
CSC5004 — CLOUD COMPUTING ARCHITECTURES2022 – 2023

Serverless computing
Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu



CSC5004 Serverless computing 2

Actually, containers are hard
● An environment is required

– Overhead of building containers and pods
● A management layer is required

– Overhead of configuring service availability
● Backends are required

– Overhead of management of non-core features
● Database servers, monitoring…

– Always running servers
● Can scale down to 0, but then latency overhead on next request
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Introducing: serverless
● Real cloud-native applications: only provide code 

for the business core features
● All management and execution provided by the 

cloud platform
– From execution environment to service availability

Serverless
Function-as-a-Service

Backend-as-a-Service
+
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Backend-as-a-Service
● Common backend components in application 

architectures
– Database servers, message queues, (object) storage…

● Better served by the cloud provider
– Mutualized, no overhead for the user, available
– Provides an ecosystem of components

● Beware vendor lock-in!

● Elasticity requirement: scale quickly, up and 
down to zero, with the FaaS workload
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Function-as-a-Service
● Run backend code without long-lived servers

– Execution environments are spawned on-demand
– All managed by the cloud platform

● The unit of execution is a code block: the function
– Applications are mostly event-driven
– Parallelism at the cloud function level
– Technically, also concurrency inside the cloud function

● Central feature of serverless
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web serverweb server

Comparison with micro-services

Micro-services architecture in the cloud

web server business corebusiness core database server

data storage

orchestrator

business function 1

API gateway business function 2a business function 2b

data storage

database server

business function 1business function 1business function 1

business function 2a business function 2bbusiness function 2b

Serverless architecture in the cloud

Provided 
by cloud 
platform

triggers

BaaSFaaSBaaS
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Benefits of FaaS
● Elasticity: granularity of the request handler

– Quick scaling, down to zero
● Deployment: just write code and upload

– Quick experimentation, update
● Cost: pay only the compute time you need

– No request = no function running = no resource 
= no cost

– Roughly: Cost = Compute Time x Reserved Memory
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Demo: Apache OpenWhisk
● Create new function
● Manually invoke function
● Use API gateway
● Use triggers
● Warm and cold starts



CSC5004 Serverless computing 9

FaaS application architecture
● Extract-Transform-Load (ETL) paradigm:

get data, process data, output data

– Event-driven
● Execution when a request arrives or a trigger is fired

– Stateless functions: no side-effects
● Use BaaS services to store business data
● Rely on API gateway or client to keep request state

Side-effect: modifying 
global state

In the cloud: 
modifying the DB, 
touching storage... 
while processing data

Transform LoadExtract

business function 2a
business function 2b

database server

business function 2a
business function 2bbusiness function 2b

Example of the Extract-Transform-Load paradigm in Serverless

triggers
data storage

source
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FaaS application architecture
● Extract-Transform-Load (ETL) paradigm:

get data, process data, output data

– Event-driven
● Execution when a request arrives or a trigger is fired

– Stateless functions: no side-effects
● Use BaaS services to store business data
● Rely on API gateway or client to keep request state

Side-effect: modifying 
global state

In the cloud: 
modifying the DB, 
touching storage... 
while processing data

Transform LoadExtract

Programming model of Apache OpenWhisk
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FaaS application architecture
● Platform-level parallelism

– No need for multi-process management
● Chains and graphs of function dependencies

– Chain function calls to implement more complex features while 
keeping fine granularity

– Higher-level chaining: dependency graph (MapReduce…)
● In practice: collection of code pieces + platform-level 

configuration
– Provided environments: NodeJS, Python, Java
– Custom environments (Docker images)
– Opaque binary executables



CSC5004 Serverless computing 12

Internals of Apache OpenWhisk

Architecture of Apache OpenWhisk

API access point

Main database

Invocation nodes

Central controller +
load balancer

Messaging system

Function invoker
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Internals: function invocation
0)(after authentication and other tasks)
1)Spawn new Docker container with runtime
2)Inject action code
3)Execute action with parameters
4)Retrieve result
5)Destroy Docker container OPTIMIZED
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Function container management
● Very slow (for serving request) to spin up new container

– Around 400ms
● Reuse existing containers!

– Functions are stateless
● Cold starts and warm starts

– No runtime container available: cold start
– Available runtime container: warm start

● Smart management of container pool
– Pool of pre-warmed containers
– Trade-off between occupied resources and execution latency

● Containers kept warm use resources but are not billed to the user!

40 times faster!
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Limits of serverless
● Latency: cold starts
● Compatibility with serverful applications

– What about stateful applications? (no local state)
– What about massively parallel applications?

● Isolation between functions: MPI is hard
– FaaS is not fit for long-running computations

● Will cost more while being less efficient

● Fresh, active area of research!
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Serverless computing
● Function-as-a-Service for core business code 

and features
● Backend-as-a-Service to provide 

architectural services
● Most cloud-native paradigm

– Fine-grained, elastic, pay-as-you-go
● Not suited to all applications

– Yet?
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