
CSC5004/ASR8 — Cloud Computing Architectures

Practical

contain.sh
Namespaces, control groups, overlay filesystem and

networking

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

2021 – 2022
Télécom SudParis

Institut Mines-Télécom & Institut Polytechnique de Paris

1

Part I.
Introduction
1. Overview
Containers are a lightweight form of virtualization at the level of the operating
system (OS). The principle is to expose a virtual, isolated and constrained,
view of the OS to a process. To build the core of a container, you need two
features from the Linux kernel:

namespaces isolation from the OS;
control groups (cgroups) resource limits and monitoring.

Additionally, modern container engines provide higher-level administration
features, among them:

process management spawn a new process in a container;
overlay filesystem filesystem made from read-only, de-duplicated layers;
networking configuration of the isolated network.

On top of this, you can have capabilities to represent applications as con-
tainers, to implement the paradigm of micro-services, but those orchestrating
features are out of the scope of this lesson.

In this practical, you will build a Bash script called contain.sh to run a
command in a container crafted by hand that presents the previously listed fea-
tures, and with minimal configuration (memory and CPU limits, networking…).
You will first setup the environment in part II, and then execute the container’s
command in part III, piling namespaces one by one. Afterwards, part IV will
guide you in applying control groups to the command. At this point, isolation
and limits are done, and it is time to provide an overlay filesystem to the
container in part V, and then networking in part VI.

2. Prerequisite
Containers are built from Linux kernel’s features, so you will need a Linux
installation. In particular, the subject is written for control groups v1. You
can check it by issuing the command ls /sys/fs/cgroup: it should display
at least directories named memory and cpu. You also need to work on an ext4

2

filesystem for features needed to set up the filesystem views of containers. If not
available, you can use an Ubuntu virtual machine from Google Cloud Platform,
but programming directly in the VM might be less convenient.

The practical proposes to write the container engine in Bash, so knowledge
of shell scripting is assumed. Other languages can be used, but the practical
is written to use files, OS and shell facilities. Languages may also provide
(possibly via libraries) more convenient interfaces that you can use at your own
discretion.

Part II.
Setup
In this part, you fetch a container image that will be used in your tests, and
you set cgroups up for future usage.

3. Container image
Managing container images a-la Docker is not a goal of this practical, however
your container will have an overlay filesystem to run in. Thus, it needs a base
image. In this practical, you will use Docker’s image of Python1, that has been
extracted as a static tarball. This way, you can write any example you want
with a Python program, or use its embedded HTTP server implementation.

Information
You do not need it for this practical, but know there are two ways to
extract a Docker image:

1. export the content of a created container with
docker export CONT_NAME | gzip > contimg.tgz;

2. save the content of a local image with
docker image save IMG_NAME | gzip > img.tgz.

In both cases, the content is extracted as a Tar archive to stdout, so
one has to redirect it, e.g. to gzip to compress it.

1Python image on Docker Hub: https://hub.docker.com/_/python/.

3

https://hub.docker.com/_/python/

4. cgroups setup

Jump into your work directory and execute the command in listing 1.

Listing 1: Download extracted Python container image
curl https://stark2.int-evry.fr/mbacou/csc5004/practicals/\
simple-container-engine/python3.tar.xz | tar -xz -C python3

Question 1

What is the role of a container image? How do you think you will use it in
this practical when creating a container?

4. cgroups setup
We assume that the sysfs of the control groups is already mounted by your
system. What you need to do here is to create a cgroup that will act as the
parent of all your containers’ cgroups, and to give your user the rights to
manage cgroups underneath. We will limit the containers on memory and CPU
usage, so we need to create the parent cgroups under the memory and the cpu
controllers.

Information
Control groups v1 are managed as hierarchies: under each resource con-
troller, there is a root cgroup, that contains every process of the system.
All other cgroups are children of this root cgroup, and you can create
children to those cgroups, etc. In addition, children cgroups inherit limits
of their parent cgroup.

Execute the commands in listing 2: the first one creates the parent cgroups
under the memory and the cpu controllers, and the second one sets your current
user as their owner.

Listing 2: Setup control groups
sudo mkdir /sys/fs/cgroup/{memory,cpu}/containers
sudo chown -R $(id -u):$(id -g) /sys/fs/cgroup/{memory,cpu}/containers

4

Part III.
Execute the command in isolation:
namespaces
The starting point is to execute a specified command inside a namespace. You
will use the command unshare to do so.

Information
unshare is a thin wrapper around the syscall of the same name. You can
explore the use of the command with man 1 unshare, and complete this
with man 2 unshare for the documentation of the syscall. The subject
will warn you about pitfalls, however you will have to read the manual to
answer a few questions related to unshare and its behavior.

5. Base running script: contain.sh
Actually, for some namespaces, additional steps will be required to configure
the isolated resources from inside the namespace. Thus, our script contain.sh
will run another script named continit.sh inside the namespaces; the latter
will make the necessary configuration before executing the command given by
the user. This architecture is summarized in fig. 1.

Let’s start by writing the base of contain.sh. It is shown in listing 3.

Listing 3: Base version of contain.sh.
1 #! /usr/bin/bash
2
3 # Flags for the unshare command , completed one namespace at a time
4 UNSHARE_FLAGS=""
5
6 # Note that we fork to background
7 unshare $UNSHARE_FLAGS ./continit.sh "$@" &

As you can see, the central command is unshare, that isolates a command
(thus ”unsharing” the current environment). Its first argument beside flags, is
our script to configure resources from the inside, continit.sh, to which the
argument list, i.e. the user command to run in the container, is passed as-is.
For now, the list of flags for unshare is empty so no namespace is created.

Listing 4 gives the initial code of continit.sh.

5

5. Base running script: contain.sh

Namespaces

Control groups

contain.sh

● Create namespaces
● Create cgroups
● Set overlay FS up
● Set network up

continit.sh
● Configure namespace resources
● Configure overlay FS
● Configure network

Contained command

● Container configuration
● Contained command

unshare + fork exec

Figure 1: Architecture of the simple container engine, contain.sh.

Listing 4: Base version of continit.sh.
1 #! /usr/bin/bash
2
3 # Print the command to run (with a delimiter "!" to show Bash words)
4 cmd=$1
5 shift
6 echo -n "cmd: $cmd"
7 for word in "$@"; do
8 echo -n " ! $word"
9 done

10 echo
11
12 # Replace the current process with the command to run
13 exec "$cmd" "$@"

Question 2

Why do we use exec to run the user’s command? Think of what processes
are spawned in the container, and of their PIDs.

Once both scripts are written (and a chmod u+x contain.sh continit.sh
is done), test them. You can use the command given in listing 5, which is a
good example to show you the effect of each namespace you will add afterwards.

6

6. User namespace

Listing 5: Test command.
./contain.sh \

bash -c 'echo User $(id -u), PID $$ \($(expr $(ps | wc -l) - 4) processes\), \
 hostname $(hostname), $(ip link | grep -c "^[0-9]*:") network interfaces'

Question 3

• Can you identify what namespaces are tested by this command?
• The command calls bash: where is the executed binary located?
• Why is it important to write the command to bash inside single

quotes?

6. User namespace
We begin with the user namespace, because creating other namespaces requires
privileges that are given when creating a user namespace.

Warning

Creating a user namespace without elevated privileges requires a sysctl
configuration knob to be set. This is most probably the case, but you can
check it with sysctl kernel.unprivileged_userns_clone: it must say
that the value is 1. If this is not the case, run the following command:
sudo sysctl kernel.unprivileged_userns_clone=1. Note that this
setting does not survive a reboot.

Add the flags --user --map-root-user to UNSHARE_FLAGS to create the
user namespace. Then, test your scripts again to confirm that the flag had an
effect

Question 4

• What does the --user flag do exactly?
• What does the --map-root-user do? What does it mean in practical

terms?
• What do you expect to see when running the test command?

7

7. Hostname namespace

7. Hostname namespace
Now we add the uts namespace, which is used in practice to isolate the
hostname.

Add the --uts flag to UNSHARE_FLAGS. Then, modify continit.sh to set
the hostname inside the namespace (use the command hostname) with the
value given as its first argument, and update contain.sh to pass the hostname
to it (the hostname should also become an argument of contain.sh).

Test your scripts again; don’t forget to pass the hostname as an argument to
contain.sh.

Question 5

What do you expect to see when running the test command?

8. PID namespace
Now we add the pid namespace.

Add the --pid --fork flags to UNSHARE_FLAGS. The second flag tells
unshare to fork to run the given command. This is necessary to make the
command the “init” process (PID 1) of the namespace.

Warning

If you forget the --fork flag, you will get the following error: “bash: fork:
Cannot allocate memory”.

Test your scripts again.

Question 6

• Why is it necessary to have an “init” (PID 1) process in the container?
Think of the special role of PID 1 in UNIX systems.

• What do you expect to see when running the test command?

9. Network namespace
Now we add the net namespace. Note however that we won’t be doing any
networking configuration until part VI.

Add the --net flag to UNSHARE_FLAGS.
Test your scripts again.

8

10. Mount namespace

Question 7

What do you expect to see when running the test command?

10. Mount namespace
Finally, we add the mount namespace. Despite not integrating the overlay
filesystem for now (until part V), this is the most complex namespace to set
up.

Start by adding the --mount to UNSHARE_FLAGS, and run the test command.

Question 8

You will not see any difference yet: why is that so? Take the time to
understand what the mount namespace isolates exactly.

As said just before, we ignore the overlay filesystem for now. To emulate this,
in contain.sh, we will create a folder for the container and bind-mount the
folder of the image to this new folder (note that we need superuser privileges to
use mount). The image (or rather, its folder) should now become an argument to
contain.sh. The path to this folder is passed to continit.sh in the unshare
call. A summary of these modifications is given in listing 6.

Listing 6: Container filesystem setup (without overlay filesystem) in
contain.sh.

1 hostname=$1
2 image=$2
3 shift 2
4 # ...
5 # The name of the container 's FS directory is built from the given hostname and
6 # image name
7 contfs=$image-$hostname
8 # Use --parents to ignore error when directory exists
9 mkdir --parents "$contfs"

10 # Simulate mounting the overlay FS by bind-mounting the image directory
11 sudo mount --rbind "$image" "$contfs"
12
13 unshare $UNSHARE_FLAGS ./continit.sh "$hostname" "$contfs" "$@" &

Then, the main work is done in continit.sh. In this script, we change the
working directory to the container’s filesystem and mount special filesystems
(proc, sysfs and tmpfs), before using chroot to change the root of the running
process to the current directory. This is shown in listing 7.

9

11. Summary: namespace isolation

Information
chroot (a wrapper command and a syscall) changes the apparent root
directory of the process. In some way, it is a limited form of containerization,
and is still used to implement complete containerization solutions.

Listing 7: Container filesystem setup in continit.sh.
1 hostname=$1
2 fs=$2
3 shift 2
4 # ...
5 # Change current directory to the container 's filesystem
6 cd "$fs"
7 # Mount special filesystems
8 mount -t proc proc proc
9 mount -t sysfs none sys

10 mount -t tmpfs none tmp
11
12 # Execute chroot and make it execute the container 's command
13 exec chroot . "$cmd" "$@"

Test your scripts again (don’t forget to add the image name “python3” to
the command line) by running the command ls /home inside your container.

Question 9

• Why is the container’s filesystem mounted from contain.sh?
• Why are the special filesystems proc, sysfs and tmpfs mounted

from continit.sh?
• What do you expect to see when running the new test command

ls /home?

To finish, clean up by unmounting the container’s filesystem with sudo umount.

11. Summary: namespace isolation
As a reference, listings 8 and 9 give examples of the scripts you should have at
this point.

Listing 8: contain.sh: namespace isolation.
1 #! /usr/bin/bash
2
3 hostname=$1
4 image=$2
5 shift 2
6

10

11. Summary: namespace isolation

7 # Flags for the unshare command , completed one namespace at a time
8 UNSHARE_FLAGS="--user --map-root-user\
9 --uts\

10 --pid --fork\
11 --net\
12 --mount"
13
14 # The name of the container 's FS directory is built from the given hostname and
15 # image name
16 contfs=$image-$hostname
17 # Use --parents to ignore error when directory exists
18 mkdir --parents "$contfs"
19 # Simulate mounting the overlay FS by bind-mounting the image directory
20 sudo mount --rbind "$image" "$contfs"
21
22 # Note that we fork to background
23 unshare $UNSHARE_FLAGS ./continit.sh "$hostname" "$contfs" "$@" &

Listing 9: continit.sh: namespace isolation.
1 #! /usr/bin/bash
2
3 hostname=$1
4 fs=$2
5 shift 2
6
7 cmd=$1
8 shift
9 echo -n "cmd: $cmd"

10 for word in "$@"; do
11 echo -n " ! $word"
12 done
13 echo
14
15 # HOSTNAME
16 hostname "$hostname"
17
18 # MOUNT
19 # Change current directory to the container 's filesystem
20 cd "$fs"
21 # Mount special filesystems
22 mount -t proc proc proc
23 mount -t sysfs none sys
24 mount -t tmpfs none tmp
25
26 # Replace the current process with the command to run
27 # Execute chroot and make it execute the container 's command
28 exec chroot . "$cmd" "$@"

Now that isolation is set up, the next step is to put resource limits on the
container using cgroups.

11

Part IV.
Put resource limits on the
command: control groups
Control groups (cgroups) are controlled from the shell via the special filesystem
cgroup, that is usually mounted by your distribution under /sys/fs/cgroups.
The interface consists in:

• creating directories with mkdir2;
• displaying file content with cat;
• writing to files with echo value > controlfile.

All the work in this part is done in contain.sh, before calling unshare.
This script will now take as additional parameters the memory and CPU

limits, expressed respectively in MB and in percentage of CPU.

12. Memory control group
First, we must create the container’s cgroup, using mkdir under the parent
cgroup created in section 4. Then, we write the memory limit to the cgroup’s
file memory.limit_in_bytes.

This will create and set up the cgroup. All that is left to do, is to jump into
the cgroup by writing a PID in the cgroup’s file cgroup.procs. We will write
the PID of the current process, i.e. of contain.sh, so that the call to unshare,
and its fork to continit.sh that then executes chroot before executing the
user command, happen in the cgroup from the beginning.

We propose the addition of code shown in listing 10.

Listing 10: Memory control group setup in contain.sh.
1 # Parent cgroup of our containers ' cgroups
2 PARENT_CGROUP=containers
3 # ...
4 memory_MB=$1
5 shift 1
6 # Convert memory limit from MB to B
7 memory=$(expr "$memory_MB" '*' 1024 '*' 1024)
8 # ...

2As you did in section 4 when you created parent cgroups under the memory and cpu
controllers.

12

13. CPU control group

9 memory_cgroup="/sys/fs/cgroup/memory/$PARENT_CGROUP/$hostname"
10 mkdir "$memory_cgroup"
11 echo $memory > "$memory_cgroup/memory.limit_in_bytes"
12
13 echo $$ > "$memory_cgroup/cgroup.procs"

13. CPU control group
The same steps are to be followed to set the CPU cgroup up.

To apply a limit, the file to write is cpu.cfs_quota_us: it sets the quota of
a scheduler timeslice (in µs) allocated to the processes in the cgroup.

Information
The files cpu.cfs_period_us and cpu.cfs_quota_us control the sched-
uler of the Linux kernel, called Completely Fair Scheduler (CFS). The
former sets the period of scheduling, in µs, while the latter sets the amount
of time, in µs, allocated to the processes during a timeslice.

Question 10

What are the effects of setting:

• a shorter or longer scheduling period?
• a lower or higher quota allocation?

Also, what are the downsides?

The interface of our script contain.sh asks for a percentage of CPU, so this
value must be converted to a quota in µs with a simple computation shown in
listing 11 that reads the scheduler allocation period from cpu.cfs_period_us.

Listing 11: Conversion of CPU allocation in contain.sh.
1 # ...
2 memory_MB=$1
3 cpu_perc=$2
4 shift 2
5 # ...
6 cpu_cgroup="/sys/fs/cgroup/cpu/$PARENT_CGROUP/$hostname"
7 mkdir "$cpu_cgroup"
8 echo $(expr "$cpu_perc" '*' $(cat "$cpu_cgroup/cpu.cfs_period_us") / 100) > \
9 "$cpu_cgroup"/cpu.cfs_quota_us

10
11 echo $$ > "$cpu_cgroup/cgroup.procs"

13

14. Summary: resource limits

14. Summary: resource limits
Test your script. Don’t forget that you now need to pass the memory and CPU
limits to contain.sh. You can try with the command shown in listing 12 to
check that the containerized process indeed runs in the cgroups.

Listing 12: Test command for cgroups.
./contain.sh mycont python3 128 50 bash -c 'cat /proc/self/cgroup | grep mycont'

Clean up by removing the container’s cgroups with the rmdir command, as
well as unmounting the mounted container filesystem like before.

As a reference, listing 13 gives an example of the script contain.sh you
should have at this point.

Listing 13: contain.sh: resource limits.
1 #! /usr/bin/bash
2
3 # Parent cgroup of our containers ' cgroups
4 PARENT_CGROUP=containers
5
6 hostname=$1
7 image=$2
8 shift 2
9 memory_MB=$1

10 cpu_perc=$2
11 shift 2
12 # Convert memory limit from MB to B
13 memory=$(expr "$memory_MB" '*' 1024 '*' 1024)
14
15 # Flags for the unshare command , completed one namespace at a time
16 UNSHARE_FLAGS="--user --map-root-user\
17 --uts\
18 --pid --fork\
19 --net\
20 --mount"
21
22 # The name of the container 's FS directory is built from the given hostname and
23 # image name
24 contfs=$image-$hostname
25 # Use --parents to ignore error when directory exists
26 mkdir --parents "$contfs"
27 # Simulate mounting the overlay FS by bind-mounting the image directory
28 sudo mount --rbind "$image" "$contfs"
29
30 memory_cgroup="/sys/fs/cgroup/memory/$PARENT_CGROUP/$hostname"
31 mkdir "$memory_cgroup"
32 echo $memory > "$memory_cgroup/memory.limit_in_bytes"
33
34 cpu_cgroup="/sys/fs/cgroup/cpu/$PARENT_CGROUP/$hostname"
35 mkdir "$cpu_cgroup"
36 echo $(expr $cpu_perc '*' $(cat "$cpu_cgroup/cpu.cfs_period_us") / 100) > \
37 "$cpu_cgroup"/cpu.cfs_quota_us
38
39 echo $$ > "$memory_cgroup/cgroup.procs"
40 echo $$ > "$cpu_cgroup/cgroup.procs"

14

41
42 # Note that we fork to background
43 unshare $UNSHARE_FLAGS ./continit.sh "$hostname" "$contfs" "$@" &

With this, the process is now properly containerized:3 it is isolated from
the host system, and resource limits are applied. Let’s move forward with
the implementation of common container engine features: usage of an overlay
filesystem, and basic networking configuration.

Part V.
Reusable container images: overlay
filesystem
In this part, you will replace bind-mounting the container image by mounting
it in a proper overlay filesystem. In other words, the container will now run in
a filesystem built as layers.

Question 11

• What is the container image in the container’s filesystem layers?
• How are filesystem layers used in container images?
• How are filesystem layers used when running a container?
• What happens when a containerized process writes to a file?
• Specifically, why is it slow for a containerized process to write to a

file provided by its image?

Creating an overlay filesystem is done by calling the mount command to
mount a filesystem of type overlay. Mounting it actually involves four different
directories:

1. the lowerdir, which contains the immutable base of the overlay filesys-
tem;

2. the upperdir, which contains files that differ from the base layer;
3. the workdir, which serves as a working directory for the overlay filesystem

driver, it has no correlation with the concepts of containerization seen in
the lecture,

3Except that a few namespaces and resource limits are missing, but those are trivial to add
by following the same procedures.

15

4. the mountpoint, i.e., where to actually mount the overlay filesystem for
use by the container.

Question 12

How do the lowerdir, upperdir and mountpoint map to the concepts of
a running container filesystem as seen in the lecture?

The mountpoint folder will constitue the container’s isolated root. Note that
the path to the container’s filesystem that is passed to continit.sh must be
changed to point to the overlay filesystem mount point.

An example of commands to set the overlay filesystem up, replacing the
previous commands in contain.sh to bind-mount the container’s image, is
given in listing 14. Nothing needs to be done in continit.sh.

Listing 14: Overlay filesystem setup in contain.sh.
1 # ...
2 # The name of the container 's FS directory is built from the given hostname and
3 # image name
4 contfs="$image-$hostname"
5 # Use --parents to ignore error when directories exist
6 mkdir --parents "$contfs"/{.diff,.workdir,run}
7 # Mount the overlay FS under the container 's directory , in "run"
8 sudo mount -t overlay overlay \
9 -o lowerdir="$image",upperdir="$contfs/.diff",workdir="$contfs/.workdir" \

10 "$contfs/run"
11 # ...
12 unshare $UNSHARE_FLAGS ./continit.sh "$hostname" "$contfs/run" "$@" &

Information
It is possible to pile overlay filesystems up, where the mount point (the
run layer) of a filesystem is used as the lowerdir of another one. With
this method, you can achieve image layers just like Docker.

Test your scripts. You can check the proper usage of the overlay filesystem
with the commands in listing 15.

Listing 15: Test command for overlay filesystem.
Create a file in the container , and check its presence
./contain.sh mycont python3 128 50 bash -c 'touch testfile; ls'
Check the original image to see that the file is not present
ls python3

16

Clean up by removing cgroups as before, and unmounting the overlay filesys-
tem with sudo umount python3-mycont/run.

Part VI.
Communicating with containers:
networking
The final part of our minimal container engine is to give network capabilities
to the container. There are two halves:

1. network configuration of the container;
2. network access to the container.

To achieve them, we will use virtual ethernet devices (veth) and a bridge.

Information
This is the networking mode “bridge” in the Docker world.

Warning

The practical does not cover network access to the container from outside
the host. To achieve this, one would create NAT routing rules with iptables
to route packets between the container and the physical network device,
which is a general network configuration task, and is not linked to creating
a container engine.

15. Network configuration: virtual Ethernet
Information
veth devices are pairs of virtual Ethernet devices provided by the Linux
kernel: packets sent to one end are received on the other end, and vice-versa.

17

15. Network configuration: virtual Ethernet

Question 13

How do you use a veth pair to provide networking to a container? The
rough idea is to use it to “traverse” the network namespace of a container.

veth pairs require basic IP configuration; contain.sh is to be modified to
expect a new argument: the container’s IP address. veth management and
IP configuration is done by the command ip (note that we need superuser
privileges to use this command).

Notice that a part of the network configuration must be done from inside the
container (setting the IP address and the route), i.e. by continit.sh. However,
the veth device will be inserted into the network namespace after calling
unshare and starting the execution of continit.sh, because the namespace
must exist; and the PID of its first process (as seen from outside the PID
namespace) is required to insert the device into it. Thus, some synchronization
is required to have the script wait until the interface is available.

To this end, we will use a named pipe with mkfifo, and redirect a file
descriptor (FD) to it. When unshare is called and continit.sh is forked, the
latter retains the open FDs. Thus, it can block on reading the FD, and receive
the name of the container’s veth device as well as its IP address.

To summarize:

• in contain.sh:
1. get a new argument: the container’s IP address,
2. redirect a file descriptor to a pipe to be used for cross-namespace

communication,
3. launch continit.sh,
4. create the veth pair and insert one end inside the container,
5. send the container its name and its IP address via the pipe;

• in continit.sh:
1. block reading from the pipe,
2. configure the veth end inside the container.

An example of the scripts updates is given in listings 16 and 17.

Listing 16: veth configuration in contain.sh.
1 ipaddr=$1
2 shift 1
3 # ...
4 # Create a named pipe for cross -namespace communication
5 mkfifo "$hostname.pipe"

18

16. Network access to the container

6 # Redirect file descriptor 3 to the pipe
7 exec 3<>"$hostname.pipe"
8 # ...
9 unshare $UNSHARE_FLAGS ./continit.sh "$hostname" "$contfs/run" "$@" &

10 continit_pid=$!
11
12 # vethOutXXX is the end on the host, vethInXXX is the end in the container
13 sudo ip link add "vethOut$hostname" type veth peer name "vethIn$hostname"
14 sudo ip link set "vethOut$hostname" up
15 # Insert the container 's end inside the net namespace
16 sudo ip link set "vethIn$hostname" netns $continit_pid
17
18 echo "vethIn$hostname" "$ipaddr" >&3
19 rm "$hostname.pipe"

Listing 17: veth configuration in continit.sh.
1 # ...
2 # Block waiting for veth pair end and IP address
3 read vethitf ipaddr <&3
4
5 # Notice that sudo is not needed here: we are mapped to the root user
6 ip link set "$vethitf" up
7 ip addr add $ipaddr dev "$vethitf"
8 # Set the default route through the veth device
9 ip route add default dev "$vethitf"

10 #...

Test your scripts. Don’t forget that you now need to pass an IP address
(complete with a netmask length, e.g. 192.168.42.10/24) to contain.sh.
Confirm that the container now has a network interface configured with the
given IP address. An example of a test command is given in listing 18.

Listing 18: Test command for veth configuration.
./contain.sh mycont python3 128 50 192.168.42.10/24 ip addr

Information
veth pairs are automatically destroyed when the namespace that contains
one end is destroyed.

16. Network access to the container
Finally, let’s set up network access to the container. This is very simple: you
will create a permanent bridge on the host.

19

16. Network access to the container

Information
Bridges can be seen as virtual switches provided by the Linux kernel: they
route packets to network interfaces based on IP addresses.

On container creation, the end of the veth pair that is left on the host is
added to the bridge. This will provide access to the container from the host, as
well as mutual access between containers on the same bridge.

Listing 19 gives the commands to set up the bridge from your shell.

Warning

You only have to run the commands in listing 19 once, in your terminal,
to set up the bridge. After the practical, you can remove the bridge with
ip link delete contbr0 type bridge.

Listing 19: Bridge configuration on the host.
The bridge is named contbr0
sudo ip link add name contbr0 type bridge
sudo ip link set contbr0 up
Give an IP address to the bridge
sudo ip addr add 192.168.42.1/24 dev contbr0

To add the end of the veth pair to the bridge, update contain.sh with the
command given in listing 20.

Listing 20: veth and bridge configuration in contain.sh.
1 # ...
2 sudo ip link set "vethOut$hostname" master contbr0

Once the bridge is set up on the host, test your scripts. For example, you
can run two containers trying to ping each other. A more interesting example
is to run a web server (the one provided by Python in its standard library) and
then try to send a request to it from the host. This is shown in listing 21.

Listing 21: Test command for network access.
./contain.sh myserver python3 128 50 192.168.42.10/24 python -m http.server
Once returned to the shell
wget 192.168.42.10:8000
Or use your web browser

Warning

We didn’t see how to kill a contained process. When testing networking
with a ping command or with the Python server, you can stop a container

20

17. Summary: network configuration

by sending SIGKILL to its init process. To get the latter’s PID, you can
use pgrep.

Question 14

• By extension of how you connected two containers to each other
trying to ping each other, how would you handle networking isolation
between groups of containers? In other words, how would you have
containers A and B connected to each other, and C and D connected
to each other, but with A and B completely air gapped from C and
D?

• How could you have a setup where A is connected to B, B is connected
to C, but A and C are still isolated at the network level?a

• The networking model of Kubernetes is to have containers of a pod
share networking capabilities. How do you think it is implemented?
There are two possibilities, but only one is actually used by Kuber-
netes, that involves only a namespace trick.

• You implemented the networking mode “bridge” of Docker. How
would you implement the networking modes “none” (i.e., absolutely
no networking) and “host” (i.e., absolutely no networking isolation
between the container and the host)?b

aInterestingly, this setup, which can be seen as a proxy pattern, cannot be easily
achieved with Docker.

bThe networking mode “overlay” of Docker requires the set up of an technology of
networking overlay, which ends up creating a virtual interface that you simply add
to a container’s network namespace. This is out of the scope of this practical, but
also not really interesting, and requires two host machines to be demonstrated.

17. Summary: network configuration
As a reference, listings 22 and 23 give examples of the scripts you should have
at this point. This is their final version.

Listing 22: contain.sh: network configuration.
1 #! /usr/bin/bash
2
3 # Parent cgroup of our containers ' cgroups
4 PARENT_CGROUP=containers
5
6 hostname=$1
7 image=$2

21

17. Summary: network configuration

8 shift 2
9 memory_MB=$1

10 cpu_perc=$2
11 shift 2
12 ipaddr=$1
13 shift 1
14
15 # Convert memory limit from MB to B
16 memory=$(expr "$memory_MB" '*' 1024 '*' 1024)
17
18 # Flags for the unshare command , completed one namespace at a time
19 UNSHARE_FLAGS="--user --map-root-user\
20 --uts\
21 --pid --fork\
22 --net\
23 --mount"
24
25 # Create a named pipe for cross -namespace communication
26 mkfifo "$hostname.pipe"
27 # Redirect file descriptor 3 to the pipe
28 exec 3<>"$hostname.pipe"
29
30 # The name of the container 's FS directory is built from the given hostname and
31 # image name
32 contfs=$image-$hostname
33 # Use --parents to ignore error when directories exist
34 mkdir --parents "$contfs"/{.diff,.workdir,run}
35 # Mount the overlay FS under the container 's directory , in "run"
36 sudo mount -t overlay overlay \
37 -o lowerdir="$image",upperdir="$contfs/.diff",workdir="$contfs/.workdir" \
38 "$contfs/run"
39
40 memory_cgroup="/sys/fs/cgroup/memory/$PARENT_CGROUP/$hostname"
41 mkdir "$memory_cgroup"
42 echo $memory > "$memory_cgroup/memory.limit_in_bytes"
43
44 cpu_cgroup="/sys/fs/cgroup/cpu/$PARENT_CGROUP/$hostname"
45 mkdir "$cpu_cgroup"
46 echo $(expr "$cpu_perc" '*' $(cat "$cpu_cgroup/cpu.cfs_period_us") / 100) > \
47 "$cpu_cgroup/cpu.cfs_quota_us"
48
49 echo $$ > "$memory_cgroup/cgroup.procs"
50 echo $$ > "$cpu_cgroup/cgroup.procs"
51
52 # Note that we fork to background
53 unshare $UNSHARE_FLAGS ./continit.sh "$hostname" "$contfs/run" "$@" &
54 continit_pid=$!
55
56 # vethOutXXX is the end on the host, vethInXXX is the end in the container
57 sudo ip link add "vethOut$hostname" type veth peer name "vethIn$hostname"
58 sudo ip link set "vethOut$hostname" up
59 # Insert the container 's end inside the net namespace
60 sudo ip link set "vethIn$hostname" netns $continit_pid
61 sudo ip link set "vethOut$hostname" master contbr0
62
63 echo "vethIn$hostname" "$ipaddr" >&3
64 rm "$hostname.pipe"

22

Listing 23: continit.sh: network configuration.
1 #! /usr/bin/bash
2
3 hostname=$1
4 fs=$2
5 shift 2
6
7 cmd="$1"
8 shift
9 echo -n "cmd: $cmd"

10 for word in "$@"; do
11 echo -n " ! $word"
12 done
13 echo
14
15 # HOSTNAME
16 hostname "$hostname"
17
18 # MOUNT
19 # Change current directory to the container 's filesystem
20 cd "$fs"
21 # Mount special filesystems
22 mount -t proc proc proc
23 mount -t sysfs none sys
24 mount -t tmpfs none tmp
25
26 # Block waiting for veth pair end and IP address
27 read vethitf ipaddr <&3
28
29 # Notice that sudo is not needed here: we are mapped to the root user
30 ip link set $vethitf up
31 ip addr add $ipaddr dev $vethitf
32 # Set the default route through the veth device
33 ip route add default dev $vethitf
34
35 # Execute chroot and make it execute the container 's command
36 exec chroot . "$cmd" "$@"

Congratulations! You wrote a simple container engine with two Bash scripts.

Part VII.
Conclusion
In this practical, you manipulated all the low-level features that, once put
together one by one, constitue a very functional container engine: isolation,
limits, overlay filesystem and networking. This demonstrates the work achieved
by industry-ready container engines to bring container technology to the public.

To go further, you can discover the interfaces to those features that are
available to programming languages. For example, in C, you use syscalls to

23

create namespaces and mount the overlay filesystem, and it would certainly
be easier to build a nicer interface to your container engine. Beside the fact
that a few namespaces and cgroups are missing, your engine also lacks proper
container management: can you list running containers? How can you stop a
container? How would you handle the destruction of its resources?

24

	Introduction
	Overview
	Prerequisite

	Setup
	Container image
	cgroups setup

	Execute the command in isolation: namespaces
	Base running script: contain.sh
	User namespace
	Hostname namespace
	PID namespace
	Network namespace
	Mount namespace
	Summary: namespace isolation

	Put resource limits on the command: control groups
	Memory control group
	CPU control group
	Summary: resource limits

	Reusable container images: overlay filesystem
	Communicating with containers: networking
	Network configuration: virtual Ethernet
	Network access to the container
	Summary: network configuration

	Conclusion

