
CSC5004/ASR8 — Cloud Computing Architectures

Lab work

Simple Container Engine
Namespaces, control groups, overlay filesystem and

networking

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

2022 – 2023
Télécom SudParis

Institut Mines-Télécom & Institut Polytechnique de Paris

1

Part I.
Introduction
1. Overview
Containers are a lightweight form of virtualization at the level of the operating
system (OS). The principle is to expose a virtual, isolated and constrained,
view of the OS to a process. To build the core of a container, you need two
features from the Linux kernel:

namespaces isolation from the OS;
control groups (cgroups) resource limits and monitoring.

Additionally, modern container engines provide higher-level administration
features, among them:

process management spawn a new process in a container;
overlay filesystem filesystem made from read-only, de-duplicated layers;
networking configuration of the isolated network.

In this lab, you will build a simple container engine as a command line
program named contain. It will run a command in a container crafted by
hand from namespaces and cgroups. It will also have its own isolated overlay
filesystem, and networking facilities.

You first set up the environment in part II. Then, the lab is structured into
adding namespaces in part III, and cgroups in part IV. At this point, isolation
and limits are done, and you make an overlay filesystem for the container in
part V. Networking in finally done in part VI.

2. Prerequisite
Containers are built from Linux kernel’s features, so you will need a Linux
installation. You also need to work on an ext4 filesystem for the features
needed to set up the filesystem views of containers. If not available, you can
use an Ubuntu virtual machine from Google Cloud Platform, but programming
directly in the VM may be less convenient.

A hard dependency for the container engine is libnl, to provide networking
to the containers.1 The libnl library is used to interact with the netlink API of

1libnl website: https://www.infradead.org/~tgr/libnl/.

2

https://www.infradead.org/~tgr/libnl/

the Linux kernel, that manages networking. Most Linux distributions feature a
development package for it (as listed on its website), so you can install it via your
package manager. For instance: sudo apt install libnl-route-3-dev.

Warning

Make sure to install a development package (i.e., a package with develop-
ment headers) of libnl with the “route” module.

The lab guides you to write the container engine in C, so knowledge of the
language for systems programming is assumed. Writing the container engine
as a shell script is also possible,2 or in any other language that provides access
to system facilities (possibly via libraries).

Part II.
Setup
In this part, you download a container image that will be used in your tests;
and you get, and learn about the development environment for this lab.

3. Container image
Managing container images a-la Docker is not a goal of this lab, however your
container will have an overlay filesystem to run in. Thus, it needs a base
image. In this lab, you will use Docker’s image of Debian Bullseye3 (the stable
version at the time of writing), that has been extracted as a static archive.
It means that you will have access to most commands available to a base
Debian installation (e.g., that includes Python) to test your progress, as will
be suggested by the lab subject.

Information
You do not need it for this lab, but know there are two ways to extract a

2In fact, the previous version of the lab was written in shell, and can be found here:
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/simple-con
tainer-engine_2021.pdf.

3Debian image on Docker Hub: https://hub.docker.com/_/debian/.

3

https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/simple-container-engine_2021.pdf
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/simple-container-engine_2021.pdf
https://hub.docker.com/_/debian/

4. Development environment

Docker image:

1. export the content of a created container with
docker export CONT_NAME | xz > contimg.tar.xz;

2. save the content of a local image with
docker image save IMG_NAME | xz > img.tar.xz.

In both cases, the content is extracted as a Tar archive to stdout, so
one has to redirect it, e.g. to xz to compress it.

Move to your work directory, and execute the command in listing 1.

Listing 1: Download the Debian container image.
wget https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/\
simple-container-engine/debian-stable+python+iproute2.tar.xz

Question 1

What is the role of a container image? How do you think you will use its
content in this lab?

4. Development environment
You will write C code in prepared source files. To get these, execute the
command in listing 2 in your work directory.

Listing 2: Download and extract the sources.
curl https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/\
simple-container-engine.tgz | tar --extract --gzip

You now have 6 files in your directory:

"contain.c" the main source file of the container engine’s command contain,
you write code there;

"libcontain.c" a helper library for the main program, you also write code
there;

"libcontain.h" the header file of the helper library, you don’t have anything
to write there;

"Makefile" a Makefile (to use with make TARGET) to setup and reset the
environment, build the container engine, and run test commands;

"setup.sh", "reset.sh" scripts to respectively set up the environment once,
and reset the environment between runs.

4

5. General instructions

To set up the environment, execute the command in listing 3.

Information
The make target setup runs the script "setup.sh" that:

1. extracts the container image;
2. enables the cgroup controllers cpu and memory in the root cgroup for

the child cgroups;
3. creates a parent cgroup for all the containers that your engine spawns;
4. enables the cgroup controllers cpu and memory in the above parent

cgroup for the child cgroups (i.e., the containers);
5. creates and sets up a network bridge (i.e., a virtual switch) to provide

networking to the containers.

Listing 3: Set up the environment.
make setup

5. General instructions
As explained above, you work in "contain.c" and "libcontain.c", where you
replace placeholder sections of code delimited by the marks shown in listing 4.
The code sections indicate the related question(s) in the lab subject.

Listing 4: Illustration of code sections to replace.
/*** STUDENT CODE BELOW (qN, qM...) ***/

return 0;

/*** STUDENT CODE ABOVE (qN, qM...) ***/

In those sections, comments recapitulate what you have to code there. They
also include the functions that you are expected to use to answer the question,
as well as references to their documentations. You are expected to read them
to understand how to use the indicated functions. The references you will find
in these comments are:

PAGE(SECTION) read the manual page PAGE in the section SECTION with
man SECTION PAGE;

libcontain not actually documentation, this reference means that the func-
tion is implemented in "libcontain.c" (and it may have an instructive
documentation comment);

5

plain reference the name of a macro defined in "libcontain.h" or "contain.c"
that you probably have to use here;

cgroup doc a section of the Linux kernel documentation about cgroups, espe-
cially the memory and CPU controllers at https://www.kernel.org/d
oc/html/latest/admin-guide/cgroup-v2.html;

libnl read the documentation for libnl at https://www-inf.telecom-sud
paris.eu/COURS/CSC5004/libnl/, in particular the “Routing Family
Library (libnl-route)” section, and its API reference at https://www-i
nf.telecom-sudparis.eu/COURS/CSC5004/libnl/api/group__rtnl
.html.4

To complete the code sections, you should begin by understanding what the
enclosing function is doing. Read its preamble, i.e., the prepared variables
above the code section you have to complete: you will probably have to use
them. You are also advised to get familiar with the structure that represents a
container: struct container; and its sub-structures.

Finally, when writing code, you should always check the return value of the
function you use. Their documentation will tell you exactly how they behave,
but in general terms they return -1 on error. Then, you can use the following
macros, defined in "libcontain.h", to handle the error:

raise_err print an error message, print an automatic description of the error
code from the previous function,5 and immediately return -1;

raise_msg same as raise_err but without printing the automatic description
of the error code, you will prefer it when dealing with libnl functions.6

Part III.
Execute the command in isolation:
namespaces
The starting point of your container engine, is to execute a specified command
inside a namespace. You use the system call clone to create a subprocess
directly in namespaces. More precisely, you use the clone3 variant that is
more modern and offers the required features.

4You will encounter uses of libnl when managing the containers’ network.
5This is errno; you can learn more about errno at errno(3).
6libnl does not use errno, so raise_err would always prints an unrelated error message.

6

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/libnl/
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/libnl/
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/libnl/api/group__rtnl.html
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/libnl/api/group__rtnl.html
https://www-inf.telecom-sudparis.eu/COURS/CSC5004/libnl/api/group__rtnl.html

6. Warmup: print and execute the containerized command

6. Warmup: print and execute the containerized
command

Coding task 1

Write the function print_container_cmd, that prints the command to
run in the container, and its arguments.

To test your code, execute make run-namespaces. You should see the
following output:

sudo "./contain" "mycont" "debian-stable+python+iproute2" "1024" "100" "192.168.42.10/24" bash
-c 'echo User $(id -u), PID $$ \($(expr $(echo /proc/[0-9]* | wc -w) - 4)

processes\), \
hostname $(hostname), $(ip link | grep -c "^[0-9]*:") network interfaces'

running container "mycont" from image "debian-stable+python+iproute2"
container command: "bash" "-c" "echo User $(id -u), PID $$ \($(expr $(echo /proc/[0-9]*

| wc -w) - 4) processes\), \
hostname $(hostname), $(ip link | grep -c "^[0-9]*:") network interfaces"

Question 2

• Identify which namespaces are tested by this command.
• The command calls bash: where is the executed binary located?

Coding task 2

Execute the command to containerize.
cont_args is already prepared to be used by the execvp system call

suggested in the code block to fill.

You should obtain additional output when running make run-namespaces:

User 1000, PID 58050 (202 process), hostname BacomputerW-MKIII, 4 network interfaces

You may have different numbers and hostname; after adding the namespaces
to build a container (in the following sections), the output will change to reflect
the new state of the container.

7

7. Execute the command in a subprocess

7. Execute the command in a subprocess
To start containerizing the command, start the subprocess of the container.

Coding task 3

Complete clone_to_container to call the clone3 system call.
For this question, only the field exit_signal of clone_args is set.
Hint: the glibc does not have a wrapper for clone3, so you have to call

it using syscall.

Question 3

What happens to the execution flow of your process when calling clone?

There are no namespace for now, because you have not set any flags for the
clone system call (via the macro CLONE_NAMESPACE_FLAGS).

Coding task 4

In the code executed by the parent process, wait for the termination of the
child container process, using the already declared variable wstatus.

You should have the output below when running make run-namespaces:

container started as process 10151

User 1000, PID 10151 (210 process), hostname BacomputerW-MKIII, 4 network interfaces

container process exited normally with code 0
container "mycont" terminated

8. User namespace
Start with the user namespace. Creating other namespaces requires privileges
that are given when creating a user namespace.

Warning

Creating a user namespace without elevated privileges requires a sysctl
configuration. Check with sysctl kernel.unprivileged_userns_clone:
it must say that the value is 1. If this is not the case, run the following

8

9. Hostname namespace

command: sudo sysctl kernel.unprivileged_userns_clone=1. Note
that this setting does not survive a reboot.

To create the container subprocess in a user namespace, it is enough to set
the corresponding flag in the clone_args structure for the clone system call.
However, it does not change your user ID inside the container, which means
that you will execute the containerized command under a user ID that maps
to nothing inside the container. So a second step is to map the root user (user
ID 0) inside the container, to your user ID.

Coding task 5

Complete the macro CLONE_NAMESPACE_FLAGS to create a user namespace,
and use it to set the field flags in the clone_args structure.

Then, complete cgroup_map_root_user in "libcontain.c" to map the
root user in the container.

Finally, call cgroup_map_root_user in finalize_host in "contain.c".

Question 4

What change in the output do you expect when running the test command
make run-namespaces? Be specific.

9. Hostname namespace
Now add the uts namespace, which is used in practice to isolate the hostname.
Then set the container’s hostname.

Coding task 6

Complete the macro CLONE_NAMESPACE_FLAGS to create a UTS namespace.
Then, complete finalize_cont to set the hostname of the container.

Question 5

• What change in the output do you expect when running the test
command make run-namespaces?

• Why is the function finalize_cont called from within the container?

9

10. PID namespace

10. PID namespace
Now add the pid namespace. With this, clone will create a new process
hierarchy starting with the PID 1. However, the processes on the host will
remain visible to the container for now.

Coding task 7

Complete the macro CLONE_NAMESPACE_FLAGS to create a PID namespace.

Question 6

• Why is it necessary to have an “init” (PID 1) process in the container?
Think of the special role of PID 1 in UNIX systems.

• Which process (what program) has got PID 1 in your container?
• What do you expect to see when running the test command? Read

carefully the containerized test command, and explain.

11. Network namespace
Now add the net namespace. Note however that you won’t be doing any
networking configuration until part VI.

Coding task 8

Complete the macro CLONE_NAMESPACE_FLAGS with a network namespace.

Question 7

What do you expect to see when running the test command?

12. Mount namespace
Finally, add the mount namespace. Despite not integrating the overlay filesystem
for now (until part V), this is the most complex namespace to set up.

10

12. Mount namespace

Coding task 9

Complete the macro CLONE_NAMESPACE_FLAGS with a mount namespace.

Question 8

You will not see any difference yet: why? Take the time to understand
what the mount namespace isolates exactly.

The overlay filesystem will be set up later, but you will mount an isolated
filesystem for the container nonetheless, using a bind mount. Creating the
filesystem of the container is done by contfs_make, that is called by the
contain function before creating the container subprocess.

Coding task 10

In "libcontain.c", complete contfs_make to create the directory that will
be the mountpoint for the container filesystem.

Then, complete contfs_mount to actually mount the container filesystem.
You can ignore mount_options for now, and make a bind mount of the
container image to the root path defined in cont_fs.

Hint: a bind mount has no filesystem type.

From now, test your program using make run-namespace-mount.

Warning

The previous test command used by make run-namespaces will fail, be-
cause privileged rights are required to mount.

Question 9

Again, you will not see any difference yet: why? Take the time to un-
derstand what the test command does, and what is the current working
directory of the container process.

The main work is now done in finalize_cont.

11

Coding task 11

Complete finalize_cont:

• mount special filesystems (proc, sysfs and tmpfs) using the function
contfs_mount_pseudo_fs from "libcontain.c";

• change the working directory to the container’s filesystem root;
• use chroot to change the root of the running process to the current

directory (which is now the root of its dedicated filesystem).

Information
The chroot system call changes the apparent root directory of the process.
In some way, it is a limited form of containerization, and as you can see, is
still used to implement complete containerization solutions.

Question 10

• Why is the container’s filesystem mounted from the host side, before
creating the container subprocess?

• Why are the special filesystems proc, sysfs and tmpfs mounted
from finalize_cont, i.e., from the container side?

• What do you expect to see when running the test command?

Now that isolation is set up, the next step is to put resource limits on the
container using cgroups.

Part IV.
Put resource limits on the
command: control groups
The interface to control cgroups is directory and file operations:

• creating directories with mkdir to create cgroups;7

7Under the root of the cgroup hierarchy that was created by make setup beforehand.

12

13. Control group creation

• opening files with open (and derivative);
• reading and writing to opened files under cgroup directories to read and

set limits.

13. Control group creation
First, you need to create the control group. This is done by the cgroup_make
function that is called by contain before creating the container subprocess.

Coding task 12

In "libcontain.c", complete cgroup_make to create the cgroup; you should
set the access rights of the created directory to something sensible.

Note that you also have to open the created directory and store the file
descriptor (FD) in cgroup->fd. Here, you must pass 4 special flags to
open, see open(2) and O_PATH.

Then, you must instruct the call to clone to actually create the container
subprocess in the cgroup.

Coding task 13

Complete clone_to_container so that the call to clone will put the
subprocess in the cgroup.

Test your code with make run-cgroups.

Question 11

What do you expect to see when running the test command?

At this point, the container subprocess lives under a cgroup. The setup for
this lab enabled the cgroup controllers cpu and memory, but you have not set
any limit yet.

14. Imposing limits to the cgroup
The limits are set in cgroup_make in "libcontain.c", that calls the functions
cgroup_limit_memory and cgroup_limit_cpu to set respectively, the memory
limit and the CPU limit.

13

14. Imposing limits to the cgroup

Coding task 14

Complete cgroup_limit_memory in "libcontain.c".
The process to apply the limit is explained in the comments. In particular,

the functions you should use to manipulate the string data are listed. This
is also where you use the FD to the cgroup’s directory that you previously
stored in cgroup->fd in cgroup_make.

Coding task 15

Complete cgroup_limit_cpu in "libcontain.c".
The instructions are similar to setting the memory limit in the previous

coding task. However, the process is slightly more complex because you
must compute the CPU limit from the CPU percentage you are given in
arguments, and the current scheduler period that you read from the control
file.

Information
There is no way from inside the container, to discover the resource limits
set by the cgroups.

Question 12

How do you think the inability of reading the resource limits from inside the
container can affect containerized applications? Give examples of programs
and runtimes.

With this, the process is now properly containerized:8 it is isolated from the
host system, and resource limits are applied.

Let’s move forward with the implementation of common container engine
features: usage of an overlay filesystem, and basic networking configuration.

8Except that a few namespaces and resource limits are missing, but those are trivial to add
by following the same procedures.

14

Part V.
Reusable container images: overlay
filesystem
In this part, you will replace bind-mounting the container image by mounting
it in a proper overlay filesystem. In other words, the container will now run in
a filesystem built as layers.

Question 13

• What is the container image in the container’s filesystem layers?
• How are filesystem layers used in container images?
• How are filesystem layers used when running a container?
• What happens when a containerized process writes to a file?
• Specifically, why is it slow for a containerized process to write to a

file provided by its image?

Creating an overlay filesystem is done by mounting a filesystem of type
overlay. Mounting it actually involves four different directories:

1. the lowerdir, which contains the immutable base of the overlay filesys-
tem;

2. the upperdir, which contains files that differ from the base layer;
3. the workdir, which serves as a working directory for the overlay filesystem

driver, it has no correlation with the concepts of containerization seen in
the lecture,

4. the mountpoint, i.e., where to actually mount the overlay filesystem for
use by the container.

Question 14

How do the lowerdir, upperdir and mountpoint map to the concepts of
a running container filesystem as seen in the lecture?

The mountpoint folder will constitute the container’s isolated root.

15

Coding task 16

In contfs_mount in "libcontain.c", prepare mount_options with the mount
options for an overlay filesystem. Then, mount the container image as an
overlay filesystem.

Hint: the mount origin is already specified in mount_options, so it does
not matter in the call to mount.

Information
It is possible to pile overlay filesystems up, where the mount point (the
run layer) of a filesystem is used as the lowerdir of another one. With
this method, you can achieve image layers just like Docker.

Test with make run-overlayfs, to observe that a file created by the con-
tainerized command does not appear in the base container image directory.

The only feature left to implement in your simple container engine, is
networking.

Part VI.
Communicating with containers:
networking
Providing networking to the container is done in two steps:

1. the network configuration of the container;
2. the network access to the container.

To achieve them, you will use virtual ethernet devices (veth) and a bridge.

Information
This is the networking mode “bridge” in the Docker world.

16

15. Synchronization between container engine and container

Warning

The lab does not cover network access to the container from outside the
host. To do so requires using NAT with iptables to route packets between
the container and the physical network device, which is a general network
configuration task, and is not linked to writing a container engine.

Information
veth devices are pairs of virtual Ethernet devices provided by the Linux
kernel: packets sent to one end are received on the other end, and vice-versa.

Question 15

How do you use a veth pair to provide networking to a container?

The rough outline of this section is to have the container engine create the
veth pair, putting one side in the container; and to have the container wait for
its veth interface, and configure it (set its IP address).

In other words, some synchronization is needed between the container engine
and the container: creating the veth pair requires that the container’s network
namespace be already created (to put the container end of the veth pair in it),
but the container side must wait for the container engine to do that before
setting the IP address from within the namespace.

15. Synchronization between container engine and
container

Setting aside the networking for this section, you must add code to have the
container subprocess wait for a signal from the container engine. The latter
will send the signal when it is done adding the veth interface to the container.
The skeleton of this machinery is already in place:

1. the container engine parent process calls set_cont_wait to set a signal
handler before creating the container process;9

2. the container subprocess calls cont_wait to wait for the signal;
3. the parent process calls cont_start to signal the subprocess to start.

9This is required to avoid race conditions where the signal could be delivered to the container
process before it set up the signal handler.

17

16. Network configuration: virtual Ethernet

Coding task 17

Complete set_cont_wait to declare a signal handler (e.g., on SIGUSR1)
for the container process. You must also write your own signal handler.

Then, complete cont_wait to make the container subprocess wait on
the execution of the signal handler (use a condition variable).

Finally, complete cont_start to make the container engine signal the
container subprocess (e.g., with SIGUSR1 as suggested above).

Test your code with make run-networking. Your container process now
waits for the parent container engine to finish its setup (write your signal
handler to make clear what happens).

Take also note of the output of make run-networking: it will change as you
add the container end of the veth pair in the next section.

16. Network configuration: virtual Ethernet
With the synchronization mechanism between the host and the container in
place, you can add networking to the container.

Coding task 18

Complete finalize_host to make the network from the host by calling
contnet_make_host, and implement the latter in "libcontain.c".

Then, complete finalize_cont to set up the network from the container
by calling contnet_make_cont, and implement the latter in "libcontain.c".

These pieces of code use libnl. Comments will help you find the functions
you need in its documentation. Take the time to understand what variables
are prepared for you in each function, to use in your code.

Run again the test command make run-networking. Confirm that the
container now has a network interface configured with the given IP address.

Information
veth pairs are automatically destroyed when the namespace that contains
one end is destroyed, or when any end of the pair is destroyed.

18

17. Network access to the container

17. Network access to the container
Finally, let’s set up network access to the container. This is very simple:
make setup created a bridge on the host, and you plug the host end of the
veth pair into the bridge. This will provide access to the container from the
host, as well as mutual access between containers on the same bridge.

Information
Bridges can be seen as virtual switches provided by the Linux kernel: they
route packets to network interfaces based on IP addresses.

Coding task 19

Complete contnet_connect_host_bridge in "libcontain.c" to put the host
end of the veth pair in the bridge.

Test your code by running the command make run-networking-webserver.
It starts a Python webserver reachable at http://192.168.42.10:8000 (that
simple serves the files in the container image): open this link in your web
browser to confirm that the containerized webserver has network.

Warning

To exit the container process, simply send it SIGINT by hitting Ctrl-C:
signals are forwards from your container engine to the container process.

Question 16

In this question, answer by describing how you would use veth pairs, bridges,
and any other element you would find useful.

• How would you set up the network to have two containers communi-
cate with each other?a

• By extension of how you connect two containers to each other, how
would you handle networking isolation between groups of containers?
In other words, how would you have containers A and B connected
to each other, and C and D connected to each other, but with A and
B completely isolated from C and D?

• How could you have a setup where A is connected to B, B is connected
to C, but A and C are still isolated at the network level?b

19

http://192.168.42.10:8000

aThe IP address of your container is hardcoded in the Makefile. To test your answer,
run the commands manually and give different IP addresses to the containers.

bInterestingly, this “proxy” setup cannot be easily achieved with Docker.

Question 17

• The networking model of Kubernetes is to have containers of a pod
share networking capabilities. How do you think it is implemented?
There are two possibilities, but only one is actually used by Kuber-
netes, that involves only a namespace trick.

• You implemented the networking mode “bridge” of Docker. How
would you implement the networking modes “none” (i.e., absolutely
no networking) and “host” (i.e., absolutely no networking isolation
between the container and the host)?a

aThe networking mode “overlay” of Docker requires the set up of a technology of
networking overlay, which ends up creating a virtual interface that you simply add
to a container’s network namespace. This is out of the scope of this lab, but also
not really interesting, and requires two host machines to be demonstrated.

Congratulations! You wrote a simple container engine with a few lines of C
code ! Remark how the longest and hardest parts were to set up the filesystem
and the networking, but running a process in isolation and under resource
limits only revolves around the clone system call.

Part VII.
Conclusion
In this lab, you manipulated all the low-level features that, once put together
one by one, constitute a very functional container engine: isolation, limits,
overlay filesystem and networking. This gives a glimpse of the work achieved by
industry-ready container engines to bring container technology to the public.

To go further, your engine lacks container management: you could implement
listing running containers, stopping a container and destroying its resources.
You could also implement the three missing namespaces. Run the command
ls -l /proc/self/ns on the host, in your container and in a Docker container
to list them: ipc, cgroups and time.

20

	Introduction
	Overview
	Prerequisite

	Setup
	Container image
	Development environment
	General instructions

	Execute the command in isolation: namespaces
	Warmup: print and execute the containerized command
	Execute the command in a subprocess
	User namespace
	Hostname namespace
	PID namespace
	Network namespace
	Mount namespace

	Put resource limits on the command: control groups
	Control group creation
	Imposing limits to the cgroup

	Reusable container images: overlay filesystem
	Communicating with containers: networking
	Synchronization between container engine and container
	Network configuration: virtual Ethernet
	Network access to the container

	Conclusion

