1. Introduction
This library provides APIs to the kernel interfaces of the routing family.
Work in progress. |
2. Addresses
3. Links (Network Devices)
The link configuration interface is part of the NETLINK_ROUTE
protocol
family and implements the following netlink message types:
-
View and modify the configuration of physical and virtual network devices.
-
Create and delete virtual network devices (e.g. dummy devices, VLAN devices, tun devices, bridging devices, …)
-
View and modify per link network configuration settings (e.g.
net.ipv6.conf.eth0.accept_ra
,net.ipv4.conf.eth1.forwarding
, …)
In networking several terms are commonly used to refer to network devices. While they have distinct meanings they have been used interchangeably in the past. Within the Linux kernel, the term network device or netdev is commonly used In user space the term network interface is very common. The routing netlink protocol uses the term link and so does the iproute2 utility and most routing daemons.
3.1. Netlink Protocol
This section describes the protocol semantics of the netlink based link configuration interface. The following messages are defined:
Message Type | User → Kernel | Kernel → User |
---|---|---|
|
Create or update virtual network device |
Reply to |
|
Delete virtual network device |
Notification of link deleted or disappeared |
|
Retrieve link configuration and statistics |
|
|
Modify link configuration |
See Netlink Library - Message Types for more information on common semantics of these message types.
3.1.1. Link Message Format
All netlink link messages share a common header (struct ifinfomsg
) which
is appended after the netlink header (struct nlmsghdr
).
The meaning of each field may differ depending on the message type. A
struct ifinfomsg
is defined in <linux/rtnetlink.h>
to represent the
header.
- Address Family (8bit)
-
The address family is usually set to
AF_UNSPEC
but may be specified inRTM_GETLINK
requests to limit the returned links to a specific address family. - Link Layer Type (16bit)
-
Currently only used in kernel→user messages to report the link layer type of a link. The value corresponds to the
ARPHRD_*
defines found in<linux/if_arp.h>
. Translation from/to strings can be done using the functions nl_llproto2str()/nl_str2llproto(). - Link Index (32bit)
-
Carries the interface index and is used to identify existing links.
- Flags (32bit)
-
In kernel→user messages the value of this field represents the current state of the link flags. In user→kernel messages this field is used to change flags or set the initial flag state of new links. Note that in order to change a flag, the flag must also be set in the Flags Change Mask field.
- Flags Change Mask (32bit)
-
The primary use of this field is to specify a mask of flags that should be changed based on the value of the Flags field. A special meaning is given to this field when present in link notifications, see TODO.
- Attributes (variable)
-
All link message types may carry netlink attributes. They are defined in the header file <linux/if_link.h> and share the prefix
IFLA_
.
3.1.2. Link Message Types
Lookup link by 1. interface index or 2. link name (IFLA_IFNAME
) and return
a single RTM_NEWLINK
message containing the link configuration and statistics
or a netlink error message if no such link was found.
Parameters:
-
Address family
-
If the address family is set to
PF_BRIDGE
, only bridging devices will be returned. -
If the address family is set to
PF_INET6
, only ipv6 enabled devices will be returned.
-
Flags:
-
NLM_F_DUMP
If set, all links will be returned in form of a multipart message.
Returns:
-
EINVAL
if neither interface nor link name are set -
ENODEV
if no link was found -
ENOBUFS
if allocation failed
Creates a new or updates an existing link. Only virtual links may be created but all links may be updated.
Flags:
-
NLM_F_CREATE
Create link if it does not exist -
NLM_F_EXCL
ReturnEEXIST
if link already exists
Returns:
-
EINVAL
malformed message or invalid configuration parameters -
EAFNOSUPPORT
if an address family specific configuration (IFLA_AF_SPEC
) is not supported. -
EOPNOTSUPP
if the link does not support modification of parameters -
EEXIST
ifNLM_F_EXCL
was set and the link exists alraedy -
ENODEV
if the link does not exist andNLM_F_CREATE
is not set
This message type is used in reply to a RTM_GETLINK
request and carries
the configuration and statistics of a link. If multiple links need to
be sent, the messages will be sent in form of a multipart message.
The message type is also used for notifications sent by the kernel to the
multicast group RTNLGRP_LINK
to inform about various link events. It is
therefore recommended to always use a separate link socket for link
notifications in order to separate between the two message types.
TODO: document how to detect different notifications
Lookup link by 1. interface index or 2. link name (IFLA_IFNAME
) and delete
the virtual link.
Returns:
-
EINVAL
if neither interface nor link name are set -
ENODEV
if no link was found -
ENOTSUPP
if the operation is not supported (not a virtual link)
Notification sent by the kernel to the multicast group RTNLGRP_LINK
when
-
a network device was unregistered (change == ~0)
-
a bridging device was deleted (address family will be
PF_BRIDGE
)
3.2. Get / List
3.2.1. Get list of links
To retrieve the list of links in the kernel, allocate a new link cache
using rtnl_link_alloc_cache()
to hold the links. It will automatically
construct and send a RTM_GETLINK
message requesting a dump of all links
from the kernel and feed the returned RTM_NEWLINK
to the internal link
message parser which adds the returned links to the cache.
#include <netlink/route/link.h>
int rtnl_link_alloc_cache(struct nl_sock *sk, int family, struct nl_cache **result)
The cache will contain link objects (struct rtnl_link
, see Link Object)
and can be accessed using the standard cache functions. By setting the
family
parameter to an address family other than AF_UNSPEC
, the resulting
cache will only contain links supporting the specified address family.
The following direct search functions are provided to search by interface index and by link name:
#include <netlink/route/link.h>
struct rtnl_link *rtnl_link_get(struct nl_cache *cache, int ifindex);
struct rtnl_link *rtnl_link_get_by_name(struct nl_cache *cache, const char *name);
struct nl_cache *cache;
struct rtnl_link *link;
if (rtnl_link_alloc_cache(sock, AF_UNSPEC, &cache)) < 0)
/* error */
if (!(link = rtnl_link_get_by_name(cache, "eth1")))
/* link does not exist */
/* do something with link */
rtnl_link_put(link);
nl_cache_put(cache);
3.2.2. Lookup Single Link (Direct Lookup)
If only a single link is of interest, the link can be looked up directly
without the use of a link cache using the function rtnl_link_get_kernel()
.
#include <netlink/route/link.h>
int rtnl_link_get_kernel(struct nl_sock *sk, int ifindex, const char *name, struct rtnl_link **result);
It will construct and send a RTM_GETLINK
request using the parameters
provided and wait for a RTM_NEWLINK
or netlink error message sent in
return. If the link exists, the link is returned as link object
(see Link Object).
struct rtnl_link *link;
if (rtnl_link_get_kernel(sock, 0, "eth1", &link) < 0)
/* error */
/* do something with link */
rtnl_link_put(link);
While using this function can save a substantial amount of bandwidth
on the netlink socket, the result will not be cached, subsequent calls
to rtnl_link_get_kernel() will always trigger sending a RTM_GETLINK
request. |
3.2.3. Translating interface index to link name
Applications which require to translate interface index to a link name or vice versa may use the following functions to do so. Both functions require a filled link cache to work with.
char *rtnl_link_i2name (struct nl_cache *cache, int ifindex, char *dst, size_t len);
int rtnl_link_name2i (struct nl_cache *cache, const char *name);
3.3. Add / Modify
Several types of virtual link can be added on the fly using the function
rtnl_link_add()
.
#include <netlink/route/link.h>
int rtnl_link_add(struct nl_sock *sk, struct rtnl_link *link, int flags);
3.4. Delete
The deletion of virtual links such as VLAN devices or dummy devices is done
using the function rtnl_link_delete()
. The link passed on to the function
can be a link from a link cache or it can be construct with the minimal
attributes needed to identify the link.
#include <netlink/route/link.h>
int rtnl_link_delete(struct nl_sock *sk, const struct rtnl_link *link);
The function will construct and send a RTM_DELLINK
request message and
returns any errors returned by the kernel.
struct rtnl_link *link;
if (!(link = rtnl_link_alloc()))
/* error */
rtnl_link_set_name(link, "my_vlan");
if (rtnl_link_delete(sock, link) < 0)
/* error */
rtnl_link_put(link);
3.5. Link Object
A link is represented by the structure struct rtnl_link
. Instances may be
created with the function rtnl_link_alloc()
or via a link cache (see
Get list of links) and are freed again using the function rtnl_link_put()
.
#include <netlink/route/link.h>
struct rtnl_link *rtnl_link_alloc(void);
void rtnl_link_put(struct rtnl_link *link);
3.5.1. Name
The name serves as unique, human readable description of the link. By default, links are named based on their type and then enumerated, e.g. eth0, eth1, ethn but they may be renamed at any time.
Kernels >= 2.6.11 support identification by link name.
#include <netlink/route/link.h>
void rtnl_link_set_name(struct rtnl_link *link, const char *name);
char *rtnl_link_get_name(struct rtnl_link *link);
Accepted link name format: [^ /]*
(maximum length: 15 characters)
3.5.2. Interface Index (Identifier)
The interface index is an integer uniquely identifying a link. If present in any link message, it will be used to identify an existing link.
#include <netlink/route/link.h>
void rtnl_link_set_ifindex(struct rtnl_link *link, int ifindex);
int rtnl_link_get_ifindex(struct rtnl_link *link);
3.5.3. Group
Each link can be assigned a numeric group identifier to group a bunch of links together and apply a set of changes to a group instead of just a single link.
#include <netlink/route/link.h>
void rtnl_link_set_group(struct rtnl_link *link, uint32_t group);
uint32_t rtnl_link_get_group(struct rtnl_link *link);
3.5.4. Link Layer Address
The link layer address (e.g. MAC address).
#include <netlink/route/link.h>
void rtnl_link_set_addr(struct rtnl_link *link, struct nl_addr *addr);
struct nl_addr *rtnl_link_get_addr(struct rtnl_link *link);
3.5.5. Broadcast Address
The link layer broadcast address
#include <netlink/route/link.h>
void rtnl_link_set_broadcast(struct rtnl_link *link, struct nl_addr *addr);
struct nl_addr *rtnl_link_get_broadcast(struct rtnl_link *link);
3.5.6. MTU (Maximum Transmission Unit)
The maximum transmission unit specifies the maximum packet size a network device can transmit or receive. This value may be lower than the capability of the physical network device.
#include <netlink/route/link.h>
void rtnl_link_set_mtu(struct rtnl_link *link, unsigned int mtu);
unsigned int rtnl_link_get_mtu(struct rtnl_link *link);
3.5.7. Flags
The flags of a link enable or disable various link features or inform about the state of the link.
#include <netlink/route/link.h>
void rtnl_link_set_flags(struct rtnl_link *link, unsigned int flags);
void rtnl_link_unset_flags(struct rtnl_link *link, unsigned int flags);
unsigned int rtnl_link_get_flags(struct rtnl_link *link);
IFF_UP
|
Link is up (administratively) |
IFF_RUNNING
|
Link is up and carrier is OK (RFC2863 OPER_UP) |
IFF_LOWER_UP
|
Link layer is operational |
IFF_DORMANT
|
Driver signals dormant |
IFF_BROADCAST
|
Link supports broadcasting |
IFF_MULTICAST
|
Link supports multicasting |
IFF_ALLMULTI
|
Link supports multicast routing |
IFF_DEBUG
|
Tell driver to do debugging (currently unused) |
IFF_LOOPBACK
|
Link loopback network |
IFF_POINTOPOINT
|
Point-to-point link |
IFF_NOARP
|
ARP is not supported |
IFF_PROMISC
|
Status of promiscuous mode |
IFF_MASTER
|
Master of a load balancer (bonding) |
IFF_SLAVE
|
Slave to a master link |
IFF_PORTSEL
|
Driver supports setting media type (only used by ARM ethernet) |
IFF_AUTOMEDIA
|
Link selects port automatically (only used by ARM ethernet) |
IFF_ECHO
|
Echo sent packets (testing feature, CAN only) |
IFF_DYNAMIC
|
Unused (BSD compatibility) |
IFF_NOTRAILERS
|
Unused (BSD compatibility) |
To translate a link flag to a link flag name or vice versa:
#include <netlink/route/link.h>
char *rtnl_link_flags2str(int flags, char *buf, size_t size);
int rtnl_link_str2flags(const char *flag_name);
3.5.8. Transmission Queue Length
The transmission queue holds packets before packets are delivered to the driver for transmission. It is usually specified in number of packets but the unit may be specific to the link type.
#include <netlink/route/link.h>
void rtnl_link_set_txqlen(struct rtnl_link *link, unsigned int txqlen);
unsigned int rtnl_link_get_txqlen(struct rtnl_link *link);
3.5.9. Operational Status
The operational status has been introduced to provide extended information
on the link status. Traditionally the link state has been described using
the link flags IFF_UP, IFF_RUNNING, IFF_LOWER_UP
, and IFF_DORMANT
which
was no longer sufficient for some link types.
#include <netlink/route/link.h>
void rtnl_link_set_operstate(struct rtnl_link *link, uint8_t state);
uint8_t rtnl_link_get_operstate(struct rtnl_link *link);
IF_OPER_UNKNOWN
|
Unknown state |
IF_OPER_NOTPRESENT
|
Link not present |
IF_OPER_DOWN
|
Link down |
IF_OPER_LOWERLAYERDOWN
|
L1 down |
IF_OPER_TESTING
|
Testing |
IF_OPER_DORMANT
|
Dormant |
IF_OPER_UP
|
Link up |
Translation of operational status code to string and vice versa:
#include <netlink/route/link.h>
char *rtnl_link_operstate2str(uint8_t state, char *buf, size_t size);
int rtnl_link_str2operstate(const char *name);
3.5.10. Mode
Currently known link modes are:
IF_LINK_MODE_DEFAULT
|
Default link mode |
IF_LINK_MODE_DORMANT
|
Limit upward transition to dormant |
#include <netlink/route/link.h>
void rtnl_link_set_linkmode(struct rtnl_link *link, uint8_t mode);
uint8_t rtnl_link_get_linkmode(struct rtnl_link *link);
Translation of link mode to string and vice versa:
char *rtnl_link_mode2str(uint8_t mode, char *buf, size_t len);
uint8_t rtnl_link_str2mode(const char *name);
3.5.11. IfAlias
Alternative name for the link, primarly used for SNMP IfAlias.
#include <netlink/route/link.h>
const char *rtnl_link_get_ifalias(struct rtnl_link *link);
void rtnl_link_set_ifalias(struct rtnl_link *link, const char *alias);
Length limit: 256
3.5.12. Hardware Type
#include <netlink/route/link.h>
#include <linux/if_arp.h>
void rtnl_link_set_arptype(struct rtnl_link *link, unsigned int arptype);
unsigned int rtnl_link_get_arptype(struct rtnl_link *link);
Translation of hardware type to character string and vice versa:
#include <netlink/utils.h>
char *nl_llproto2str(int arptype, char *buf, size_t len);
int nl_str2llproto(const char *name);
3.5.13. Qdisc
The name of the queueing discipline used by the link is of informational nature only. It is a read-only attribute provided by the kernel and cannot be modified. The set function is provided solely for the purpose of creating link objects to be used for comparison.
For more information on how to modify the qdisc of a link, see section Traffic Control.
#include <netlink/route/link.h>
void rtnl_link_set_qdisc(struct rtnl_link *link, const char *name);
char *rtnl_link_get_qdisc(struct rtnl_link *link);
3.5.14. Promiscuity
The number of subsystem currently depending on the link being promiscuous mode. A value of 0 indicates that the link is not in promiscuous mode. It is a read-only attribute provided by the kernel and cannot be modified. The set function is provided solely for the purpose of creating link objects to be used for comparison.
#include <netlink/route/link.h>
void rtnl_link_set_promiscuity(struct rtnl_link *link, uint32_t count);
uint32_t rtnl_link_get_promiscuity(struct rtnl_link *link);
3.5.15. RX/TX Queues
The number of RX/TX queues the link provides. The attribute is writable but will only be considered when creating a new network device via netlink.
#include <netlink/route/link.h>
void rtnl_link_set_num_tx_queues(struct rtnl_link *link, uint32_t nqueues);
uint32_t rtnl_link_get_num_tx_queues(struct rtnl_link *link);
void rtnl_link_set_num_rx_queues(struct rtnl_link *link, uint32_t nqueues);
uint32_t rtnl_link_get_num_rx_queues(struct rtnl_link *link);
3.5.16. Weight
This attribute is unused and obsoleted in all recent kernels.
3.6. Modules
3.6.1. Bonding
#include <netlink/route/link.h>
struct rtnl_link *link;
link = rtnl_link_bond_alloc();
rtnl_link_set_name(link, "my_bond");
/* requires admin privileges */
if (rtnl_link_add(sk, link, NLM_F_CREATE) < 0)
/* error */
rtnl_link_put(link);
3.6.2. VLAN
extern char * rtnl_link_vlan_flags2str(int, char *, size_t);
extern int rtnl_link_vlan_str2flags(const char *);
extern int rtnl_link_vlan_set_id(struct rtnl_link *, int);
extern int rtnl_link_vlan_get_id(struct rtnl_link *);
extern int rtnl_link_vlan_set_flags(struct rtnl_link *,
unsigned int);
extern int rtnl_link_vlan_unset_flags(struct rtnl_link *,
unsigned int);
extern unsigned int rtnl_link_vlan_get_flags(struct rtnl_link *);
extern int rtnl_link_vlan_set_ingress_map(struct rtnl_link *,
int, uint32_t);
extern uint32_t * rtnl_link_vlan_get_ingress_map(struct rtnl_link *);
extern int rtnl_link_vlan_set_egress_map(struct rtnl_link *,
uint32_t, int);
extern struct vlan_map *rtnl_link_vlan_get_egress_map(struct rtnl_link *,
int *);
struct rtnl_link *link;
int master_index;
/* lookup interface index of eth0 */
if (!(master_index = rtnl_link_name2i(link_cache, "eth0")))
/* error */
/* allocate new link object of type vlan */
link = rtnl_link_vlan_alloc();
/* set eth0 to be our master device */
rtnl_link_set_link(link, master_index);
rtnl_link_vlan_set_id(link, 10);
if ((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.3. MACVLAN
extern struct rtnl_link *rtnl_link_macvlan_alloc(void);
extern int rtnl_link_is_macvlan(struct rtnl_link *);
extern char * rtnl_link_macvlan_mode2str(int, char *, size_t);
extern int rtnl_link_macvlan_str2mode(const char *);
extern char * rtnl_link_macvlan_flags2str(int, char *, size_t);
extern int rtnl_link_macvlan_str2flags(const char *);
extern int rtnl_link_macvlan_set_mode(struct rtnl_link *,
uint32_t);
extern uint32_t rtnl_link_macvlan_get_mode(struct rtnl_link *);
extern int rtnl_link_macvlan_set_flags(struct rtnl_link *,
uint16_t);
extern int rtnl_link_macvlan_unset_flags(struct rtnl_link *,
uint16_t);
extern uint16_t rtnl_link_macvlan_get_flags(struct rtnl_link *);
struct rtnl_link *link;
int master_index;
struct nl_addr* addr;
/* lookup interface index of eth0 */
if (!(master_index = rtnl_link_name2i(link_cache, "eth0")))
/* error */
/* allocate new link object of type macvlan */
link = rtnl_link_macvlan_alloc();
/* set eth0 to be our master device */
rtnl_link_set_link(link, master_index);
/* set address of virtual interface */
addr = nl_addr_build(AF_LLC, ether_aton("00:11:22:33:44:55"), ETH_ALEN);
rtnl_link_set_addr(link, addr);
nl_addr_put(addr);
/* set mode of virtual interface */
rtnl_link_macvlan_set_mode(link, rtnl_link_macvlan_str2mode("bridge"));
if ((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.4. MACVTAP
extern struct rtnl_link *rtnl_link_macvtap_alloc(void);
extern int rtnl_link_is_macvtap(struct rtnl_link *);
extern char * rtnl_link_macvtap_mode2str(int, char *, size_t);
extern int rtnl_link_macvtap_str2mode(const char *);
extern char * rtnl_link_macvtap_flags2str(int, char *, size_t);
extern int rtnl_link_macvtap_str2flags(const char *);
extern int rtnl_link_macvtap_set_mode(struct rtnl_link *,
uint32_t);
extern uint32_t rtnl_link_macvtap_get_mode(struct rtnl_link *);
extern int rtnl_link_macvtap_set_flags(struct rtnl_link *,
uint16_t);
extern int rtnl_link_macvtap_unset_flags(struct rtnl_link *,
uint16_t);
extern uint16_t rtnl_link_macvtap_get_flags(struct rtnl_link *);
struct rtnl_link *link;
int master_index;
struct nl_addr* addr;
/* lookup interface index of eth0 */
if (!(master_index = rtnl_link_name2i(link_cache, "eth0")))
/* error */
/* allocate new link object of type macvtap */
link = rtnl_link_macvtap_alloc();
/* set eth0 to be our master device */
rtnl_link_set_link(link, master_index);
/* set address of virtual interface */
addr = nl_addr_build(AF_LLC, ether_aton("00:11:22:33:44:55"), ETH_ALEN);
rtnl_link_set_addr(link, addr);
nl_addr_put(addr);
/* set mode of virtual interface */
rtnl_link_macvtap_set_mode(link, rtnl_link_macvtap_str2mode("bridge"));
if ((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.5. VXLAN
extern struct rtnl_link *rtnl_link_vxlan_alloc(void);
extern int rtnl_link_is_vxlan(struct rtnl_link *);
extern int rtnl_link_vxlan_set_id(struct rtnl_link *, uint32_t);
extern int rtnl_link_vxlan_get_id(struct rtnl_link *, uint32_t *);
extern int rtnl_link_vxlan_set_group(struct rtnl_link *, struct nl_addr *);
extern int rtnl_link_vxlan_get_group(struct rtnl_link *, struct nl_addr **);
extern int rtnl_link_vxlan_set_link(struct rtnl_link *, uint32_t);
extern int rtnl_link_vxlan_get_link(struct rtnl_link *, uint32_t *);
extern int rtnl_link_vxlan_set_local(struct rtnl_link *, struct nl_addr *);
extern int rtnl_link_vxlan_get_local(struct rtnl_link *, struct nl_addr **);
extern int rtnl_link_vxlan_set_ttl(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_ttl(struct rtnl_link *);
extern int rtnl_link_vxlan_set_tos(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_tos(struct rtnl_link *);
extern int rtnl_link_vxlan_set_learning(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_learning(struct rtnl_link *);
extern int rtnl_link_vxlan_enable_learning(struct rtnl_link *);
extern int rtnl_link_vxlan_disable_learning(struct rtnl_link *);
extern int rtnl_link_vxlan_set_ageing(struct rtnl_link *, uint32_t);
extern int rtnl_link_vxlan_get_ageing(struct rtnl_link *, uint32_t *);
extern int rtnl_link_vxlan_set_limit(struct rtnl_link *, uint32_t);
extern int rtnl_link_vxlan_get_limit(struct rtnl_link *, uint32_t *);
extern int rtnl_link_vxlan_set_port_range(struct rtnl_link *,
struct ifla_vxlan_port_range *);
extern int rtnl_link_vxlan_get_port_range(struct rtnl_link *,
struct ifla_vxlan_port_range *);
extern int rtnl_link_vxlan_set_proxy(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_proxy(struct rtnl_link *);
extern int rtnl_link_vxlan_enable_proxy(struct rtnl_link *);
extern int rtnl_link_vxlan_disable_proxy(struct rtnl_link *);
extern int rtnl_link_vxlan_set_rsc(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_rsc(struct rtnl_link *);
extern int rtnl_link_vxlan_enable_rsc(struct rtnl_link *);
extern int rtnl_link_vxlan_disable_rsc(struct rtnl_link *);
extern int rtnl_link_vxlan_set_l2miss(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_l2miss(struct rtnl_link *);
extern int rtnl_link_vxlan_enable_l2miss(struct rtnl_link *);
extern int rtnl_link_vxlan_disable_l2miss(struct rtnl_link *);
extern int rtnl_link_vxlan_set_l3miss(struct rtnl_link *, uint8_t);
extern int rtnl_link_vxlan_get_l3miss(struct rtnl_link *);
extern int rtnl_link_vxlan_enable_l3miss(struct rtnl_link *);
extern int rtnl_link_vxlan_disable_l3miss(struct rtnl_link *);
struct rtnl_link *link;
struct nl_addr* addr;
/* allocate new link object of type vxlan */
link = rtnl_link_vxlan_alloc();
/* set interface name */
rtnl_link_set_name(link, "vxlan128");
/* set VXLAN network identifier */
if ((err = rtnl_link_vxlan_set_id(link, 128)) < 0)
/* error */
/* set multicast address to join */
if ((err = nl_addr_parse("239.0.0.1", AF_INET, &addr)) < 0)
/* error */
if ((err = rtnl_link_set_group(link, addr)) < 0)
/* error */
nl_addr_put(addr);
if ((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.6. IPIP
extern struct rtnl_link *rtnl_link_ipip_alloc(void);
extern int rtnl_link_ipip_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_ipip_set_link(struct rtnl_link *link, uint32_t index);
extern uint32_t rtnl_link_ipip_get_link(struct rtnl_link *link);
extern int rtnl_link_ipip_set_local(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_ipip_get_local(struct rtnl_link *link);
extern int rtnl_link_ipip_set_remote(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_ipip_get_remote(struct rtnl_link *link);
extern int rtnl_link_ipip_set_ttl(struct rtnl_link *link, uint8_t ttl);
extern uint8_t rtnl_link_ipip_get_ttl(struct rtnl_link *link);
extern int rtnl_link_ipip_set_tos(struct rtnl_link *link, uint8_t tos);
extern uint8_t rtnl_link_ipip_get_tos(struct rtnl_link *link);
extern int rtnl_link_ipip_set_pmtudisc(struct rtnl_link *link, uint8_t pmtudisc);
extern uint8_t rtnl_link_ipip_get_pmtudisc(struct rtnl_link *link);
extern int rtnl_link_ipip_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_ipip_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in_addr addr
/* allocate new link object of type ipip */
if(!(link = rtnl_link_ipip_alloc()))
/* error */
/* set ipip tunnel name */
if ((err = rtnl_link_set_name(link, "ipip-tun")) < 0)
/* error */
/* set link index */
if ((err = rtnl_link_ipip_set_link(link, if_index)) < 0)
/* error */
/* set local address */
inet_pton(AF_INET, "192.168.254.12", &addr.s_addr);
if ((err = rtnl_link_ipip_set_local(link, addr.s_addr)) < 0)
/* error */
/* set remote address */
inet_pton(AF_INET, "192.168.254.13", &addr.s_addr
if ((err = rtnl_link_ipip_set_remote(link, addr.s_addr)) < 0)
/* error */
/* set tunnel ttl */
if ((err = rtnl_link_ipip_set_ttl(link, 64)) < 0)
/* error */
if((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.7. IPGRE
extern struct rtnl_link *rtnl_link_ipgre_alloc(void);
extern int rtnl_link_ipgre_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_ipgre_set_link(struct rtnl_link *link, uint32_t index);
extern uint32_t rtnl_link_ipgre_get_link(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_iflags(struct rtnl_link *link, uint16_t iflags);
extern uint16_t rtnl_link_get_iflags(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_oflags(struct rtnl_link *link, uint16_t oflags);
extern uint16_t rtnl_link_get_oflags(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_ikey(struct rtnl_link *link, uint32_t ikey);
extern uint32_t rtnl_link_get_ikey(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_okey(struct rtnl_link *link, uint32_t okey);
extern uint32_t rtnl_link_get_okey(struct rtnl_link *link)
extern int rtnl_link_ipgre_set_local(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_ipgre_get_local(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_remote(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_ipgre_get_remote(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_ttl(struct rtnl_link *link, uint8_t ttl);
extern uint8_t rtnl_link_ipgre_get_ttl(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_tos(struct rtnl_link *link, uint8_t tos);
extern uint8_t rtnl_link_ipgre_get_tos(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_pmtudisc(struct rtnl_link *link, uint8_t pmtudisc);
extern uint8_t rtnl_link_ipgre_get_pmtudisc(struct rtnl_link *link);
extern int rtnl_link_ipgre_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_ipgre_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in_addr addr
/* allocate new link object of type ipgre */
if(!(link = rtnl_link_ipgre_alloc()))
/* error */
/* set ipgre tunnel name */
if ((err = rtnl_link_set_name(link, "ipgre-tun")) < 0)
/* error */
/* set link index */
if ((err = rtnl_link_ipgre_set_link(link, if_index)) < 0)
/* error */
/* set local address */
inet_pton(AF_INET, "192.168.254.12", &addr.s_addr);
if ((err = rtnl_link_ipgre_set_local(link, addr.s_addr)) < 0)
/* error */
/* set remote address */
inet_pton(AF_INET, "192.168.254.13", &addr.s_addr
if ((err = rtnl_link_ipgre_set_remote(link, addr.s_addr)) < 0)
/* error */
/* set tunnel ttl */
if ((err = rtnl_link_ipgre_set_ttl(link, 64)) < 0)
/* error */
if((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.8. SIT
extern struct rtnl_link *rtnl_link_sit_alloc(void);
extern int rtnl_link_sit_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_sit_set_link(struct rtnl_link *link, uint32_t index);
extern uint32_t rtnl_link_sit_get_link(struct rtnl_link *link);
extern int rtnl_link_sit_set_iflags(struct rtnl_link *link, uint16_t iflags);
extern uint16_t rtnl_link_get_iflags(struct rtnl_link *link);
extern int rtnl_link_sit_set_oflags(struct rtnl_link *link, uint16_t oflags);
extern uint16_t rtnl_link_get_oflags(struct rtnl_link *link);
extern int rtnl_link_sit_set_ikey(struct rtnl_link *link, uint32_t ikey);
extern uint32_t rtnl_link_get_ikey(struct rtnl_link *link);
extern int rtnl_link_sit_set_okey(struct rtnl_link *link, uint32_t okey);
extern uint32_t rtnl_link_get_okey(struct rtnl_link *link)
extern int rtnl_link_sit_set_local(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_sit_get_local(struct rtnl_link *link);
extern int rtnl_link_sit_set_remote(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_sit_get_remote(struct rtnl_link *link);
extern int rtnl_link_sit_set_ttl(struct rtnl_link *link, uint8_t ttl);
extern uint8_t rtnl_link_sit_get_ttl(struct rtnl_link *link);
extern int rtnl_link_sit_set_tos(struct rtnl_link *link, uint8_t tos);
extern uint8_t rtnl_link_sit_get_tos(struct rtnl_link *link);
extern int rtnl_link_sit_set_pmtudisc(struct rtnl_link *link, uint8_t pmtudisc);
extern uint8_t rtnl_link_sit_get_pmtudisc(struct rtnl_link *link);
extern int rtnl_link_sit_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_sit_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in_addr addr
/* allocate new link object of type sit */
if(!(link = rtnl_link_sit_alloc()))
/* error */
/* set sit tunnel name */
if ((err = rtnl_link_set_name(link, "sit-tun")) < 0)
/* error */
/* set link index */
if ((err = rtnl_link_sit_set_link(link, if_index)) < 0)
/* error */
/* set local address */
inet_pton(AF_INET, "192.168.254.12", &addr.s_addr);
if ((err = rtnl_link_sit_set_local(link, addr.s_addr)) < 0)
/* error */
/* set remote address */
inet_pton(AF_INET, "192.168.254.13", &addr.s_addr
if ((err = rtnl_link_sit_set_remote(link, addr.s_addr)) < 0)
/* error */
/* set tunnel ttl */
if ((err = rtnl_link_sit_set_ttl(link, 64)) < 0)
/* error */
if((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.9. IPVTI
extern struct rtnl_link *rtnl_link_ipvti_alloc(void);
extern int rtnl_link_ipvti_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_ipvti_set_link(struct rtnl_link *link, uint32_t index);
extern uint32_t rtnl_link_ipvti_get_link(struct rtnl_link *link);
extern int rtnl_link_ipvti_set_ikey(struct rtnl_link *link, uint32_t ikey);
extern uint32_t rtnl_link_ipvti_get_ikey(struct rtnl_link *link);
extern int rtnl_link_ipvti_set_okey(struct rtnl_link *link, uint32_t okey);
extern uint32_t rtnl_link_ipvti_get_okey(struct rtnl_link *link)
extern int rtnl_link_ipvti_set_local(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_ipvti_get_local(struct rtnl_link *link);
extern int rtnl_link_ipvti_set_remote(struct rtnl_link *link, uint32_t addr);
extern uint32_t rtnl_link_ipvti_get_remote(struct rtnl_link *link);
extern int rtnl_link_ipvti_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_ipvti_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in_addr addr
/* allocate new link object of type ipvti */
if(!(link = rtnl_link_ipvti_alloc()))
/* error */
/* set ipvti tunnel name */
if ((err = rtnl_link_set_name(link, "ipvti-tun")) < 0)
/* error */
/* set link index */
if ((err = rtnl_link_ipvti_set_link(link, if_index)) < 0)
/* error */
/* set local address */
inet_pton(AF_INET, "192.168.254.12", &addr.s_addr);
if ((err = rtnl_link_ipvti_set_local(link, addr.s_addr)) < 0)
/* error */
/* set remote address */
inet_pton(AF_INET, "192.168.254.13", &addr.s_addr
if ((err = rtnl_link_ipvti_set_remote(link, addr.s_addr)) < 0)
/* error */
if((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
3.6.10. IP6TNL
extern struct rtnl_link *rtnl_link_ip6_tnl_alloc(void);
extern int rtnl_link_ip6_tnl_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_ip6_tnl_set_link(struct rtnl_link *link, uint32_t index);
extern uint32_t rtnl_link_ip6_tnl_get_link(struct rtnl_link *link);
extern int rtnl_link_ip6_tnl_set_local(struct rtnl_link *link, struct in6_addr *);
extern int rtnl_link_ip6_tnl_get_local(struct rtnl_link *link, struct in6_addr *);
extern int rtnl_link_ip6_tnl_set_remote(struct rtnl_link *link, struct in6_addr *);
extern int rtnl_link_ip6_tnl_get_remote(struct rtnl_link *link, struct in6_addr *);
extern int rtnl_link_ip6_tnl_set_ttl(struct rtnl_link *link, uint8_t ttl);
extern uint8_t rtnl_link_ip6_tnl_get_ttl(struct rtnl_link *link);
extern int rtnl_link_ip6_tnl_set_tos(struct rtnl_link *link, uint8_t tos);
extern uint8_t rtnl_link_ip6_tnl_get_tos(struct rtnl_link *link);
extern int rtnl_link_ip6_tnl_set_encaplimit(struct rtnl_link *link, uint8_t encap_limit);
extern uint8_t rtnl_link_ip6_tnl_get_encaplimit(struct rtnl_link *link);
extern int rtnl_link_ip6_tnl_set_flags(struct rtnl_link *link, uint32_t flags);
extern uint32_t rtnl_link_ip6_tnl_get_flags(struct rtnl_link *link);
extern uint32_t rtnl_link_ip6_tnl_get_flowinfo(struct rtnl_link *link);
extern int rtnl_link_ip6_tnl_set_flowinfo(struct rtnl_link *link, uint32_t flowinfo);
extern int rtnl_link_ip6_tnl_set_proto(struct rtnl_link *link, uint8_t proto);
extern uint8_t rtnl_link_ip6_tnl_get_proto(struct rtnl_link *link);
extern int rtnl_link_ip6_tnl_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_ip6_tnl_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in6_addr addr
link = rtnl_link_ip6_tnl_alloc();
rtnl_link_set_name(link, "ip6tnl-tun");
rtnl_link_ip6_tnl_set_link(link, if_index);
inet_pton(AF_INET6, "2607:f0d0:1002:51::4", &addr);
rtnl_link_ip6_tnl_set_local(link, &addr);
inet_pton(AF_INET6, "2607:f0d0:1002:52::5", &addr);
rtnl_link_ip6_tnl_set_remote(link, &addr);
rtnl_link_add(sk, link, NLM_F_CREATE);
rtnl_link_put(link);
3.6.11. IP6GRE
extern int rtnl_link_is_ip6gre(struct rtnl_link *link);
extern struct rtnl_link *rtnl_link_ip6gre_alloc(void);
extern int rtnl_link_ip6gre_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_ip6gre_set_link(struct rtnl_link *link, uint32_t index);
extern int rtnl_link_ip6gre_get_link(struct rtnl_link *link, uint32_t *index);
extern int rtnl_link_ip6gre_set_iflags(struct rtnl_link *link, uint16_t iflags);
extern int rtnl_link_ip6gre_get_iflags(struct rtnl_link *link, uint16_t *iflags);
extern int rtnl_link_ip6gre_set_oflags(struct rtnl_link *link, uint16_t oflags);
extern int rtnl_link_ip6gre_get_oflags(struct rtnl_link *link, uint16_t *oflags);
extern int rtnl_link_ip6gre_set_ikey(struct rtnl_link *link, uint32_t ikey);
extern int rtnl_link_ip6gre_get_ikey(struct rtnl_link *link, uint32_t *ikey);
extern int rtnl_link_ip6gre_set_okey(struct rtnl_link *link, uint32_t okey);
extern int rtnl_link_ip6gre_get_okey(struct rtnl_link *link, uint32_t *okey);
extern int rtnl_link_ip6gre_set_local(struct rtnl_link *link, struct in6_addr *local);
extern int rtnl_link_ip6gre_get_local(struct rtnl_link *link, struct in6_addr *local);
extern int rtnl_link_ip6gre_set_remote(struct rtnl_link *link, struct in6_addr *remote);
extern int rtnl_link_ip6gre_get_remote(struct rtnl_link *link, struct in6_addr *remote);
extern int rtnl_link_ip6gre_set_ttl(struct rtnl_link *link, uint8_t ttl);
extern int rtnl_link_ip6gre_get_ttl(struct rtnl_link *link, uint8_t *ttl);
extern int rtnl_link_ip6gre_set_encaplimit(struct rtnl_link *link, uint8_t encaplimit);
extern int rtnl_link_ip6gre_get_encaplimit(struct rtnl_link *link, uint8_t *encaplimit);
extern int rtnl_link_ip6gre_set_flowinfo(struct rtnl_link *link, uint32_t flowinfo);
extern int rtnl_link_ip6gre_get_flowinfo(struct rtnl_link *link, uint32_t *flowinfo);
extern int rtnl_link_ip6gre_set_flags(struct rtnl_link *link, uint32_t flags);
extern int rtnl_link_ip6gre_get_flags(struct rtnl_link *link, uint32_t *flags);
extern int rtnl_link_ip6gre_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_ip6gre_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in6_addr addr
link = rtnl_link_ip6gre_alloc();
rtnl_link_set_name(link, "ip6gre-tun");
rtnl_link_ip6gre_set_link(link, if_index);
inet_pton(AF_INET6, "2607:f0d0:1002:51::4", &addr);
rtnl_link_ip6gre_set_local(link, &addr);
inet_pton(AF_INET6, "2607:f0d0:1002:52::5", &addr);
rtnl_link_ip6gre_set_remote(link, &addr);
rtnl_link_add(sk, link, NLM_F_CREATE);
rtnl_link_put(link);
3.6.12. IP6VTI
int rtnl_link_is_ip6vti(struct rtnl_link *link);
extern struct rtnl_link *rtnl_link_ip6vti_alloc(void);
extern int rtnl_link_ip6vti_add(struct nl_sock *sk, const char *name);
extern int rtnl_link_ip6vti_set_link(struct rtnl_link *link, uint32_t index);
extern int rtnl_link_ip6vti_get_link(struct rtnl_link *link, uint32_t *index);
extern int rtnl_link_ip6vti_set_ikey(struct rtnl_link *link, uint32_t ikey);
extern int rtnl_link_ip6vti_get_ikey(struct rtnl_link *link, uint32_t *ikey);
extern int rtnl_link_ip6vti_set_okey(struct rtnl_link *link, uint32_t okey);
extern int rtnl_link_ip6vti_get_okey(struct rtnl_link *link, uint32_t *okey);
extern int rtnl_link_ip6vti_set_local(struct rtnl_link *link, struct in6_addr *local);
extern int rtnl_link_ip6vti_get_local(struct rtnl_link *link, struct in6_addr *remote);
extern int rtnl_link_ip6vti_set_remote(struct rtnl_link *link, struct in6_addr *remote);
extern int rtnl_link_ip6vti_get_remote(struct rtnl_link *link, struct in6_addr *remote);
extern int rtnl_link_ip6vti_set_fwmark(struct rtnl_link *link, uint32_t fwmark);
extern int rtnl_link_ip6vti_get_fwmark(struct rtnl_link *link, uint32_t *fwmark);
struct rtnl_link *link
struct in6_addr addr
link = rtnl_link_ip6vti_alloc();
rtnl_link_set_name(link, "ip6vti-tun");
rtnl_link_ip6vti_set_link(link, if_index);
inet_pton(AF_INET6, "2607:f0d0:1002:51::4", &addr);
rtnl_link_ip6vti_set_local(link, &addr);
inet_pton(AF_INET6, "2607:f0d0:1002:52::5", &addr);
rtnl_link_ip6vti_set_remote(link, &addr);
rtnl_link_add(sk, link, NLM_F_CREATE);
rtnl_link_put(link);
3.6.13. XFRMI
extern struct rtnl_link *rtnl_link_xfrmi_alloc(void);
extern int rtnl_link_xfrmi_set_link(struct rtnl_link *link, uint32_t index);
extern uint32_t rtnl_link_xfrmi_get_link(struct rtnl_link *link);
extern int rtnl_link_xfrmi_set_if_id(struct rtnl_link *link, uint32_t if_id);
extern uint32_t rtnl_link_xfrmi_get_if_id(struct rtnl_link *link);
struct rtnl_link *link
struct in_addr addr
/* allocate new link object of type xfrmi */
if(!(link = rtnl_link_xfrmi_alloc()))
/* error */
/* set xfrmi name */
if ((err = rtnl_link_set_name(link, "ipsec0")) < 0)
/* error */
/* set link index */
if ((err = rtnl_link_xfrmi_set_link(link, if_index)) < 0)
/* error */
/* set if_id */
if ((err = rtnl_link_xfrmi_set_if_id(link, 16)) < 0)
/* error */
if((err = rtnl_link_add(sk, link, NLM_F_CREATE)) < 0)
/* error */
rtnl_link_put(link);
4. Neighbouring
5. Routing
6. Traffic Control
The traffic control architecture allows the queueing and prioritization of packets before they are enqueued to the network driver. To a limited degree it is also possible to take control of network traffic as it enters the network stack.
The architecture consists of three different types of modules:
-
Queueing disciplines (qdisc) provide a mechanism to enqueue packets in different forms. They may be used to implement fair queueing, prioritization of differentiated services, enforce bandwidth limitations, or even to simulate network behaviour such as packet loss and packet delay. Qdiscs can be classful in which case they allow traffic classes described in the next paragraph to be attached to them.
-
Traffic classes (class) are supported by several qdiscs to build a tree structure for different types of traffic. Each class may be assigned its own set of attributes such as bandwidth limits or queueing priorities. Some qdiscs even allow borrowing of bandwidth between classes.
-
Classifiers (cls) are used to decide which qdisc/class the packet should be enqueued to. Different types of classifiers exists, ranging from classification based on protocol header values to classification based on packet priority or firewall marks. Additionally most classifiers support extended matches (ematch) which allow extending classifiers by a set of matcher modules, and actions which allow classifiers to take actions such as mangling, mirroring, or even rerouting of packets.
The default qdisc used on all network devices is pfifo_fast
.
Network devices which do not require a transmit queue such as the
loopback device do not have a default qdisc attached. The pfifo_fast
qdisc provides three bands to prioritize interactive traffic over bulk
traffic. Classification is based on the packet priority (diffserv).
If the network device provides multiple transmit queues the mq
qdisc is used by default. It will automatically create a separate
class for each transmit queue available and will also replace
the single per device tx lock with a per queue lock.
The following figure illustrates a possible combination of different queueing and classification modules to implement quality of service needs.
6.1. Traffic Control Object
Each type traffic control module (qdisc, class, classifier) is
represented by its own structure. All of them are based on the traffic
control object represented by struct rtnl_tc
which itself is based
on the generic object struct nl_object
to make it cacheable. The
traffic control object contains all attributes, implementation details
and statistics that are shared by all of the traffic control object
types.
It is not possible to allocate a struct rtnl_tc
object, instead the
actual tc object types must be allocated directly using
rtnl_qdisc_alloc()
, rtnl_class_alloc()
, rtnl_cls_alloc()
and
then casted to struct rtnl_tc
using the TC_CAST()
macro.
#include <netlink/route/tc.h>
#include <netlink/route/qdisc.h>
struct rtnl_qdisc *qdisc;
/* Allocation of a qdisc object */
qdisc = rtnl_qdisc_alloc();
/* Cast the qdisc to a tc object using TC_CAST() to use rtnl_tc_ functions. */
rtnl_tc_set_mpu(TC_CAST(qdisc), 64);
/* Free the qdisc object */
rtnl_qdisc_put(qdisc);
6.1.1. Attributes
- Handle
-
The handle uniquely identifies a tc object and is used to refer to other tc objects when constructing tc trees.
void rtnl_tc_set_handle(struct rtnl_tc *tc, uint32_t handle); uint32_t rtnl_tc_get_handle(struct rtnl_tc *tc);
- Interface Index
-
The interface index specifies the network device the traffic object is attached to. The function
rtnl_tc_set_link()
should be preferred when setting the interface index. It stores the reference to the link object in the tc object and allows retrieving themtu
andlinktype
automatically.void rtnl_tc_set_ifindex(struct rtnl_tc *tc, int ifindex); void rtnl_tc_set_link(struct rtnl_tc *tc, struct rtnl_link *link); int rtnl_tc_get_ifindex(struct rtnl_tc *tc);
- Link Type
-
The link type specifies the kind of link that is used by the network device (e.g. ethernet, ATM, …). It is derived automatically when the network device is specified with
rtnl_tc_set_link()
. The default fallback isARPHRD_ETHER
(ethernet).void rtnl_tc_set_linktype(struct rtnl_tc *tc, uint32_t type); uint32_t rtnl_tc_get_linktype(struct rtnl_tc *tc);
- Kind
-
The kind character string specifies the type of qdisc, class, classifier. Setting the kind results in the module specific structure being allocated. Therefore it is imperative to call
rtnl_tc_set_kind()
before using any type specific API functions such asrtnl_htb_set_rate()
.int rtnl_tc_set_kind(struct rtnl_tc *tc, const char *kind); char *rtnl_tc_get_kind(struct rtnl_tc *tc);
- MPU
-
The Minimum Packet Unit specifies the minimum packet size which will be transmitted ever be seen by this traffic control object. This value is used for rate calculations. Not all object implementations will make use of this value. The default value is 0.
void rtnl_tc_set_mpu(struct rtnl_tc *tc, uint32_t mpu); uint32_t rtnl_tc_get_mpu(struct rtnl_tc *tc);
- MTU
-
The Maximum Transmission Unit specifies the maximum packet size which will be transmitted. The value is derived from the link specified with
rtnl_tc_set_link()
if not overwritten withrtnl_tc_set_mtu()
. If no link and MTU is specified, the value defaults to 1500 (ethernet).void rtnl_tc_set_mtu(struct rtnl_tc *tc, uint32_t mtu); uint32_t rtnl_tc_get_mtu(struct rtnl_tc *tc);
- Overhead
-
The overhead specifies the additional overhead per packet caused by the network layer. This value can be used to correct packet size calculations if the packet size on the wire does not match the packet size seen by the kernel. The default value is 0.
void rtnl_tc_set_overhead(struct rtnl_tc *tc, uint32_t overhead); uint32_t rtnl_tc_get_overhead(struct rtnl_tc *tc);
- Parent
-
Specifies the parent traffic control object. The parent is identified by its handle. Special values are:
-
TC_H_ROOT
: attach tc object directly to network device (root qdisc, root classifier) -
TC_H_INGRESS
: same asTC_H_ROOT
but on the ingress side of the network stack.void rtnl_tc_set_parent(struct rtnl_tc *tc, uint32_t parent); uint32_t rtnl_tc_get_parent(struct rtnl_tc *tc);
-
- Statistics
-
Generic statistics, see Accessing Statistics for additional information.
uint64_t rtnl_tc_get_stat(struct rtnl_tc *tc, enum rtnl_tc_stat id);
6.1.2. Accessing Statistics
The traffic control object holds a set of generic statistics. Not all traffic control modules will make use of all of these statistics. Some modules may provide additional statistics via their own APIs.
ID | Type | Description |
---|---|---|
Counter |
Total # of packets transmitted |
|
Counter |
Total # of bytes transmitted |
|
Rate |
Current bytes/s rate |
|
Rate |
Current packets/s rate |
|
Rate |
Current length of the queue |
|
Rate |
# of packets currently backlogged |
|
Counter |
# of packets dropped |
|
Counter |
# of packets requeued |
|
Counter |
# of packets that exceeded the limit |
RTNL_TC_RATE_BPS and RTNL_TC_RATE_PPS only return meaningful
values if a rate estimator has been configured. |
#include <netlink/route/tc.h>
uint64_t drops, qlen;
drops = rtnl_tc_get_stat(TC_CAST(qdisc), RTNL_TC_DROPS);
qlen = rtnl_tc_get_stat(TC_CAST(qdisc), RTNL_TC_QLEN);
6.1.3. Rate Table Calculations
TODO
6.2. Queueing Discipline (qdisc)
The queueing discipline (qdisc) is used to implement fair queueing, prioritization or rate control. It provides a enqueue() and dequeue() operation. Whenever a network packet leaves the networking stack over a network device, be it a physical or virtual device, it will be enqueued to a qdisc unless the device is queueless. The enqueue() operation is followed by an immediate call to dequeue() for the same qdisc to eventually retrieve a packet which can be scheduled for transmission by the driver. Additionally, the networking stack runs a watchdog which polls the qdisc regularly to dequeue and send packets even if no new packets are being enqueued.
This additional watchdog is required due to the fact that qdiscs may hold on to packets and not return any packets upon dequeue() in order to enforce bandwidth restrictions.
The figure illustrates a trivial example of a classless qdisc consisting of three bands (queues). Use of multiple bands is a common technique in qdiscs to implement fair queueing between flows or prioritize differentiated services.
Classless qdiscs can be regarded as a blackbox, their inner workings can only be steered using the configuration parameters provided by the qdisc. There is no way of taking influence on the structure of its internal queues itself.
Classful qdiscs allow for the queueing structure and classification process to be created by the user.
The figure above shows a classful qdisc with a classifier attached to
it which will make the decision whether to enqueue a packet to traffic
class 1:1
or 1:2
. Unlike with classless qdiscs, classful qdiscs
allow the classification process and the structure of the queues to be
defined by the user. This allows for complex traffic class rules to
be applied.
Qdisc | Classful | Description |
---|---|---|
ATM |
Yes |
FIXME |
Blackhole |
No |
This qdisc will drop all packets passed to it. |
CBQ |
Yes |
The CBQ (Class Based Queueing) is a classful qdisc which allows creating traffic classes and enforce bandwidth limitations for each class. |
DRR |
Yes |
The DRR (Deficit Round Robin) scheduler is a classful qdisc implementing fair queueing. Each class is assigned a quantum specifying the maximum number of bytes that can be served per round. Unused quantum at the end of the round is carried over to the next round. |
DSMARK |
Yes |
FIXME |
FIFO |
No |
FIXME |
GRED |
No |
FIXME |
HFSC |
Yes |
FIXME |
HTB |
Yes |
FIXME |
mq |
Yes |
FIXME |
multiq |
Yes |
FIXME |
netem |
No |
FIXME |
Prio |
Yes |
FIXME |
RED |
Yes |
FIXME |
SFQ |
Yes |
FIXME |
TBF |
Yes |
FIXME |
teql |
No |
FIXME |
Attribute | C Interface |
---|---|
|
struct rtnl_qdisc *rtnl_qdisc_alloc(void);
void rtnl_qdisc_put(struct rtnl_qdisc *qdisc);
|
|
int rtnl_qdisc_build_add_request(struct rtnl_qdisc *qdisc, int flags,
struct nl_msg **result);
int rtnl_qdisc_add(struct nl_sock *sock, struct rtnl_qdisc *qdisc,
int flags);
|
|
int rtnl_qdisc_build_change_request(struct rtnl_qdisc *old,
struct rtnl_qdisc *new,
struct nl_msg **result);
int rtnl_qdisc_change(struct nl_sock *sock, struct rtnl_qdisc *old,
struct rtnl_qdisc *new);
|
|
int rtnl_qdisc_build_delete_request(struct rtnl_qdisc *qdisc,
struct nl_msg **result);
int rtnl_qdisc_delete(struct nl_sock *sock, struct rtnl_qdisc *qdisc);
|
|
int rtnl_qdisc_alloc_cache(struct nl_sock *sock,
struct nl_cache **cache);
struct rtnl_qdisc *rtnl_qdisc_get(struct nl_cache *cache, int, uint32_t);
struct rtnl_qdisc *rtnl_qdisc_get_by_parent(struct nl_cache *, int, uint32_t);
|
6.2.1. Retrieving Qdisc Configuration
The function rtnl_qdisc_alloc_cache() is used to retrieve the current
qdisc configuration in the kernel. It will construct a RTM_GETQDISC
netlink message, requesting the complete list of qdiscs configured in
the kernel.
#include <netlink/route/qdisc.h>
struct nl_cache *all_qdiscs;
if (rtnl_link_alloc_cache(sock, &all_qdiscs) < 0)
/* error while retrieving qdisc cfg */
The cache can be accessed using the following functions:
-
Search qdisc with matching ifindex and handle:
struct rtnl_qdisc *rtnl_qdisc_get(struct nl_cache *cache, int ifindex, uint32_t handle);
-
Search qdisc with matching ifindex and parent:
struct rtnl_qdisc *rtnl_qdisc_get_by_parent(struct nl_cache *cache, int ifindex , uint32_t parent);
-
Or any of the generic cache functions (e.g. nl_cache_search(), nl_cache_dump(), etc.)
struct rtnl_qdisc *qdisc;
int ifindex;
ifindex = rtnl_link_get_ifindex(eth0_obj);
/* search for qdisc on eth0 with handle 1:0 */
if (!(qdisc = rtnl_qdisc_get(all_qdiscs, ifindex, TC_HANDLE(1, 0))))
/* no such qdisc found */
nl_object_dump(OBJ_CAST(qdisc), NULL);
rtnl_qdisc_put(qdisc);
6.2.2. Adding a Qdisc
In order to add a new qdisc to the kernel, a qdisc object needs to be allocated. It will hold all attributes of the new qdisc.
#include <netlink/route/qdisc.h>
struct rtnl_qdisc *qdisc;
if (!(qdisc = rtnl_qdisc_alloc()))
/* OOM error */
The next step is to specify all generic qdisc attributes using the tc object interface described in the section Attributes.
The following attributes must be specified: - IfIndex - Parent - Kind
/* Attach qdisc to device eth0 */
rtnl_tc_set_link(TC_CAST(qdisc), eth0_obj);
/* Make this the root qdisc */
rtnl_tc_set_parent(TC_CAST(qdisc), TC_H_ROOT);
/* Set qdisc identifier to 1:0, if left unspecified, a handle will be generated by the kernel. */
rtnl_tc_set_handle(TC_CAST(qdisc), TC_HANDLE(1, 0));
/* Make this a HTB qdisc */
rtnl_tc_set_kind(TC_CAST(qdisc), "htb");
After specifying the qdisc kind (rtnl_tc_set_kind()) the qdisc type specific interface can be used to set attributes which are specific to the respective qdisc implementations:
/* HTB feature: Make unclassified packets go to traffic class 1:5 */
rtnl_htb_set_defcls(qdisc, TC_HANDLE(1, 5));
Finally, the qdisc is ready to be added and can be passed on to the function rntl_qdisc_add() which takes care of constructing a netlink message requesting the addition of the new qdisc, sends the message to the kernel and waits for the response by the kernel. The function returns 0 if the qdisc has been added or updated successfully or a negative error code if an error occured.
The kernel operation for updating and adding a qdisc is the same. Therefore when calling rtnl_qdisc_add() any existing qdisc with matching handle will be updated unless the flag NLM_F_EXCL is specified. |
The following flags may be specified:
NLM_F_CREATE
|
Create qdisc if it does not exist, otherwise -NLE_OBJ_NOTFOUND is returned. |
NLM_F_REPLACE
|
If another qdisc is already attached to the same parent and their handles mismatch, replace the qdisc instead of returning -EEXIST. |
NLM_F_EXCL
|
Return -NLE_EXISTS if a qdisc with matching handles exists already. |
The function rtnl_qdisc_add() requires administrator privileges. |
/* Submit request to kernel and wait for response */
err = rtnl_qdisc_add(sock, qdisc, NLM_F_CREATE);
/* Return the qdisc object to free memory resources */
rtnl_qdisc_put(qdisc);
if (err < 0) {
fprintf(stderr, "Unable to add qdisc: %s\n", nl_geterror(err));
return err;
}
6.2.3. Deleting a qdisc
#include <netlink/route/qdisc.h>
struct rtnl_qdisc *qdisc;
qdisc = rtnl_qdisc_alloc();
rtnl_tc_set_link(TC_CAST(qdisc), eth0_obj);
rtnl_tc_set_parent(TC_CAST(qdisc), TC_H_ROOT);
rtnl_qdisc_delete(sock, qdisc)
rtnl_qdisc_put(qdisc);
The function rtnl_qdisc_delete() requires administrator privileges. |
6.2.4. HTB - Hierarchical Token Bucket
- Default Class
-
The default class is the fallback class to which all traffic which remained unclassified is directed to. If no default class or an invalid default class is specified, packets are transmitted directly to the next layer (direct transmissions).
uint32_t rtnl_htb_get_defcls(struct rtnl_qdisc *qdisc); int rtnl_htb_set_defcls(struct rtnl_qdisc *qdisc, uint32_t defcls);
- Rate to Quantum (r2q)
-
TODO
uint32_t rtnl_htb_get_rate2quantum(struct rtnl_qdisc *qdisc); int rtnl_htb_set_rate2quantum(struct rtnl_qdisc *qdisc, uint32_t rate2quantum);
- Priority
-
uint32_t rtnl_htb_get_prio(struct rtnl_class *class); int rtnl_htb_set_prio(struct rtnl_class *class, uint32_t prio);
- Rate
-
The rate (bytes/s) specifies the maximum bandwidth an individual class can use without borrowing. The rate of a class should always be greater or erqual than the rate of its children.
uint32_t rtnl_htb_get_rate(struct rtnl_class *class); int rtnl_htb_set_rate(struct rtnl_class *class, uint32_t ceil);
- Ceil Rate
-
The ceil rate specifies the maximum bandwidth an individual class can use. This includes bandwidth that is being borrowed from other classes. Ceil defaults to the class rate implying that by default the class will not borrow. The ceil rate of a class should always be greater or erqual than the ceil rate of its children.
uint32_t rtnl_htb_get_ceil(struct rtnl_class *class); int rtnl_htb_set_ceil(struct rtnl_class *class, uint32_t ceil);
- Burst
-
TODO
uint32_t rtnl_htb_get_rbuffer(struct rtnl_class *class); int rtnl_htb_set_rbuffer(struct rtnl_class *class, uint32_t burst);
- Ceil Burst
-
TODO
uint32_t rtnl_htb_get_cbuffer(struct rtnl_class *); int rtnl_htb_set_cbuffer(struct rtnl_class *, uint32_t);
- Quantum
-
TODO
uint32_t rtnl_htb_get_quantum(struct rtnl_class *class); int rtnl_htb_set_quantum(struct rtnl_class *class, uint32_t quantum);
6.3. Class
UNSPEC | TC_H_ROOT | 0:pY | pX:pY | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UNSPEC |
|
|
||||||||||
0:hY |
|
|
||||||||||
hX:hY |
|
if pX != hX return -EINVAL
|
6.4. Classifier (cls)
TODO
6.5. ClassID Management
TODO
6.6. Packet Location Aliasing (pktloc)
TODO
6.7. Traffic Control Module API
TODO