
ServerlessServerless

ComputingComputing

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

Télécom SudParis, IMT, IP Paris, Inria

2024–2025 CSC5004 — Cloud Computing Infrastructures

1 / 16

Do we really want Containers?Do we really want Containers?

An environment is required
Overhead of building containers and pods

A management layer is required
Overhead of configuring service availability (orchestrator)

Backends are required
Overhead of management of support features

Database servers, monitoring…
Always-on servers

May scale down to 0, but then latency overhead on next request

2 / 16

Introducing: ServerlessIntroducing: Serverless

Real cloud-native applications: only provide code to implement business core features
A continuation from micro-services

Management and execution service provided by the cloud platform
From execution environment to service availability

Serverless = Function-as-a-Service + Backend-as-a-Service

3 / 16

Backend-as-a-Service (BaaS)Backend-as-a-Service (BaaS)

Common backend components in applications architectures
Database servers, messages queues, (object) storage, Pub/Sub services…

A good thing: better served by the cloud provider
Mutualized, no overhead for the user, always available
Provides an ecosystem of ready-to-use components

But beware of vendor lock-in!
Elasticty requirements: scale in synchronization with the FaaS workload (see next)

dynamically
quickly
up and also down to zero

4 / 16

Function-as-a-Service (FaaS)Function-as-a-Service (FaaS)

Run application code without fixed long-lived servers
Execution runtimes are spawned on-demand
Fully managed by the cloud FaaS platform

Unit of execution, and unit of application architecture: a function
I.e., a singular feature of the application

Applications are (mostly) event-driven
Triggered by requests or events from BaaS sources

Parallelism at the level of the cloud function, managed by the platform
Technically, concurrency is possible inside the cloud function

Core feature of serverless

5 / 16

Comparison with micro-servicesComparison with micro-services

API gateway: managed routing of HTTP REST requests to functions
Triggers: HTTP request, message queue, event stream, complex orchestration, timer, storage, etc.

Micro-services architecture.

Serverless architecture.

6 / 16

Benefits of Function-as-a-ServiceBenefits of Function-as-a-Service

Elasticity: granularity of the request handler allows more precise scaling
Quick scaling, each function can scale down to 0

Deployment: just write code and upload it
Quick experimentation, quick update

Cost: pay only the compute time you need
No request = no running function = no resource = no cost
Cost  =  Compute time × Reserved Memory (approximately)

7 / 16

Demo: Apache OpenWhiskDemo: Apache OpenWhisk

1. Create a new function
2. Manually invoke a function
3. Use the API gateway to invoker a function as the backend to REST requests
4. Use triggers to integrate function invocation
5. Present warm and cold starts

Apache OpenWhisk logo.

8 / 16

Application architecture with Function-Application architecture with Function-

as-a-Service (1/2)as-a-Service (1/2)

Most often following the paradigm of Extract – Transform – Load (ETL)
1. Get data
2. Process data
3. Output data

Fit for event-driven processing
Execute when a request arrives or a trigger is fired

Stateless functions: no single instance is tied to a request
Consecutive invocations may be served by any instance (including new ones)
FaaS uses BaaS to store business data
FaaS relies on the API gateway or on the client to keep transient state

Example of the Extract – Transform – Load paradigm in Serverless computing.

9 / 16

Application architecture with Function-as-a-Service (2/2)Application architecture with Function-as-a-Service (2/2)

Most often following the paradigm of Extract – Transform – Load (ETL)
1. Get data
2. Process data
3. Output data

Fit for event-driven processing
Execute when a request arrives or a trigger is fired

Stateless functions: no single instance is tied to a request
Consecutive invocations may be served by any instance (including new ones)
FaaS uses BaaS to store business data
FaaS relies on the API gateway or on the client to keep transient state

Programming model of Apache OpenWhisk.

10 / 16

What makes a FaaS applicationWhat makes a FaaS application

Naturally multi-process thanks to platform-level parallelism
Chains and graphs of processing dependency between functions

Chain function calls to implement complex features with fine control granularity
Next level: handle a dependency graph (MapReduce pattern, etc.)

Some vendors integrate it, often must be done manually
In practice: platform-level configuration + code pieces
To execute functions:

Use provided environments: NodeJS, Python, Java…
Or provide a custom environment: Docker images, opaque binary executables

11 / 16

Internals of Apache OpenWhiskInternals of Apache OpenWhisk

Architecture of Apache OpenWhisk.

12 / 16

Invocation of a functionInvocation of a function

1. Control authentication, rights to invoke, housekeeping…
2. Spawn a new container with the function’s runtime
3. Inject the function’s code
4. Execute the function with the request’s parameters
5. Retrieve the function’s result
6. Destroy the container

Optimizations for steps 2 and 6

13 / 16

Management of function runtimeManagement of function runtime

containerscontainers

Creating a new runtime container is slow (compared to serving a request)
Hundreds of milliseconds vs. execution time of 100ms

Solution: reuse existing containers!
Functions are stateless: all containers with a function’s runtime are equivalent

Cold starts and warm starts
No runtime container available: cold start
Available runtime (ready and idle): warm start

Cold starts are around 40 times slower!
Depends on function runtime, language…

Importance of managing the runtime container pool
Concerns:

Maintain a pool of pre-warmed containers to speed up first requests
But balance between occupied resources and execution latency

Pre-warmed containers use resources that are not billed to the user!

14 / 16

Limits of serverless computingLimits of serverless computing

Latency:
cold starts
overhead of FaaS platform

Compatibility with serverful applications
What about stateful applications?

No per-request local state
What about massively parallel applications?

Strong isolation between functions makes MPI hard
FaaS is not fit for long-running processing

Costs more, is less efficient
Still a recent cloud paradigm!

Promising for easy cloud access and cloud-native applications

15 / 16

Serverless computingServerless computing

Function-as-a-Service for core business code and features
Backend-as-a-Service to provide architectural services
Cloud-native paradigm

Fine-grained, elastic, pay-as-you-go, no-management-overhead
But not suited to all applications

Yet?

16 / 16

