Serverless
Computing

NORDICAPIS.COM

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu
Télécom SudParis, IMT, IP Paris, Inria

2024-2025 CSC5004 — Cloud Computing Infrastructures

1/ 16

Do we really want Containers?

* Anenvironment is required
= Qverhead of building containers and pods
* A management layer is required
= QOverhead of configuring service availability (orchestrator)
* Backends are required
= Overhead of management of support features
o Database servers, monitoring...
= Always-on servers
o May scale down to O, but then latency overhead on next request

Introducing: Serverless

* Real cloud-native applications: only provide code to implement business core features
= A continuation from micro-services

* Management and execution service provided by the cloud platform
= From execution environment to service availability

* Serverless = Function-as-a-Service + Backend-as-a-Service

Backend-as-a-Service (BaaS)

* Common backend components in applications architectures
= Database servers, messages queues, (object) storage, Pub/Sub services...
* Agood thing: better served by the cloud provider
= Mutualized, no overhead for the user, always available
= Provides an ecosystem of ready-to-use components
o But beware of vendor lock-in!
» Elasticty requirements: scale in synchronization with the FaaS workload (see next)
= dynamically
= quickly
= up and also down to zero

Function-as-a-Service (FaaS)

* Run application code without fixed long-lived servers
= Execution runtimes are spawned on-demand
= Fully managed by the cloud FaaS platform
Unit of execution, and unit of application architecture: a function
= |.e., asingular feature of the application
Applications are (mostly) event-driven
= Triggered by requests or events from Baa$S sources
Parallelism at the level of the cloud function, managed by the platform
= Technically, concurrency is possible inside the cloud function
Core feature of serverless

Comparison with micro-services

* APl gateway: managed routing of HTTP REST requests to functions
» Triggers: HTTP request, message queue, event stream, complex orchestration, timer, storage, etc.

orchestrator

R T S, R e

web server 1 business core database server
Provided by the T
cloud platform data storage

Micro-services architecture.

business function 1 : data storage
API gateway business function2a [l business function 2b ; database server
BaaS FaaS BaaS

Serverless architecture.

Benefits of Function-as-a-Service

» Elasticity: granularity of the request handler allows more precise scaling
= Quick scaling, each function can scale downto O
* Deployment: just write code and upload it
= Quick experimentation, quick update
* Cost: pay only the compute time you need
= No request = no running function = no resource = no cost
= Cost = Compute time x Reserved Memory (approximately)

Demo: Apache OpenWhisk

1. Create a new function

2. Manually invoke a function
3. Use the API gateway to invoker a function as the backend to REST requests

4. Use triggers to integrate function invocation
5. Present warm and cold starts

f‘ 6A|;HeEnWhisk

Apache OpenWhisk logo.

Application architecture with Function-
as-a-Service (1/2)

* Most often following the paradigm of Extract - Transform - Load (ETL)
1. Get data
2. Process data
3. Output data
» Fit for event-driven processing
= Execute when arequest arrives or a trigger is fired
» Stateless functions: no single instance is tied to a request
= Consecutive invocations may be served by any instance (including new ones)
= FaaS uses BaaS to store business data
= FaaSrelies on the APl gateway or on the client to keep transient state

Jﬁ business function 2b

business function 2a

m -

Example of the Extract - Transform - Load paradigm in Serverless computing.

Application architecture with Function-as-a-Service (2/2)

* Most often following the paradigm of Extract - Transform - Load (ETL)
1. Get data
2. Process data
3. Output data
» Fit for event-driven processing
= Execute when arequest arrives or a trigger is fired
» Stateless functions: no single instance is tied to a request
= Consecutive invocations may be served by any instance (including new ones)
= FaaS uses BaaS to store business data
= FaaSrelies on the APl gateway or on the client to keep transient state

Target Namespace

\V

Trigger

Rule

(O— Action i

Programming model of Apache OpenWhisk.

JSON \

What makes a FaaS application

Naturally multi-process thanks to platform-level parallelism
Chains and graphs of processing dependency between functions
= Chain function calls to implement complex features with fine control granularity
= Next level: handle a dependency graph (MapReduce pattern, etc.)
o Some vendors integrate it, often must be done manually
In practice: platform-level configuration + code pieces
To execute functions:
= Use provided environments: NodeJS, Python, Java...
= Or provide a custom environment: Docker images, opaque binary executables

Internals of Apache OpenWhisk

S — : Kubernetes node Kubernetes node
. Invocation nodes ----.\
........................ o oker invoker

L e L L L T TRy |

Architecture of Apache OpenWhisk.

Invocation of a function

1. Control authentication, rights to invoke, housekeeping...
2.Spawn a new container with the function’s runtime
3. Inject the function’s code
4. Execute the function with the request’s parameters
5. Retrieve the function’s result
6. Destroy the container
* Optimizations for steps 2 and 6

Management of function runtime
containers

» Creating a new runtime container is slow (compared to serving a request)

= Hundreds of milliseconds vs. execution time of 100ms
e Solution: reuse existing containers!

= Functions are stateless: all containers with a function’s runtime are equivalent
e Cold starts and warm starts

= No runtime container available: cold start

= Available runtime (ready and idle): warm start
* Cold starts are around 40 times slower!

= Depends on function runtime, language...
* Importance of managing the runtime container pool
* Concerns:

= Maintain a pool of pre-warmed containers to speed up first requests

= But balance between occupied resources and execution latency

o Pre-warmed containers use resources that are not billed to the user!

Limits of serverless computing

e Latency:
= coldstarts
= overhead of FaaS platform
* Compatibility with serverful applications
= What about stateful applications?
o No per-request local state
= What about massively parallel applications?
o Strongisolation between functions makes MPI hard
= FaaSis not fit for long-running processing
o Costs more, is less efficient
» Still arecent cloud paradigm!
= Promising for easy cloud access and cloud-native applications

Serverless computing

Function-as-a-Service for core business code and features
Backend-as-a-Service to provide architectural services
Cloud-native paradigm

= Fine-grained, elastic, pay-as-you-go, no-management-overhead
But not suited to all applications

= Yet?

