CSC5004/ASR8 — Cloud Computing Architectures

Lab work

Basics of Apache OpenWhisk

Actions and triggers

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

2022 — 2023
Télécom SudParis
Institut Mines-Télécom & Institut Polytechnique de Paris

TELECOM

SudParis

QQQQQQQ

N2 IP PARIS

Part |I.
Introduction

1. Overview

The cloud has evolved towards providing a paradigm of cloud-native applications,
where the latter are built to be deployed specifically in the cloud. This paradigm
brings promises of infinite performance scaling with great money savings.

The first embodiment are microservices, however they still require thinking
about server provisioning, with all the constraints and chores that come with
it. The answer is to go serverless: the cloud user that wishes to deploy their
application should not be burdened with any server-side consideration. Instead,
they should focus on writing the core of their application and then configuring
the architectural requirements. The application is typically written as elemen-
tary functions, and deployed on a Function-as-a-Service (FaaS) platform. The
architectural dependencies, usually long-lived server-like features, are provided
by a Backend-as-a-Service (BaaS) offering.

Actual servers are obviously still required, but they are managed by the
cloud provider; on continuity with the previous labs, we chose Google Cloud
Platform (GCP)EI to provide the resources. However, you will use it only as the
support for a Kubernetes cluster, similarly to the first lab, on which you will
deploy a FaaS platform: Apache OpenWhisk (OW)E] Thus, you will have the
point-of-view of both the cloud provider and a cloud client.

This lab will guide you through the installation and setup of OW in [part 11}
and then give you a brief primer on its command-line interface (CLI) in

2. Prerequisite

Knowledge of using a terminal is assumed. A very basic understanding of
Kubernetes’s pods, and a good understanding of the serverless notions seen
during the lecture are welcome.

The lab makes use of resources from GCP, which is a paid product. For
this class, you should have received credits to redeem on GCP using a Google

LCloud computing services | Google Cloud. 2011. URL: https://cloud.google.com/
(visited on 12/06,/2020).

2 Apache OpenWhisk is a serverless, open source cloud platform. 2017. URL: https :
//openwhisk.apache.org/ (visited on 12/04/2021).

https://cloud.google.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/

account; on this note, you might prefer creating an account linked to your
institutional e-mail address instead of using a personal account.

As for technical requirements, almost all operations take place in the Kuber-
netes cluster in GCP. Thus, the only prerequisites are to install:

o Google Cloud SDK, and more specifically to configure its gcloud com-
mand to access your GCP project (instructions can be found on Google
Cloud Docs: https://cloud.google.com/sdk/docs/install#instal
lation_instructions);

« kubectl (it will be configured to access your cluster when it is created)f]

. helnﬁ7 a “package manager” for Kubernetesﬂ

Alternatively, you may opt to use GCP’s Cloud Shell (a shell embedded
in GCP’s web pages): gcloud, kubectl and helm are already available and
configured there. You will also be able to install the additional necessary
programs to interact with OW.

KWarning)

You will be working with a paid Google Kubernetes Engine (GKE) from
the cloud provider Google Cloud Platform. Underneath, it runs on nodes,
i.e., virtual machines (VMs). The pricing model is that you pay for your
VM resources as long as the VM, and thus the GKE node, is up, whatever
its activity. Thus: do not forget to destroy the GKE cluster at the end of
kthe lab.)

Part Il.
Setup

The steps to deploy OpenWhisk on a GKE cluster are summarized in a script
that runs all the necessary steps.
Fetch and extract the archive containing the deployment script and its helper

script by running the command in [listing 1}

3You may use your package manager, or follow the instructions at https://kubernetes.i
o/fr/docs/tasks/tools/install-kubectl/.

4Helm. 2017. URL: https://helm.sh/ (visited on 12/04/2021).

5You may use your package manager, or follow the instructions at https://helm.sh/docs
/intro/install/.

https://cloud.google.com/sdk/docs/install#installation_instructions
https://cloud.google.com/sdk/docs/install#installation_instructions
https://kubernetes.io/fr/docs/tasks/tools/install-kubectl/
https://kubernetes.io/fr/docs/tasks/tools/install-kubectl/
https://helm.sh/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

[Warning)

For Mac users: the script "make_mycluster.sh" expects GNU/Linux bina-
ries that behave differently from their Mac OS counterparts. The script
will thus not work.

You may either:

« follow the lab in Google Cloud Shell;
e use a VM that runs an up-to-date Linux distribution, such as a recent
L Ubuntu version.)

Listing 1: Download base files.

curl https://www-inf.telecom-sudparis.eu/COURS/CSC5004/practicals/\
basics-openwhisk/basics-openwhisk.tgz | tar --extract --gzip

You should obtain two Shell scripts, "deploy.sh" and "make mycluster.sh".

(lnformation

While not mandatory, you may want to read and understand the steps
taken by "deploy.sh" to deploy OpenWhisk on a GKE cluster.

Part IIl.

Installation of Apache OpenWhisk
on a Google Kubernetes Engine
cluster

Run the script "deploy.sh" to deploy OpenWhisk, as shown in [listing 2|
Listing 2: Deploy OpenWhisk.

./deploy.sh

(Question 1 W

The first deployment step undertaken by the script, is to provision a
Kubernetes cluster with two nodes of type e2-medium.

o What does it mean on the cloud backend side, to provision a cluster
on two nodes of the specified machine type?
o Why are virtual machines still used even in a Serverless cloud?

[Question 2)

Get the list of pods with kubectl --namespace openwhisk get pods.

o Match OpenWhisk’s components seen in the lecture, with the pods
listed by the command above{’

o How could you make the OpenWhisk platform itself scale, to handle
more requests to its services? Be specific to OpenWhisk’s components.

?There are more deployed pods than components in OpenWhisk’s architecture.

-

/Warning R

The certificate of your OpenWhisk deployment, although working to provide
HTTPS access, is still self-signed. As indicated at the end of the deployment
script, you will have to tell wsk to ignore verifying the certificate, with the
flag —-insecure (short-hand -i). You are advised to define an alias to
avoid typing it every time.

N J

In the next part, you will test the deployment by executing sample functions
and using triggers.

Part IV.
Using Apache OpenWhisk: actions
and triggers

In this part, you will:

1. test your OpenWhisk deployment by invoking a sample action;
2. create a trigger;
3. link it to an action with a rule to create an automated pipeline.

3. Invoking an action as simply as possible

From this point on, the lab uses OpenWhisk vocabulary:

action a cloud function;

to invoke to run a cloud function;

trigger an event channel that can be used to invoke an action through a rule;
rule a link between a trigger and an action;

activation an invocation of an action;

package a collection of actions or triggers under a namespace.

An object of OpenWhisk (action, trigger, etc.) is kept under one namespace,
i.e., a path-like name that always begins with a slash "/" E] Then, it may
be kept under one package, i.e., another path-like name. For example, the
fully qualified name of the sample action you invoke in the next section is
' /whisk.system /samples/greeting": the namespace is " /whisk.system"ﬂ the
optional package is "samples", and the name of the action is "greeting".

~

4 Information

To answer code questions below, find the correct invocation of the wsk -i
command. It is organized with subcommands that you can list with
wsk --help; and then you can get help for each subcommand by providing
it the —-help flag.

N J

3. Invoking an action as simply as possible

OpenWhisk comes with a catalog of curated actions, under the namespace
' /whisk.system". It includes a package "samples" that gathers sample actions.

[Coding task 1)
Test your deployment: invoke the action "/whisk.system/samples/greeting”
Kin the simplest possible way.)
4 Question 3)

Explain what happens when you invoke an action:

e How does the wsk command demands the invocation? Re-run the
invocation with the added flag —-verbose to help you answer.

5The namespace may be omitted for your own objects: each user has a default namespace.
"This namespace is special because using a period is otherwise forbidden by the platform.

3. Invoking an action as simply as possible

L « What components interact with each other? J

/Coding task 2)

The command from the previous question returned immediately with an
activation ID.
Watch the activation by polling for the arrival of new activation events.
When you see the action’s activation, quit polling.

_ J
/Coding task 3)
Get information about the activation, as well as its logs, by using its
Kactivation ID.)
(Warning)

There is a bug in OpenWhisk that may not actually refresh the activation
records: you may have to run the commands twice!

N\

/Question 4 A

In the activation record of this first invocation of the action, identify:

e the execution time;

e the time spent in the platform;

» the time spent initializing the runtime;
o the result returned by the action.

N\

/Question 5 h

How exactly was the action executed at the Kubernetes cluster level? Look
at the list of pods (kubectl --namespace openwhisk get pods) for a
beginning of explanation.

_ J

Congratulations, you invoked your first OpenWhisk action!

4. Invoking an action with parameters

(lnformation \
LThe next time you want to get information about the last activation, youJ

can use the -1 flag instead of providing the activation ID.

4. Invoking an action with parameters

The action was invoked without any parameters, resulting in a default greeting
message.

(Coding task 4

Invoke the action again, but this time providing values to its parameters
name and place. In addition, make wsk wait for the result returned by the
action and display it, instead of printing the activation ID.

You can see in the result how your parameters were taken into account.
Congratulations, you invoked your first OpenWhisk action with parameters!

/Question 6 A

You should have noticed that the following invocations were much faster
than the first one.

o To confirm this observation, check the times in the activation data:
which one has disappeared?

o« What is the name of the mechanism behind this execution time
optimization? Confirm your answer by checking the columns “Start”
and “Duration” in the list of activations.

o This time, how exactly was the action executed at the Kubernetes

Y cluster level? D

5. Using triggers and rules

Cloud functions are best used as automatic responses to events in a channel.
For instance, you could have your cloud storage system emit an event when a
new file is stored into it; OpenWhisk would in turn invoke an action, with the
event’s data as parameters.

In OpenWhisk, it is achieved by:

5. Using triggers and rules

1. creating a trigger: this is the event channel endpoint on OpenWhisk’s
side;

2. linking the trigger to an action: tell OpenWhisk to trigger this action
when the trigger is fired by an event.

In this primer, you will create a trigger representing the arrival of a new
person, and set up a rule to invoke "/whisk.system/samples/greeting" upon
firing the trigger.

(Coding task 5 }
LCreate the trigger named "new-person'. J

~

4 Information

In more complex situations, the trigger may be given default parameters,
that will be passed to the action invoked by firing the trigger.

The trigger may also be given a feed action: this is an action invoked by
OpenWhisk to manage the remote source of events, when the user executes
operations to manage the trigger itself on the OpenWhisk side.

For instance, in the example of a trigger fired when a new file is created
on a cloud storage:

e upon creating the trigger, the feed action is invoked to actually set
up the event production by the cloud storage system, so that it sends
the events to OpenWhisk’s trigger;

« upon deleting the trigger, the feed action is invoked to disable the
event production by the cloud storage system.

N\

(Coding task 6

Set up a rule named "say-hello" to invoke "/whisk.system/samples/greeting'
when "new-person" is fired.

I N

(Coding task 7

‘ Test the trigger "new-person' by firing it manually. You can pass parameters

8This architecture means that you can invoke multiple different actions from a single trigger.

Lto the trigger when firing it: they will be passed to the invoked action. J

~

4 Information

As explained above, in a real-world system, the firing is done by the
external event source communicating with the OpenWhisk platform to fire
the trigger, as configured by the feed action. This most often works via
HTTP REST requests, instead of invoking the wsk command, that is only
Kthe user interface.)

/Coding task 8 D

wsk answered to firing the trigger with an activation ID.
Confirm the action "/whisk.system /samples/greeting" was invoked with
the parameters given when firing the trigger.)

-

Congratulations again! You set up your first OpenWhisk trigger to automat-
ically invoke an action.
You can clean up after this lab by:

1. deleting the rule "say-hello";
2. deleting the trigger with "new-person’.

Part V.
Conclusion

The Google Kubernetes Engine cluster to which you deployed OpenWhisk,
being deployed on Compute Engine VMs, will continue to consume credits.

(Warning

You will probably work on the next lab, so keep the cluster running.
However, if you don’t need to use the cluster anymore, i.e., if you will not
follow another lab on serverless using it, destroy the cluster!

In this lab, you discovered Apache OpenWhisk after deploying it in a Kuber-
netes cluster. You invoked a sample action, and set up a trigger to invoke it as
part of an automated system.

10

Were you an actual serverless cloud user, you would have directly used
Google, or any other cloud provider’s native serverless offering, saving you all
the burden of actually managing a server — the GKE cluster and OpenWhisk
deployment.

To go further, you should follow the next lab on scaling an image processing
with serverless.

11

	Introduction
	Overview
	Prerequisite

	Setup
	Installation of Apache OpenWhisk on a Google Kubernetes Engine cluster
	Using Apache OpenWhisk: actions and triggers
	Invoking an action as simply as possible
	Invoking an action with parameters
	Using triggers and rules

	Conclusion

