espace compressé
Pipeline LDM (Latent Diffusion Model) :

O  encoder VAE : x—z

o diffusion : bruit —»z

O decoder VAE : z—Xx
Avantages : VRAM |, throughput 1, résolutions plus hautes accessibles
Le VAE devient un point critique : s'il perd des détails, la sortie peut avoir un aspect particulier
LDM ajoute cross-attention pour conditionnements génériques (texte, bbox, etc.)
Conclusion :

O  Stable Diffusion = diffusion moderne rendue “ingénierable” grace au latent
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Diffusion en latent : pourquoi Stable Diffusion est faisable en

pratique
° Pixel diffiicinn (5122) = enilitany
P.C o Diffusion

) |F T »> »

. . Model z
° AV(: (a)
e Le e N
e LD f :

> | Diffusion E

[ CO oy E 1

- | 0 [ Model J —

EJ\E)ncoder Latent Space Decode’r,,E
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Zoom systeme : Stable Diffusion vs SDXL

e Stable Diffusion = LDM + encodeur texte + U-Net + VAE + scheduler (pipeline modulaire)
e SDXL (Stable Diffusion XL) : U-Net ~3x plus large + plus de blocks d'attention + 2e text encoder
e SDXL : entrainement multi-aspect ratios (meilleure robustesse de composition)
o SDXL : “refiner” (optionnel) pour débruitage fin en fin de chaine (qualité percue augmente)
e Implication pratique
o meilleurs détails a 10242, mais colt VRAM/latence plus élevé (pipeline plus lourd)

SDXL + refiner
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Evolution de Stable diffusion

Stable diffusion vi5 Stable diffusion va2.1 Stable diffusion x| base 1.0
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Exemple minimal (Diffusers) : text-to-image “reproductible”

e Pipeline standard : from_pretrained + to("cuda") + génération avec seed + steps + guidance
e Parametres a toujours tracer
O modele, scheduler, seed, num_inference_steps, guidance_scale, résolution
e negative_prompt : spécifier ce qu'on veut éviter (artefacts, styles indésirés)
e Attention : mémes prompts # mémes images si versions/schedulers/precisions different (non-régression)
e  Objectif : transformer une démo en composant “testable” (logs + seeds + configs)
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Exemple minimal (Diffusers) : text-to-image “reproductible”

import torch
from diffusers import StableDiffusionPipeline

model_id = "runwayml/stable-diffusion-v1-5" # exemple
pipe StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

g = torch.Generator("cuda").manual_seed(42)

img = pipe(
prompt="photo réaliste d'un renard vert dans une forét brumeuse, lumiéere douce",
negative_prompt="mauvaise anatomie, texte, watermark, flou",
num_inference_steps=40,
guidance_scale=7.5,
generator=g,
height=512, width=512,

) .images[0]

o1



Exemple mini ductible”

import torch
from diffusers import

model_id = "runwayml/s
pipe StableDiffusio
pipe = pipe.to("cuda"

16)

g = torch.Generator ("

img = pipe(
prompt="photo réa
negative_prompt="
num_inference_stef
guidance_scale=7.]
generator=g,
height=512, width

) .images[0]
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“Piloter” un pipeline : text2img,
img2img, inpainting, super-res,
editing
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Le pipeline comme API mentale

e Un pipeline diffusion = modéle (U-Net), scheduler, conditionneur (texte/image), VAE decode/encode

e Text2Img: on initialise un latent bruité z_, on débruite — z,, puis decode — image

e Img2Img: on encode une image x—z,, on ajoute du bruit (niveau contrélé), puis débruitage conditionné

e Inpainting : on conserve la partie non masquée, on ne géneére que la zone manquante (mais avec cohérence globale)
e Super-res / Upscale : soit modele dédié SR, soit stratégie “tile + diffusion” pour préserver détails

e Editing : pilotage fin = combiner prompt + image + masque + parameétres (pas “un seul bouton”)

e Regle dor: pour debugger, on change un parametre a la fois (sinon impossible d’attribuer la cause)
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Les parametres principaux

e Seed : reproductibilité ; méme seed # méme image si modele/scheduler/precision changent

o num_inference_steps : +steps = souvent +qualité, -steps = +vitesse (mais attention aux artefacts)

o guidance_scale (CFG) : +guidance = +adherence prompt, mais risque d'artefacts / saturation

o scheduler/sampler : apparence et stabilité différentes (Euler vs DDIM vs DPM++), a choisir selon objectif

e résolution : colt ~HxW (en latent aussi) , avec surco(ts liés aux blocs d'attention ; attention aux ratios non vus a
I'entrainement

e negative_prompt : utile pour éliminer défauts récurrents (texte, watermark, anatomie)

e batch/ num_images_per_prompt : exploration vs codt ; utile pour sélectionner (human-in-the-loop)
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Text-to-image : bonnes pratiques “production-like”

o Fixer une template de prompt (contenu, style, contraintes) + champs variables (produit, ambiance)

o  Définir une plage raisonnable : steps (20—50), guidance (5-9) pour SD1.5/SDXL (selon modele)

e Toujours logguer : modele exact + revision/sha, scheduler, steps, guidance, seed, résolution, prompt complet

e Pourladiversité : générer k variantes (seeds différentes) puis sélectionner via heuristique ou humain

o Sile style doit étre constant : préférer LoRA/adapter plutét que “prompt-only” (sinon instable d'un seed a l'autre)
e Anti-pattern : guidance tres élevée + peu de steps — images “cramées” / artefacts

o Vérifier systématiquement : mains, textes, logos, géométrie (zones de faiblesse connues)
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Img2img : le paramétre “strength” (ou noise level)

e Pipeline: encode image — latent z, ajouter bruit jusqu’a un niveau t, débruiter conditionné — nouveau z
e Parameétre clé : strength €[0,1] (ou “denoising_start/end”) : contréle combien on “s’éloigne” de l'original
e Strength bas (0.2-0.4) : conserve composition/identité, changements subtils (couleurs, style)
e Strength haut (0.6-0.9) : plus créatif, mais structure peut dériver (nouveaux objets, pose qui change)
e Bonusage: style transfer moderne (rendu artistique), variations de packshot, harmonisation d'éclairage
e Debug typique:

O  “canechange pas assez” = augmenter strength ou modifier prompt

O  “cachange trop” = baisser strength
e Attention : selon scheduler, strength <> nombre effectif de steps (interactions non triviales)

57



Img2img : |

Pipeline : encoc
Parametre clé :
Strength bas (0
Strength haut ((
Bon usage : sty
Debug typique :

0  ‘“canech:

O  “cachanc
Attention : selol

Steps: 1

Steps: 4

Steps: 10

Steps: 40

Steps: 80 AA"

Sample

ﬁ.

r: E

uler A, CFG: 10

g: 0.25 Denoising: 0.50

Denoising: 0.75

I
Sqh <
g

f

Iy el TEHE, 4

OnceUponAnAlgorithm.org

Denoising: 1.00
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Inpainting / Outpainting : cohérence locale vs globale

Entrées : image + masque (1 = zone a régénérer, ou l'inverse) + prompt (souvent)
Inpainting : le modeéle doit respecter

O (1) contexte autour du masque

O (2) contraintes du prompt

O (3) style global
Bonnes pratiques masque :

O bords Iégérement feather (adoucis) pour éviter une couture visible

O inclure un peu de contexte dans la zone régénérée (masque Iégérement plus large)
Prompting : décrire ce qui doit apparaitre dans la zone, pas tout le reste déja présent
Outpainting : étendre I'image (ajout de bordures vides + masque)
Artefacts fréquents : répétition de motifs, incohérences de lumiére, “patch” de texture non aligné
Pour contréle fort :

O combiner avec contrdle structurel (edges/depth/pose) via ControlNet (si dispo)
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Inpainting / Outpainting : cohérence locale vs globale
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Inpainting / Outpainting : cohérence locale vs globale
i 7ShER b Top § | R




Super-resolution / Upscaling : gagner en taille sans halluciner

Objectif : augmenter résolution tout en conservant contenu (et éviter “d'inventer” des détails faux)
Options pratiques :

O modeéles SR dédiés (diffusion SR, ESRGAN-like) pour fidélité controlée

o pipeline diffusion avec “tile” (découper en patches) pour trés haute résolution
Risque : les modeles génératifs peuvent halluciner des détails (médical/technique = dangereux)
Bon protocole :

O (1) upscale modéré (x2)

O (2) vérifier zones critiques (texte, logos, pieces mécaniques)
En e-commerce/marketing : hallucinations parfois acceptables (tant que visuellement plausibles)
En imagerie technique : privilégier SR déterministe/physique ou valider avec un expert
Toujours documenter : méthode SR, facteur d'upscale, seed/paramétres (reproductibilité)
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Bicubic Regression SR3 (ours) Reference

Super-resolu halluciner

e Objectif : augmente QUX)
e Options pratiques :
O modeles SRd
O pipeline diffus
e Risque:les modele
e Bon protocole:
O (1) upscalem
O (2) vérifier zo
e Ene-commerce/m
e Enimagerie techni
e Toujours document



Editing guidé : “modifier X sans casser le reste”

Cas typiques : changer arriere-plan, couleur d’'objet, retirer un élément, ajouter un accessoire
Approche simple : inpainting local + prompt précis + seed fixe pour itérer
Approche plus controlée : img2img faible strength + masque pour préserver structure
Garder l'identité/style :
O limiter la génération a la zone utile
O éviter prompts globaux contradictoires
Méthode de debug : isoler d'abord la zone, réussir le local, puis élargir le masque si nécessaire
Mesurer :
O comparer avant/aprés sur des criteres explicites (couleur, forme, absence d'artefact)
Transition : une fois qu’on sait piloter, il faut évaluer correctement (métriques + protocole humain)
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Editing guidé : “modifier X sans casser le reste”

Cas typiques : «
Approche simp
Approche plus
Garder l'identite

0 limiter la

O éviter prc

Méthode dede  jnput+mask no prompt “white ball” “bowl of water’
Mesurer :

*

O compare
Transition : une

input+mask  “big mountain”  *“big wall”  “New York City”
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Evaluation, reproductibilité et debug
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Pourquoi évaluer est difficile (et indispensable)

Sortie générative = variable
O méme prompt peut donner plusieurs images plausibles — pas de “vérité terrain” unique
Objectif réel = compromis entre fidélité visuelle, diversité, alignement au prompt (prompt adherence)
Une seule métrique ne suffit pas
O certaines correlent mal avec le jugement humain sur le text-to-image.
En production, I'évaluation sert a
O (1) comparer versions de modeéles
O (2) prévenir régressions
O (3) détecter dérives
Deux niveaux : distribution-level (qualité globale d'un lot) vs sample-level (qualité d'une image)
Trois familles d'évaluations : métriques automatiques, protocoles humains, tests “contraintes” (mains, texte,
comptage)
Bon réflexe : définir un “benchmark interne” de prompts typiques + edge-cases, stable dans le temps (versionné)
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Distribution-level : FID / KID / Precision-Recall (qualité vs
couverture)

o FID (Fréchet Inception Distance) : compare stats (moyenne/covariance) de features Inception (embedding obtenu en
prenant un vecteur intermédiaire dans le modele Inception) entre réel et généré.

FID = ||ur — pgll3 + Tr (B, + 2y — 2(27‘29)1/2)

e Lecture: FID décroit = échantillons générés “plus proches” de la distribution réelle (réalisme + diversité)
O  FID corréle souvent avec qualité/couverture sur un protocole fixe, mais n’isole pas la diversité et dépend fortement du
domaine et du nombre d’échantillons.
e KID : MMD (Maximum Mean Discrepancy = mesure différence distribution a partir d’échantillons) dans I'espace
Inception, estimateur (souvent) moins biaisé sur petits échantillons.
e Precision/Recall pour générateurs :
O sépare “qualité” (precision) et “couverture” (recall)
O utile pour diagnostiquer mode collapse.
o différent des métriques de classification : calculées a partir d’échantillons (images réelles vs images générées) +
comparaison dans un espace de features
o Piéges : dépendance au dataset de référence, au nombre d’échantillons, et au backbone de features (Inception #
domaine métier)

e Conseil pratique : rapporter au minimum (FID ou KID) + (precision/recall) sur un méme protocole fixe
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Alignement au prompt + similarité perceptuelle (sample-level)

CLIPScore : similarité image-texte via embeddings CLIP (modéle texte + image), pour estimer I'alignement
sémantique (référence-free).

O Limite : CLIPScore peut étre haut avec des images esthétiquement mauvaises (artefacts), donc a combiner avec une

métrique “visuelle”

Human Preference / HPS : score appris a partir de choix humains (pairwise preferences) pour mieux refléter ce que
les humains préferent.
Pour éditions / restorations : LPIPS (distance perceptuelle apprise) utile quand on a une référence “avant/apres” ou
des variantes a comparer.
Pour qualité de reconstruction (plus classique) : MS-SSIM (structure multi-échelle), surtout utile en
compression/restauration.
En text-to-image “open world”, la mesure la plus fiable reste souvent une évaluation humaine structurée (rubric +
pairwise).
Message clé :

O "bon score” # “bonne image” — on garde un ceil sur des défauts connus (anatomie, texte, géométrie)
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Reproductibilité & debug : rendre la génération testable

e Endiffusion, la reproductibilité dépend de : seed, modele exact, scheduler, steps, guidance, résolution, précision
(fp16/bf16)
e Avec Diffusers : passer un torch.Generator au pipeline ; attention, le Generator est “‘consommé” (stateful).
e Protocole simple : sérialiser une config (YAML/JSON) + enregistrer les prompts + seeds + hash/revision du modele
o Debug efficace : ablations controlées (changer 1 paramétre) + sauvegarder les latents intermédiaires (si nécessaire)
e Tests “non-régression” : méme set de prompts/seeds, comparer
O CLIPScore moyen
O FID/KID sur lot
O audit visuel
o  Evaluation humaine reproductible : privilégier pairwise, consignes claires, randomisation, et tracabilité des
prompts/images.
e Anti-pattern : “ca marche sur ma machine” => sans versioning des poids/scheduler, vous ne pouvez pas expliquer une
régression
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Cas d’'usage concrets et patterns
produit
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E-commerce & marketing : “content ops” a grande échelle

e Probléme business : produire beaucoup de variantes visuelles (A/B tests, saisons, pays) sans multiplier les shootings

o Pattern “packshot — scenes” : détourage + remplacement de fond (studio, lifestyle, saisonnier)

e Exemple Shopify : génération/remplacement de backgrounds directement dans I'éditeur média (scene presets +
prompt)

o Pattern produit : générer N variantes, puis sélectionner (humain ou heuristique : netteté, texte parasite, cohérence)

o Extension “site complet” : génération guidée de pages / visuels a partir de keywords (accélére la mise en ligne)

e Evaluation en contexte : KPI online (CTR, conversion), + garde-fous (logos, texte, claims) avant publication

e Risques :incohérences produit (couleur), artefacts “trompeurs” — nécessité d’'un check qualité + tragabilité

Easily generate the perfect background to make your product shine!

Original image

@ Backgrounds generated by BRIA Al
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Suites créatives : intégration au workflow

e Pattern clé : la valeur vient de I'intégration (Photoshop/éditeur Canva/outil temps réel), pas seulement du modele

e Adobe Firefly : positionnement “commercially safe” (données sous licence + domaine public) + pas d’entrainement sur
contenu client

e Canva: “Magic Studio / Magic Media” = génération d'images directement dans I'éditeur (itérations rapides + mise en
page)

O Signal stratégie : acquisition de Leonardo.Ai par Canva (accélérer I'innovation en “visual Al")

¢ NVIDIA Canvas : doodles/segmentation en paysages réalistes (concept exploration, backgrounds)

e Pattern entreprise : modéles custom / brand style (entrainer sur assets internes) pour cohérence visuelle

e Pattern confiance : provenance/étiquetage via Content Credentials / C2PA (métadonnées “tamper-evident”)
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Suites créatives : intégration au workflow

Pattern clé : la val P T TS : lement du modéle
Adobe Firefly : posi o pas d’entrainement sur
contenu client ) Several variants of L .

N . Y. = : Al-Generated Images . .
Canva : “Magic Stugd DNS rapldes + mise en
4.
page) 2.

O Signal straté§z

NVIDIA Canvas : d## WG 2ds)
Pattern entreprise ; . 7 Ll ' - _ ‘ = e visuelle

Pattern confiance & W, e, Al per-evident”)

I Change color

‘\L ,A\"‘ \
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Jeux vidéo / 3D : génération d’assets controlés (textures,
sprites, concept)

Probleme prod : itérer sur énormément d'assets (textures PBR (Physically-Based Rendering), sprites, concepts) avec
contraintes d'IP + cohérence

Exemple Ubisoft La Forge : prototype open-source de diffusion entrainée sur assets internes pour générer des
textures tileables + conditioning (sketch/height maps)

Pattern “artist-in-the-loop” : IA pour exploration/variantes, puis retouche humaine + validation pipeline (PBR, tiling,
channels)

Exemple Unity Muse : génération de textures/sprites dans I'écosysteme Unity, avec discours “useful and ethical”
Exemple Blizzard (reporté) : outil interne “Blizzard Diffusion” pour concept art (assisté, pas forcément livré tel quel)
Pattern technique : controler par inputs structurés (layouts, masques, maps) plutot que “prompt-only”

Point produit : droits & acceptabilité (internes/communautaires) — définir clairement ce qui est “référence”,

”n

“placeholder”, “livrable”
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Industrie / QA / médical : données syntheétiques et rareté des
cas

e Probleme : défauts rares, peu d'images annotées, contraintes de confidentialité => modele de vision sous-entrainé

o Pattern “synthetic defects” : générer des défauts variés (rayures, fissures, manques) + labels parfaits
(segmentation/boxes)

o Exemple Edge Impulse : génération d'images synthétiques labellisées pour manufacturing (défauts simulés)

e Exemple NVIDIA (médical) : génération de données synthétiques pour augmenter diversité / scénarios difficiles

e Pattern d'évaluation : le bon critére = gain downstream (mAP, recall défauts, taux de faux négatifs), pas “images jolies”

e Risque: “synthetic gap” (données trop propres) — domain randomization, calibration, validation sur réel

e Usage diffusion/GAN : génération ciblée (rare cases) + anonymisation partielle, mais audit biais indispensable



Patterns produit transverses : du modele au service “pilotable”

e Pattern UX : templates de prompts + champs structurés (produit, style, fond, lumiére) — réduit variance utilisateur

o Pattern controle : boutons standards (seed, steps, guidance, strength, masque) + presets par tache
(text2img/img2img/inpaint)

o Pattern sélection : “generate — rank — approve” (grille variantes, favoris, history) + logs complets (repro/debug)

e Pattern codt : budgets GPU (steps max, résolution max), batching, files d’attente, priorités (latence vs throughput)

e Pattern conformité : provenance (Content Credentials/C2PA), régles de publication, audit des assets sensibles

e Pattern qualité : tests de non-régression (benchmark prompts internes) + évaluation humaine pairwise sur cas clés

o Pattern sécurité : filtres contenus, “negative prompts” standards, politiques d’'usage (ce qui est autorisé/risqué)
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Conclusion
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A retenir

o VAE: cadre probabiliste + latent exploitable ; stable ; qualité parfois “lissée” ; brique clé (compression) en latent
diffusion

e GAN : sampling one-shot trés net ; mais entrainement min-max instable + risque mode collapse ; trés utile pour
pipelines controlés (image-to-image, textures)

o Diffusion : débruitage itératif ; qualité + diversité + conditionnement texte efficace ; knobs majeurs =
steps/scheduler/CFG/seed

e Checklist “pilotage” : fixer seed — choisir scheduler — régler steps — ajuster guidance/strength — vérifier artefacts
— logguer config

e  Checklist “évaluation” : (FID/KID + precision/recall) sur lot + (CLIPScore) + audit humain pairwise sur prompts clés

e Checklist “prod” : versioning modeles + config dump + non-régression sur benchmark interne +
provenance/credentiels si diffusion externe
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En route vers le TP

81



