
NET5039 — SYSTEMS, VIRTUALIZATION AND SECURITY2022 — 2023

Containers and
Orchestration: a
Security Perspective
Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

NET5039 Containers and orchestration 2

Cloud applications
● Traditional applications are monolithic

– Everything tightly coupled
– On full servers, managed from OS to deployment

● This is a constraint

● In the cloud, you don’t manage real servers
– Shared servers with virtualization
– Get new resources (“server”) on-the-fly

● Let’s go further!

NET5039 Containers and orchestration 3

Cloud native applications

● No OS management by the user
● Component-level application scalability

NET5039 Containers and orchestration 4

Introducing: containers
● Cloud users don’t want to run OSes

– They want to run their applications
● How to share cloud resources closer to the applications?

– Virtualization layer just between the OS and the application
● Virtualize the OS for multiple applications at the same

time!
– In other words, containers are OS-level virtualization

● An OS executes a container engine that runs containers
– Docker, LXC, OpenVZ...

NET5039 Containers and orchestration 5

Actors of OS-level virtualization
I.Container engine
II.Container

NET5039 Containers and orchestration 6

Containers and engines
● Engine:

– Manage container lifecycle: create container from image, start
and stop containers...

– Handle out-of-container tasks: virtual networking…
– Many engines for many uses: generic, HPC, scientific…

● With interchangeable underlying container engine cores

● A container image packages an application and its
runtime
– Business core, dependencies, semi-static configuration
– Registries of reusable images (DockerHub, local…)

● Typically written in a portable, constant manner

NET5039 Containers and orchestration 7

Containers
● Container: isolated and limited virtual copy

of the host OS
– Deploys the image to “fill” the virtual copy

● Isolation: users, devices, processes…
– Virtual filesystem: built from container image

● Limits: CPU, memory, I/O…
– Also monitoring

NET5039 Containers and orchestration 8

Components

container

operating system

hardware

app

CPU

CPU

memory

virtual
memory

network adapter

disk

virtual
FS

virtual
network
adapter

GPU

container
engine

container

app

virtual
memory

virtual
FS

virtual
network
adapter

Stack for OS-level virtualization

NET5039 Containers and orchestration 9

Demo: Docker
● Creation and usage of a Docker container:

– Run an interactive image
– Pull and run a daemon service
– List images, monitor containers

● Docker is a bit low-level for applications:
docker-compose for multi-component apps

NET5039 Containers and orchestration 10

Build containers: two ways
1)Interactively

– From a base distribution image (Ubuntu, Alpine…)
– Use package manager
– docker commit to tag the current state of the container

as an image
– Testing and experimenting

2)Dockerfile
– DSL to describe how to install and configure app
– Proper method: clean, reusable, reproducible

NET5039 Containers and orchestration 11

Build containers: Dockerfile
FROM alpine

RUN apk add --no-cache perl

COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

ENTRYPOINT ["/usr/local/bin/cowsay"]

Start from base image

● And then: docker build -t namespace/name:tag .
● Can start from empty image: FROM scratch

– Used by distribution base images: build from archive
● Also declare users, volumes, network ports

Execute commands to build
and configure the image

Add external files

Set default executable

Dockerfile for docker/cowsay

NET5039 Containers and orchestration 12

Internals of Docker
I.Isolation
II.Limit
III.Operation control
IV.Isolation of the virtual filesystem

Operation control by capabilities

Limits by cgroups Isolation by namespaces

NET5039 Containers and orchestration 13

Isolation: namespaces

1) mnt: mount points
– I.e. filesystem

2) pid: PID hierarchy
– First process in the container is PID 1

3) net: network facilities
– Interfaces, ports, protocol stack…

4) ipc: interprocess communication
– Semaphore, message queue, shared

mem

5) user: users, groups and privileges
– Mappings of UIDs/GIDs between host

and container
● UID 0 is root, available in container: if you

escape the container, you are root!

6) uts: hostname
– Stands for “UNIX TimeSharing”, or said

otherwise: multi-user in UNIX

7) time: clock
8) cgroup: control groups (next slide)

● Provide an isolated view of the OS
– chroot on steroids (CHange ROOT of a process)

● 8 dimensions:

NET5039 Containers and orchestration 14

Limit: control groups (cgroups)

1) cpu: CPU time

2) cpuacct: CPU accounting

3) cpuset: CPU pinning

4) memory: memory and swap

5) devices: access rights to devices

6) freeze: freeze, suspend
processes

7) net_cls: network packets classes

8) net_prio: network packets
priority

9) blkio: block devices (disk) I/O

10)perf_event: performance mon.

11)hugetlb: huge pages usage

12)pids: number of processes

● Constrain resource usage
– Also monitoring facilities

● 12 dimensions:

NET5039 Containers and orchestration 15

Demo: namespaces & cgroups
● Spawn new process in namespaces
● Put process in control groups

– Set limit and monitor resource usage
● Demonstrated filesystem interface

– Also a programmatic interface with syscalls

NET5039 Containers and orchestration 16

Operation control: caps and MAC

1) CHOWN: change owner

2) SETGID/SETUID: change process
GIDs/UIDs

3) KILL: send signals

4) NET_ADMIN: network admin

5) NET_RAW: use RAW sockets

6) SYS_ADMIN: system admin (mount...)

7) SYS_CHROOT: change root path of
process

8) SYS_MODULE: (un)load kernel modules

9) SYS_NICE: change process niceness

10)SYS_TIME: change system clock

● Capabilities: selectively drop root privileges
– Remove privileges from a “root” container

● Mandatory Access Control (MAC): system-level operational policies
– Linux Security Modules (LSM): SELinux, AppArmor...

● 40 capabilities (CAP_XXX):

NET5039 Containers and orchestration 17

Virtual filesystem
● Isolated filesystem: mnt namespace

– Also with chroot
● Two parts:

– Container image: basis for virtual filesystem
● Docker specifics, see next

– Volumes: external data storage
● Mounted into the virtual FS of the container

NET5039 Containers and orchestration 18

Container image with Docker
● An image has layers

– Like git commits
– Reusable by other images, caching
– docker image history IMAGE_NAME

● Layers from Dockerfile are read-only
– For execution, add a writeable layer
– Use copy-on-write to modify files from

lower layers
● Union file system: virtual FS driver

for layers
– Many drivers: AUFS, OverlayFS,

devicemapper...

container

container image

base image

layer 1

writeable layer

volume

layer 2

layer 3

layer 1

layer 2

Container image layers and volumes

NET5039 Containers and orchestration 19

Union FS and copy-on-write
container view

/

run nginx.pid

srv index.html

etc nginx.conf

/

etc nginx.conf

bin

bash

nginx

ru
nn

ing
 la

ye
r

re
ad

-w
rit

e
co

nt
ain

er
 im

ag
e

re
ad

-o
nly

/

ba
se

 im
ag

e
re

ad
-o

nly bin apk

 🪦 apk

directory union

copy-
on-write

copy-on-write:
deleted file replaced

with tombstone

volume

Illustration of union filesystem and copy-on-write

NET5039 Containers and orchestration 20

Docker container engine
user interface

namespace
cgroup

users,
hostname

network

kernel resources
devices

storage
volumes

writeable layer

base image

union FS

initial process (PID 1)
child processes

initial process (PID 1)
child processes

Isolation, limit and
operation control

Docker facilities

capabilities & MAC

Low-level facilities of Docker container engine

Everything else
are features from

Linux kernel!

NET5039 Containers and orchestration 21

Containers for the cloud
I.Application architecture in the cloud
II.Micro-services
III.Orchestration

NET5039 Containers and orchestration 22

Cloud application architecture
● Historic pattern: monolithic application

– All components are ad-hoc, tightly coupled
● Unfit for the cloud

– Must manage all components at once for
scalability, deployment, service quality

– Hard to reconfigure
● New paradigm enabled by container:

micro-services

NET5039 Containers and orchestration 23

Micro-services

Monolithic container

● Components as processes
– Manual interfacing

● Need in-container PID 1 to run
multiple processes

– Cons of monolithic apps

● Components as containers
– Max reuse of images
– High flexibility, easy

configuration
– Fine-grained scalability

host
container

web server business core DB server

app
volume

data
volume

host
container

web server
container

business core
container

DB server

app
volume

data
volume

Composition of containers: micro-services

NET5039 Containers and orchestration 24

Network for micro-services
● Configuration of network by Docker

– Dedicated links between component containers
– Controlled link to the Internet

● Network drivers:
– Host: expose host network devices to the container
– Bridge: local virtual network

● Can be exposed to the Internet
– Overlay: inter-host inter-container network
– None: no networking

NET5039 Containers and orchestration 25

Network for micro-services

Bridge

host

host NIC

container container
host NIC host NIC

Host

host

host NIC

container
veth

container
veth

bridge

veth veth

host

host NIC

container
veth

bridge

veth

host

host NIC

container
veth

bridge

veth

overlay

Overlay

veth: Virtual ETHernet

NET5039 Containers and orchestration 26

Orchestration
● Composition: build application as micro-services

– Example: docker-compose
● Orchestration: manage micro-services

– Distribution
– Replication
– Load-balancing
– Availability
– Higher-level interfaces to composition features

● Acts as the user front-end
– Examples: Kubernetes, Docker Swarm

● Abstraction of management unit: the pod

NET5039 Containers and orchestration 27

Orchestration: scheduling
● Manual criteria: filters

– Handle host heterogeneity
● Settings of Docker engine, host OS…

– Container affinity: force placement for resource access
● Image availability, volume placement, other container...

● Strategies for deployment on physical hosts
– Spread: balance load over hosts
– Binpack: colocate as much as possible

● Handle colocation of tightly-coupled containers: pods
– Containers in a pod share the same network namespace and same

volumes
– Pod = service container + helper containers (logging, interfacing...)

NET5039 Containers and orchestration 28

Orchestration of pods
podpodpod

container
web server

container
business core

container
DB server

app
volume

data
volume

container
template proc.

web page
volume

container
monitor

container
backup

container
logger

Application architecture with pods

NET5039 Containers and orchestration 29

Demo: Kubernetes
● Create and use a pod
● Create and use a deployment

– Scalability
– Roll-out

NET5039 Containers and orchestration 30

Kubernetes app.: deployment.yml
kind: Deployment
[...]
spec:
 replicas: 3
 selector:
 matchLabels:
 app: simpleserver
 template:
 metadata:
 labels:
 app: simpleserver
 spec:
 containers:
 - name: pythonserver
 image: python:simpleserver
 resources:
 requests:
 cpu: 0.5
 ports:
 - containerPort: 8080

Scalability: set number of replicas

Pod composition (containers)

NET5039 Containers and orchestration 31

Security of containers
I.Isolation
II.Threat models
III.Good practices

NET5039 Containers and orchestration 32

Isolation
● Fundamental issue in the cloud: execute untrusted code
● With containers: on the same shared kernel

– No mitigation when the kernel is compromised
– Incompatibility of kernel-level security policies

● No security namespacing
– Vast attack surface and trusted code base

● Virtual Machines (VMs) are better in this regard (but less flexible)

● Isolation of untrusted code
– To protect containers from each other
– To protect the system from containers

NET5039 Containers and orchestration 33

Threats
● Attack goals:

– Disrupt service: bad neighbor, denial of service
– Subvert service: usurp identity, steal resources
– Steal data

● Cloud-oriented: applications are regular services
– Containers are also good for system services

● SSH, cron jobs, logs…
– More privileged requirements = more care!

NET5039 Containers and orchestration 34

Threat models
● Threat models:

attack...
A. from outside, on the

containerized
application

B. from a container, on
another container

C. from a container, on
the system

operating system
(kernel + admin. user space)

server userspace

container network

container engine

cont. 1

app. / data

threat A

threat B1

threat B2

threat B3

threat B4

th
re

at
 C

cont. 2

mal. app.

Threat models of containers

NET5039 Containers and orchestration 35

Threats from outside (A)
● For Internet-facing applications: containers are not magic

– If your web server is vulnerable, it remains vulnerable
● However containers help:

– Breach containment
● Micro-service model

– Easier to achieve secure configuration
● More secure defaults, less knobs to tweak

– Fast, easy distribution of security updates
● Generic images from a centralized place

– Simpler audit
● Limited set of dependencies and software pieces

But this also works the
other way around with
vulnerable or compromised
images (malicious updates
or owner, typosquatting…)
Use private repository of
audited images!

NET5039 Containers and orchestration 36

Threats between containers (B)
● Containers run arbitrary code by

definition
● B1: Leak to another container

– Namespace bug
– Filesystem leak

● B2: Abuse container network
– Packet forging
– Layer 2 attack

● B3: Escalate to root
– Vulnerable SUID binaries

● B4: Execute arbitrary kernel code
– Exploitable syscalls

operating system
(kernel + admin. user space)

server userspace

container network

container engine

cont. 1

app. / data

threat B1

threat B2

threat B3

threat B4

cont. 2

mal. app.

Container-to-container threat models

NET5039 Containers and orchestration 37

Threats to the system (C)
● Containers run arbitrary code by definition
● Escape containment

– Namespace bug
– Filesystem leak

● Escalate to root
– Vulnerable SUID binaries

● Execute arbitrary kernel code
– Exploitable syscalls

NET5039 Containers and orchestration 38

Good practices (1/2)
● As a Docker user:

– Audit public images
● Fix versions but stay aware of security updates

– Use micro-services model (pods) for intrusion detection and containment
● Each micro-service can be “equipped” of its monitor

– Mount read-only as much as possible
● Images are already immutable with overlay FS

– Drop capabilities
● Docker drops many by default

● As a Docker image developer:
– Use and build immutable container images

● All deployments execute the same code eventually
– Don’t run as root

● Even with user namespaces
● Eliminate SUID binaries for normal use

NET5039 Containers and orchestration 39

Good practices (2/2)
● As a Docker system administrator:

– Harden the kernel
● Enable MAC: SELinux / AppArmor; also seccomp
● Use hardened kernel (GRSEC…)
● Update kernel to vetted versions

– It is shared by all containers: critical part

– Configure container network tightly
● Do not use host mode
● Think about shared network namespaces, open ports…

– In practice: abstracted by docker-compose, or Kubernetes, etc.

– Go one step further: use virtual machines!
● An application in a Docker container in a virtual machine in a container
● Kata Containers, unikernels...

NET5039 Containers and orchestration 40

OS-level virtualization
● Virtualize the OS

– Containers: lighter, faster, simpler
● Based on Linux kernel: namespaces, cgroups

– Container engines bring usability and networking
● Enable new cloud-native application architecture: micro-

services
– Managed with orchestrators

● Security challenge:
– Major cloud challenge: execution of arbitrary code
– Specifically: vast attack surface, enables dangerous behaviors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

