olLY

TELECOM @y, INSTITUT
SudParis ;.0= POLYTECHNIQUE
m”’/

& DE PARIS
(3 &

Serverless computing

Mathieu Bacou
mathieu.bacougtelecom-sudparis.eu

A nd

2022 - 2023 CSC5004 — CLOUD COMPUTING ARCHITECTURES Institut Mines-Télécom

Actually, containers are hard

* An environment is required
- Overhead of building containers and pods

* A management layer is required
- Overhead of configuring service availability

* Backends are required

- Overhead of management of non-core features
* Database servers, monitoring...

- Always running servers
* Can scale down to 0, but then latency overhead on next request

CSC5004 Serverless computing 2

Introducing: serverless

* Real cloud-native applications: only provide - -
for the business core features N -

* All management and execution provided b '
cloud platform

- From execution environment to service availability

e

Function-as-a-Service
Serverless < +

Backend-as-a-Service

CSC5004 Serverless computing 3

Backend-as-a-Service

* Common backend components in applicatioptaae s
architectures & |
- Database servers, message queues, (object

* Better served by the cloud provider
- Mutualized, no overhead for the user, available

- Provides an ecosystem of components
* Beware vendor lock-in!

* Elasticity requirement: scale quickly, up and
down to zero, with the FaaS workload

CSC5004 Serverless computing 4

Function-as-a-Service

* Run backend code without long-lived serversg
- Execution environments are spawned on-demagfid
- All managed by the cloud platform

* The unit of execution is a code block: the functic
- Applications are mostly event-driven
- Parallelism at the cloud function level
- Technically, also concurrency inside the cloud function

* Central feature of serverless

CSC5004 Serverless computing 5

Comparison with micro-services

web server - business core database server

data storage

: . . . platform
Micro-services architecture in the cloud

triggers

' business function 1

data storage

database server

API| gateway

_business function 2a Lbusiness function 2b

BaaS 5 FaaS 5 BaaS

Serverless architecture in the cloud
CSC5004 Serverless computing 6

Benefits of FaaS

* Elasticity: granularity of the request hand
- Quick scaling, down to zero

* Deployment: just write code and uploa
- Quick experimentation, update

* Cost: pay only the compute time you need

- No request = no function running = no resource
= NO cost

- Roughly: Cost = Compute Time x Reserved Memory

CSC5004 Serverless computing 7

Demo: Apache OpenWhisk

* Create new function
* Manually invoke function
* Use API gateway

* Use triggers
* Warm and cold starts

ﬁ‘ 6A5HeEnWhisk

CSC5004 Serverless computing 8

FaaS application architecture

* Extract-Transform-Load (ETL) paradigm
get data, process data, output data

- Event-driven Side-effect: modifying
: : : o 'global
* Execution when a request arrives or a trigger is fired :g obal state
- Stateless functions: no side-effects --------------------—- 'In the cloud:

* Use Baa$S services to store business data

* Rely on API gateway or client to keep request state

[source]

'modifying the DB,
itouching storage...

By

business function 2b

business function 2a
triggers ‘
data storage

database server

Example of the Extract-Transform-Load paradigm in Serverless

CSC5004 Serverless computing

FaaS application architecture

* Extract-Transform-Load (ETL) paradigm:
get data, process data, output data

- Event-driven Side-effect: modifying
: : : o 'global
* Execution when a request arrives or a trigger is fired :g obal state
- Stateless functions: no side-effects --------------------—- 'In the cloud:

'modifying the DB,
. itouching storage...
* Rely on API gateway or client to keep request state 'while processing data

* Use Baa$S services to store business data

—————————————————————————————————

1
|
Action i JSON
:
]

Programming model of Apache OpenWhisk
CSC5004 Serverless computing 10

FaaS application architecture

* Platform-level parallelism
- No need for multi-process management

* Chains and graphs of function dependencies

- Chain function calls to implement more complex features
keeping fine granularity

- Higher-level chaining: dependency graph (MapReduce...)
* In practice: collection of code pieces + platform-level
configuration
- Provided environments: NodelS, Python, Java
- Custom environments (Docker images)
- Opaque binary executables

CSC5004 Serverless computing 11

Internals of Apache OpenW hisk

API access pomt" ----------------
——————————————————— 1
: Maln databasel--- L Controller R R I Icentral ContrO”er +
------------------- 1= 'load balancer
-------------------- iMessaging system
-
1
1
................... !
. Invocation nodes‘--;
\
|

Architecture of Apache OpenWhisk

CSC5004 Serverless computing

12

Internals: function 1invocation

0)(after authentication and other tasks)4% .'
1)Spawn new Docker container with
2)Inject action code "
3)Execute action with parameters
4)Retrieve result

5)Destroy Docker container - OPTIMIZEDE

CSC5004 Serverless computing 13

Function container management

* Very slow (for serving request) to spin up new containgi
- Around 400ms
* Reuse existing containers!
- Functions are stateless
* Cold starts and warm starts
- No runtime container available: cold start
_ _ _ 40 times faster!
- Available runtime container: warm start ;

* Smart management of container pool
- Pool of pre-warmed containers

- Trade-off between occupied resources and execution latency
* Containers kept warm use resources but are not billed to the user!

CSC5004 Serverless computing 14

Limits of serverless

* Latency: cold starts

* Compatibility with serverful applicatio
- What about stateful applications? (no loca

- What about massively parallel applications?
* Isolation between functions: MPI is hard

- FaaS is not fit for long-running computations
* Will cost more while being less efficient

* Fresh, active area of research!

CSC5004 Serverless computing 15

Serverless computing

* Function-as-a-Service for core busmess
and features |

* Backend-as-a-Service to provide
architectural services

Most cloud-native paradigm

- Fine-grained, elastic, pay-as-you-go
* Not suited to all applications

- Yet?

CSC5004 Serverless computing 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

