
CSC5004/ASR8 — Cloud Computing Architectures

Lab work

Scaling horizontally a web service,
revisited

Many ways to invoke an action

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

2024 – 2025
Télécom SudParis

Institut Mines-Télécom & Institut Polytechnique de Paris

1

Part I.
Introduction
1. Overview
Serverless cloud computing is particularly suited to build processing pipelines
that are event-based, i.e., run when an event occurs. Examples are sentiment
analysis on newly created micro-blogging messages, video recompression on
newly uploaded content, or image conversion upon request from a user.

You will use your Apache OpenWhisk (OW) deployment on a Google Kuber-
netes Engine (GKE) cluster to implement a simple service of image conversion
from JPEG to PDF: PDFMagic. This time, it will be built as a cloud function
running on a serverless platform, allowing quick elasticity and rapid develop-
ment, among other advantages.

Over the lab, you will build four different versions of the service:

0. manually invoked through OW’s CLI, with the image as parameter;
1. manually invoked through a REST API, with the image as request body;
2. manually invoked through a REST API, with the image identifier to

fetch it from cloud storage as parameter;
3. automatically invoked by a trigger, with the image identifier to fetch it

from cloud storage as parameter.

2. Prerequisite
Knowledge of using a terminal is assumed. A good understanding of the server-
less notions seen during the lecture are welcome.

You will need a working deployment of Apache OpenWhisk, assumed to
be living in Google Cloud Platform for integration with other services. You
should have followed a previous lab to deploy and setup it.

The technical requirements are similar to the previous lab, i.e., you need
configured gcloud1 and kubectl commands, as well as OpenWhisk’s CLI, wsk.

Alternatively, you may opt to use GCP’s Cloud Shell (a shell embedded in
GCP’s web pages), where all the technical requirements are already fulfilled,
and where you can also install wsk.

1The lab will give gcloud and gsutil commands to achieve a few tasks, but you may opt to
go through the web interface at your own discretion.

2

Warning

You will work with a paid Google Kubernetes Engine (GKE) from the
provider Google Cloud Platform. Underneath, it runs on nodes, i.e., vir-
tual machines (VMs). The pricing model is that you pay for your VM
resources as long as the VM, and thus the GKE node, is up, whatever its
activity. Thus: do not forget to destroy the GKE cluster at the end of the
lab.

Part II.
Setup
In this part, you fetch the required base files.

Jump into your work directory and execute the command in listing 1.

Listing 1: Download base files.
curl https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/scaling-revisited.tgz |\

tar --extract --gzip

You should obtain two folders:

1. "pdfmagic_base64": files for versions 0 and 1;
2. "pdfmagic_bucket": files for versions 2 and 3.

Part III.
Version 0: manual invocation
through CLI, image as parameter
In this part, you will build a first iteration of the PDFMagic action, and invoke
it manually with OpenWhisk’s CLI to test it. This will be the version 0 of the
service PDFMagic.

3

3. Building the action

3. Building the action
Change directory to "pdfmagic_base64". There, you will find:

"__main__.py" function code;
"params.json" parameters for the function, prepared for testing;
"image.jpg" test image for the function.

Information
The special name "__main__.py" – note the double underscores on each
side – is Python specific, and indicates the entrypoint to an executable
Python module. When built as an OpenWhisk action, the system will run
its main function.

Information
You can look as "params.json" with less: the file is very long, because
it includes the base64-encoded string that represents the binary data of
the test JPEG image "image.jpg". Base64a is a binary-to-text encoding,
where a character of the encoding represents 6 bits of binary data. It is
used to include binary data as a text string.

aBase64 - Wikipedia. 2005. url: https://en.wikipedia.org/wiki/Base64 (visited
on 12/04/2021).

Question 1
Read the first section of OpenWhisk’s documentation on Python actions
at https://github.com/apache/openwhisk/blob/master/docs/actio
ns-python.md.

• Read the code in "__main__.py", and answer the questions:
– What is the variable args?
– How and under what form is the input image received?
– Where is it stored (“physically”; think about how and where

the function is executed) for conversion?
– Where is the converted output stored?
– How and under what form is the converted output sent back?

• What are the differences between the code of this Function-as-a-
Service version, and the code of the version deployed as a pod in

4

https://en.wikipedia.org/wiki/Base64
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md

3. Building the action

Kubernetes from a previous lab?

3.1. Packaging the action and language dependency
The action PDFMagic requires a Python dependency: delegator.py.2 In the
context of an OW action, language dependencies are included along with the
action’s code as a Zip archive. The way they are actually included inside the
Zip archive is language-dependent, but most often involves using the language’s
dependency manager by running it from the Docker image of the language
runtime provided by OW.

Information
In the Python world, dependencies are most often fetched from the public
repository PyPIa using the tool pip. In addition, virtual environments
(“virtualenvs”) are used to scope the dependencies.

aPyPI - The Python Package Index. 2018. url: https://pypi.org/ (visited on
12/04/2021).

Coding task 1

Run a container from the image of OW’s Python runtime to create a
virtualenv containing the action’s language dependency.

For this, you need to:

• run a container from the image "openwhisk/action-python-v3.9";
• run under the same user and group IDs as your user’s on the host,

to make the virtualenv owned by your user;a

– look at the documentation of docker run to find the option,
– you can get the ID of your user and group respectively with

id -u and id -g;
• mount the current working directory under "/tmp" inside the con-

tainer, to create the virtualenv there;
• change the image entrypoint to bash;

The commands you need to execute inside the container are given in
listing 2. To execute them, you can use the flag -c of Bash to give it a

2delegator.py allows delegating to a subprocess the execution of the conversion command.
PyPI page: https://pypi.org/project/delegator.py/.

5

https://pypi.org/
https://pypi.org/project/delegator.py/

3. Building the action

command to execute instead of starting interactively.

Listing 2: Make the virtualenv with the action’s Python dependency.
cd tmp
virtualenv virtualenv
source virtualenv/bin/activate
pip install delegator.py

aIn OW’s runtime image, processes run as root, so the virtualenv would also be owned
by root on the host without this setting.

The result of the above question is a "virtualenv" directory created in the
current working directory. Package it with the action’s code in a Zip archive
as instructed in listing 3.

Listing 3: Package PDFMagic action with dependencies.
zip --recurse-paths pdfmagic_base64.zip __main__.py virtualenv

3.2. Customizing the language runtime image with a native
dependency

In addition, the action PDFMagic requires a native dependency: ImageMag-
ick.3 OW actions run in Docker containers, which means that in order to add
a dependency to the “native” runtime (i.e., outside the language ecosystem),
you must customize OW’s Docker runtime image.

Coding task 2

Write a Dockerfile to customize OW’s Python runtime by adding Im-
ageMagick. In other words:

• Write a Dockerfile from the Docker image of OW’s Python runtime,
that installs ImageMagick.

• Push the built image (refer to a previous lab to do so) to Docker
Hub to make it publicly available.

Here is what you need to know, to write the Dockerfile:

• OW’s Python runtime is named openwhisk/action-python-v3.9;

3ImageMagick provides the conversion command convert.

6

3. Building the action

• it is based on the official Python Docker image, itself based on
Ubuntu, where packages can be installed with:

Listing 4: Install packages in OW’s Python runtime.
In a Dockerfile, it is cleaner and more efficient to run all the
commands in the same RUN instruction.
apt-get update
apt-get install -y PKGS...
To make clean image layers, remove files produced as a side-effect of
the commands.
rm -rf /var/lib/apt/lists/*

• the package you need to install is named imagemagick;
• for security reasons, ImageMagick prohibits converting images to

PDF: to lift the restriction, your Dockerfile must also run the follow-
ing command after installing ImageMagick:

Listing 5: Allow ImageMagick to convert to PDF.
No need to understand it, but knowing sed is good for your culture!
sed -i '/disable ghostscript format types/,+6d'\

/etc/ImageMagick-6/policy.xml

Information
If you remain stuck at this question, you may use this image in the follow-
ing questions: matbac/action-python-v3.9:imagemagick-pdf.

3.3. Creating the action
Everything is now prepared, so create the action! Use the command wsk to
interact with your OpenWhisk deployment.

Coding task 3

Create a package named "pdfmagic" in your user namespace.

Coding task 4

Create the action under the name "pdfmagic/v0", i.e., its name is "v0",
and it is created under the package "pdfmagic".

In this case, don’t forget that you must provide the customized Docker

7

4. Testing the action

runtime image in addition to the archive of your function’s code and its
language dependencies.

Information
Specifying a Docker image is only needed when customizing the runtime
image with native dependencies, like in your case here. When using the
default OW’s language runtime, but creating the action from a Zip archive,
you must specify the action kind (flag --kind), i.e., its implementation
language and version, to tell OW what runtime must be used to run it.
Otherwise, OW is able to guess the kind from the code file.

Question 2
Why is it important to prepare as much of the action runtime as possible
before actually invoking it? In other words, why is it preferable to pack-
age all the dependencies statically, and paying the development cost of a
custom Docker runtime image, instead of using the generic OpenWhisk’s
runtime and installing dependencies upon invocation?

4. Testing the action
Coding task 5

Test your PDFMagic action: invoke it with the parameter file "params.json".
Then, check that it ran correctly by checking the activations.

Information
Because of how the v0 of the function is coded, the output PDF file is
included as a very long base64 string in the result of the invocation. You
can run the command in listing 6 to extract the converted PDF to a local
file "image.pdf". Open it to check that the conversion worked!

Listing 6: Check activation result of PDFMagic.
tail is used to skip the first line, output by wsk but not part of the JSON
activation data.
jq is used to parse the JSON activation data to extract the PDF result.
Replace the beginning of the pipeline with the command to get the activation.
COMMAND TO GET THE ACTIVATION RECORD |\

tail -n+2 | jq -r '.response.result.pdf' | base64 -d > image.pdf

8

Information
If you are working on Google Cloud Shell, you cannot display the PDF.
Verify that it is indeed a valid PDF file with the command file $PDF_FILE;
it should output:

image.pdf: PDF document, version 1.7, 1 pages

Warning

If the action succeeded but did not produce the expected result (e.g., an
empty PDF file), you can try to debug it locally by running a Docker
container from its image and testing things manually in it.

In the case you needed to fix the action’s image and its Dockerfile, you
must rebuild the image under a new tag, push it, and update the action
to use this new tag. This is to update the action’s image cached in the
cluster.

Congratulations! You successfully deployed an initial version of the service
PDFMagic as a serverless cloud function.

For now, it can only be invoked through OW’s control interface, i.e., with
its CLI. In the next part, you will build version 1 of PDFMagic to invoke it
through a REST API.

Part IV.
Version 1: manual invocation
through REST API, image as
request body
In this part, you will setup PDFMagic to be accessible through a REST API.
Thanks to your serverless platform, OpenWhisk, there is nothing server-like to
deploy: the feature is provided by the platform.

9

Information
A REST APIa is a web-based API that maps HTTP methods and URIs
to services, transferring additional data in a standard format. In general,
users and systems interact with web applications through this kind of
APIs.

For example, sending a GET request to /api/v1/animals may be inter-
preted as requesting a list of animals, while sending a POST request to the
same URL may be interpreted as adding an animal to the list, with the
data provided in the request body.

aRepresentational state transfer - Wikipedia. 2018. url: https://en.wikipedia.
org/wiki/REST_API (visited on 12/04/2021).

To expose an action under an API endpoint, you must make it a web action.

Coding task 6

Modify the code to make PDFMagic a web action.
To help you, read OW’s documentation on web actions at https://gi

thub.com/apache/openwhisk/blob/master/docs/webactions.md. You
web action should:

• read the input image as a base64-encoded string from the HTTP
request body named __ow_body;

• return the converted image as PDF content application/pdf in
the HTTP response (similar to returning an image/png content in
OW’s documentation).

Make a new Zip archive (see listing 3) from your code and the virtualenv.

Coding task 7

Create the new version of the action under the name "pdfmagic/v1".
This time, the action must be declared as a web action when calling

wsk create, to make OpenWhisk treat its input and output as HTTP
query and response so it can be used behind an API endpoint.

Coding task 8

Create an API endpoint for the web action, under the base path "/convert"
and the API path "/pdf".

10

/api/v1/animals
https://en.wikipedia.org/wiki/REST_API
https://en.wikipedia.org/wiki/REST_API
https://github.com/apache/openwhisk/blob/master/docs/webactions.md
https://github.com/apache/openwhisk/blob/master/docs/webactions.md

Note that you must specify that your action returns an HTTP response
(because your action specifies that the response’s body is a PDF content).

Question 3
Justify your choice of API verb when creating the endpoint.

Make a note of the URL produced by OW in response.

Information
Specifying the API endpoint as two components (the base path and the
API path) allows to have an application made of multiple API paths, each
of them handling different aspects of it through different HTTP methods.

In addition, it is possible to create multiple API endpoints under the
same API path, provided they use different API verbs.

Now to test: use curl to send the image to the URL responded by OW,
with the command in listing 7. In the command, replace URL with the URL of
the action’s API endpoint, and METHOD with the API verb you selected when
creating the API endpoint.

Listing 7: Test PDFMagic as a web action.
--insecure tells curl not to validate the certificate because OpenWhisk uses a
self-signed one.
curl --insecure --request METHOD --data-binary @image.jpg \

--header "Content-type: image/jpeg" URL --output image.pdf

As previously, check the activations and the received PDF to verify that the
service worked.

Congratulations! You implemented version 1 of your service PDFMagic, as
a REST API endpoint.

This version is already representative of a real-world application. Nonethe-
less, in the next part, you will implement version 2, where the image is fetched
from cloud storage in preparation to automation.

11

Part V.
Version 2: manual invocation
through REST API, image in cloud
storage
In this part, PDFMagic remains an endpoint to a REST API, however it fetches
the image from a Google Cloud Storage bucket specified in its arguments.

Information
Google Cloud Storage is simply cloud storage, the most well known cloud
service to the mass consumers. We will use it here as more professional
users, setting up a bucket (like a storage volume) for the inputs of our
application, and another bucket for the outputs. It is a paid product, but
our usage will be so small that it will cost virtually nothing.

5. Setting up Google Cloud Storage buckets
As explained above, you must create two buckets in Google Cloud Storage for
PDFMagic, as shown in listing 8.

Warning

In Google Cloud Storage (GCS), buckets are not namespaced, i.e., all
buckets across GCS must have unique names. In your case, it is best to
include a unique identifier of yours, such as your login name, etc.

Listing 8: Create buckets for PDFMagic.
Replace NAME with your name, pseudonym or anything else unique and rememberable.
gsutil mb gs://NAME-convert-in
gsutil mb gs://NAME-convert-out

Then, you must request an API key to access the buckets. While you can
access them manually with the command gsutil as above, your PDFMagic ac-
tion cannot, and requires authentication information. You will see in section 6
how this authentication information is managed. For now, run the commands
in listing 9. They will write the key to the JSON file "pdfmagic-key.json".

12

6. Building the action

Listing 9: Create key for PDFMagic to access buckets.
Find your service account name (the e-mail address).
gcloud iam service-accounts list
Replace SERVICE_ACCOUNT with the e-mail from the output of the previous command.
gcloud iam service-accounts keys create pdfmagic-key.json \

--iam-account=SERVICE_ACCOUNT

6. Building the action
Move to the folder "pdfmagic_bucket", where you will find the same files as
before; however, the code was updated (and left with holes for you to fill) to
accept parameters to fetch the input image from Google Cloud Storage. A new
dependency is used: the Google Cloud SDK, to authenticate to the platform
and use the cloud storage.

Coding task 9

Complete the holes in the code of "__main__.py".
To help you, here is the reference for the Google Cloud Storage SDK:

https://cloud.google.com/python/docs/reference/storage/lates
t (and more precisely, the reference for the Google Cloud Storage client:
https://cloud.google.com/python/docs/reference/storage/lates
t/google.cloud.storage.client.Client).

Question 4
What are the implications of including cloud provider-specific code in your
application?

You must package the action as before, in a Zip archive. This time, new
Python dependencies are required, to interact with Google services.

Coding task 10

As in the first coding task, create a virtualenv that includes two new
dependencies: google-cloud-storage and google-auth.

Make a Zip archive (see listing 3) that includes your code and the virtualenv.

13

https://cloud.google.com/python/docs/reference/storage/latest
https://cloud.google.com/python/docs/reference/storage/latest
https://cloud.google.com/python/docs/reference/storage/latest/google.cloud.storage.client.Client
https://cloud.google.com/python/docs/reference/storage/latest/google.cloud.storage.client.Client

7. Testing the action

Coding task 11

Create the new version of the action under the name "pdfmagic/v2".
For this version, set default values to two parameters:

• out-bucket is always NAME-convert-out (from listing 8);
• gcs-key is always the content of the file "pdfmagic-key.json" that

you created in listing 9.

Question 5
What is the purpose of setting those two parameters with default values?

Coding task 12

Create an API endpoint for the web action, under the base path "/convert"
and the API path "/pdf".

Again, make a note of the URL produced by OW in response.

Question 6
• Justify your choice of API verb when creating the endpoint.
• What is the response type of this version?

7. Testing the action
To test version 2 of PDFMagic, first upload the test image to the input bucket,
with the command in listing 10.

Listing 10: Upload test image to input bucket.
Replace IN_BUCKET with the name of the input bucket chosen before.
gsutil cp image.jpg gs://IN_BUCKET/image.jpg

Now to test: use curl to send the required arguments to the URL responded
by OW, with the command in listing 11, replacing the placeholders with their
actual values.

Listing 11: Test PDFMagic as a web action with buckets.
curl --insecure --request METHOD --data 'bucket=IN_BUCKET&name=image.jpg' URL

14

You should have received the names of the output bucket and file as a
response. You can check the result with the command in listing 12.

Listing 12: Check the result of PDFMagic version 2.
Replace OUT_BUCKET with the name of the output bucket in the response from above.
Replace OUT_PDF with the name of the output file in the reponse from above.
gsutil cp gs://OUT_BUCKET/OUT_PDF image.pdf
And then display or verify the file image.pdf.

Congratulations! You deployed your service with a link to cloud storage.
The execution of PDFMagic, although via a programmable REST API end-

point, remains manual: there is no automatic link between uploading a file,
and execution the action on it.

Part VI.
Version 3: semi-automatic
invocation with a trigger, image in
cloud storage
In this part, you will setup a trigger and a rule to automatically invoke PDF-
Magic when the trigger is fired. In a fully automated system, the trigger would
be fired by a webhook from Google Cloud Storage’s, closing the final link of
an automated conversion pipeline.4

Version 3 of PDFMagic actually reuses version 2 as-is.

Coding task 13

Create an OpenWhisk trigger, representing events of creation of new files
in the input bucket.

Coding task 14

Create an OpenWhisk rule that ties the action "pdfmagic/v2" to the trig-
ger.

4Technical limitations currently make this impossible in the context of this lab.

15

Test your setup by manually firing the trigger, and then downloading the
resulting image from the output bucket.

Question 7
What would you do to execute another action when the trigger is fired, in
addition to running "pdfmagic/v2"?

Coding task 15

Bonus question: Write an action in the language of your choicea, that
displays its arguments to the standard output, and returns them; and tie
it to the same trigger as PDFMagic from above.

aIn a language that OpenWhisk supports; preferably NodeJS, Python or Java, see
https://github.com/apache/openwhisk/blob/master/docs/actions.md.

Congratulations! You implemented PDFMagic as a semi-automatic pipeline
to convert images, completely in the cloud, and serverless.

Part VII.
Conclusion
The Google Kubernetes Engine cluster to which you deployed OpenWhisk,
being deployed on Compute Engine VMs, will continue to consume credits.

Warning

If you don’t need to use the cluster anymore, i.e., if you will not follow an-
other lab on serverless using it, destroy the cluster! Also, destroy the input
and output buckets to clean up, with gsutil rb gs://BUCKET_NAME.

In this lab, you iteratively implemented several versions of your image con-
version service, PDFMagic. From a very manual and unpractical interface,
you set it up as a semi-automatic pipeline that is easily invoked.

To go further, you may try to implement the same pipeline in the real
Function-as-a-Service offering of Google Cloud, called Google Cloud Run. While
the backend is different, based on another Function-as-a-Service platform called

16

https://github.com/apache/openwhisk/blob/master/docs/actions.md

Knative5, the concepts and features are similar; furthermore, the integration
with other GCP features such as Storage will allow you to implement a com-
pletely automated pipeline, as suggested in the last part. The communication
part of the pipeline, linking the storage tier to the compute tier to propagate
events, is implemented by the Pub/Sub service of GCP, i.e., by a message-
passing middleware where publishers can produce messages in topics that con-
sumers subscribe to.

5Home - Knative. 2018. url: https://knative.dev/docs/ (visited on 12/04/2021).

17

https://knative.dev/docs/

	Introduction
	Overview
	Prerequisite

	Setup
	Version 0: manual invocation through CLI, image as parameter
	Building the action
	Packaging the action and language dependency
	Customizing the language runtime image with a native dependency
	Creating the action

	Testing the action

	Version 1: manual invocation through REST API, image as request body
	Version 2: manual invocation through REST API, image in cloud storage
	Setting up Google Cloud Storage buckets
	Building the action
	Testing the action

	Version 3: semi-automatic invocation with a trigger, image in cloud storage
	Conclusion

