
CSC5004 — CLOUD COMPUTING ARCHITECTURES2022 – 2023

Serverless computing
Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu



CSC5004 Serverless computing 2

Actually, containers are hard
● An environment is required

– Overhead of building containers and pods
● A management layer is required

– Overhead of configuring service availability
● Backends are required

– Overhead of management of non-core features
● Database servers, monitoring…

– Always running servers
● Can scale down to 0, but then latency overhead on next request



CSC5004 Serverless computing 3

Introducing: serverless
● Real cloud-native applications: only provide code 

for the business core features
● All management and execution provided by the 

cloud platform
– From execution environment to service availability

Serverless
Function-as-a-Service

Backend-as-a-Service
+



CSC5004 Serverless computing 4

Backend-as-a-Service
● Common backend components in application 

architectures
– Database servers, message queues, (object) storage…

● Better served by the cloud provider
– Mutualized, no overhead for the user, available
– Provides an ecosystem of components

● Beware vendor lock-in!

● Elasticity requirement: scale quickly, up and 
down to zero, with the FaaS workload



CSC5004 Serverless computing 5

Function-as-a-Service
● Run backend code without long-lived servers

– Execution environments are spawned on-demand
– All managed by the cloud platform

● The unit of execution is a code block: the function
– Applications are mostly event-driven
– Parallelism at the cloud function level
– Technically, also concurrency inside the cloud function

● Central feature of serverless



CSC5004 Serverless computing 6

web serverweb server

Comparison with micro-services

Micro-services architecture in the cloud

web server business corebusiness core database server

data storage

orchestrator

business function 1

API gateway business function 2a business function 2b

data storage

database server

business function 1business function 1business function 1

business function 2a business function 2bbusiness function 2b

Serverless architecture in the cloud

Provided 
by cloud 
platform

triggers

BaaSFaaSBaaS



CSC5004 Serverless computing 7

Benefits of FaaS
● Elasticity: granularity of the request handler

– Quick scaling, down to zero
● Deployment: just write code and upload

– Quick experimentation, update
● Cost: pay only the compute time you need

– No request = no function running = no resource 
= no cost

– Roughly: Cost = Compute Time x Reserved Memory



CSC5004 Serverless computing 8

Demo: Apache OpenWhisk
● Create new function
● Manually invoke function
● Use API gateway
● Use triggers
● Warm and cold starts



CSC5004 Serverless computing 9

FaaS application architecture
● Extract-Transform-Load (ETL) paradigm:

get data, process data, output data

– Event-driven
● Execution when a request arrives or a trigger is fired

– Stateless functions: no side-effects
● Use BaaS services to store business data
● Rely on API gateway or client to keep request state

Side-effect: modifying 
global state

In the cloud: 
modifying the DB, 
touching storage... 
while processing data

Transform LoadExtract

business function 2a
business function 2b

database server

business function 2a
business function 2bbusiness function 2b

Example of the Extract-Transform-Load paradigm in Serverless

triggers
data storage

source



CSC5004 Serverless computing 10

FaaS application architecture
● Extract-Transform-Load (ETL) paradigm:

get data, process data, output data

– Event-driven
● Execution when a request arrives or a trigger is fired

– Stateless functions: no side-effects
● Use BaaS services to store business data
● Rely on API gateway or client to keep request state

Side-effect: modifying 
global state

In the cloud: 
modifying the DB, 
touching storage... 
while processing data

Transform LoadExtract

Programming model of Apache OpenWhisk



CSC5004 Serverless computing 11

FaaS application architecture
● Platform-level parallelism

– No need for multi-process management
● Chains and graphs of function dependencies

– Chain function calls to implement more complex features while 
keeping fine granularity

– Higher-level chaining: dependency graph (MapReduce…)
● In practice: collection of code pieces + platform-level 

configuration
– Provided environments: NodeJS, Python, Java
– Custom environments (Docker images)
– Opaque binary executables



CSC5004 Serverless computing 12

Internals of Apache OpenWhisk

Architecture of Apache OpenWhisk

API access point

Main database

Invocation nodes

Central controller +
load balancer

Messaging system

Function invoker



CSC5004 Serverless computing 13

Internals: function invocation
0)(after authentication and other tasks)
1)Spawn new Docker container with runtime
2)Inject action code
3)Execute action with parameters
4)Retrieve result
5)Destroy Docker container OPTIMIZED



CSC5004 Serverless computing 14

Function container management
● Very slow (for serving request) to spin up new container

– Around 400ms
● Reuse existing containers!

– Functions are stateless
● Cold starts and warm starts

– No runtime container available: cold start
– Available runtime container: warm start

● Smart management of container pool
– Pool of pre-warmed containers
– Trade-off between occupied resources and execution latency

● Containers kept warm use resources but are not billed to the user!

40 times faster!



CSC5004 Serverless computing 15

Limits of serverless
● Latency: cold starts
● Compatibility with serverful applications

– What about stateful applications? (no local state)
– What about massively parallel applications?

● Isolation between functions: MPI is hard
– FaaS is not fit for long-running computations

● Will cost more while being less efficient

● Fresh, active area of research!



CSC5004 Serverless computing 16

Serverless computing
● Function-as-a-Service for core business code 

and features
● Backend-as-a-Service to provide 

architectural services
● Most cloud-native paradigm

– Fine-grained, elastic, pay-as-you-go
● Not suited to all applications

– Yet?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

