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Cloud applications
● Traditional applications are monolithic

– Everything tightly coupled
– On full servers, managed from OS to deployment

● This is a constraint

● In the cloud, you don’t manage real servers
– Shared servers with virtualization
– Get new resources (“server”) on-the-fly

● Let’s go further!
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Cloud native applications

● No OS management by the user
● Component-level application scalability
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Introducing: containers
● Cloud users don’t want to run OSes

– They want to run their applications
● How to share cloud resources closer to the applications?

– Virtualization layer just between the OS and the application
● Virtualize the OS for multiple applications at the same 

time!
– In other words, containers are OS-level virtualization

● An OS executes a container engine that runs containers
– Docker, LXC, OpenVZ...
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Actors of OS-level virtualization
I.Container engine
II.Container
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Containers and engines
● Engine:

– Manage container lifecycle: create container from image, start 
and stop containers...

– Handle out-of-container tasks: virtual networking…
– Many engines for many uses: generic, HPC, scientific…

● With interchangeable underlying container engine cores

● A container image packages an application and its 
runtime
– Business core, dependencies, semi-static configuration
– Registries of reusable images (DockerHub, local…)

● Typically written in a portable, constant manner
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Containers
● Container: isolated and limited virtual copy 

of the host OS
– Deploys the image to “fill” the virtual copy

● Isolation: users, devices, processes…
– Virtual filesystem: built from container image

● Limits: CPU, memory, I/O…
– Also monitoring
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Demo: Docker
● Creation and usage of a Docker container:

– Run an interactive image
– Pull and run a daemon service
– List images, monitor containers

● Docker is a bit low-level for applications:
docker-compose for multi-component apps
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Build containers: two ways
1)Interactively

– From a base distribution image (Ubuntu, Alpine…)
– Use package manager
– docker commit to tag the current state of the container 

as an image
– Testing and experimenting

2)Dockerfile
– DSL to describe how to install and configure app
– Proper method: clean, reusable, reproducible
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Build containers: Dockerfile
FROM alpine

RUN apk add --no-cache perl

COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

ENTRYPOINT ["/usr/local/bin/cowsay"]

Start from base image

● And then: docker build -t namespace/name:tag .
● Can start from empty image: FROM scratch

– Used by distribution base images: build from archive
● Also declare users, volumes, network ports

Execute commands to build 
and configure the image

Add external files

Set default executable

Dockerfile for docker/cowsay
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Internals of Docker
I.Isolation
II.Limit
III.Operation control
IV.Isolation of the virtual filesystem

Operation control by capabilities

Limits by cgroups Isolation by namespaces



NET5039 Containers and orchestration 13

Isolation: namespaces

1) mnt: mount points
– I.e. filesystem

2) pid: PID hierarchy
– First process in the container is PID 1

3) net: network facilities
– Interfaces, ports, protocol stack…

4) ipc: interprocess communication
– Semaphore, message queue, shared 

mem

5) user: users, groups and privileges
– Mappings of UIDs/GIDs between host 

and container
● UID 0 is root, available in container: if you 

escape the container, you are root!

6) uts: hostname
– Stands for “UNIX TimeSharing”, or said 

otherwise: multi-user in UNIX

7) time: clock
8) cgroup: control groups (next slide)

● Provide an isolated view of the OS
– chroot on steroids (CHange ROOT of a process)

● 8 dimensions:
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Limit: control groups (cgroups)

1) cpu: CPU time

2) cpuacct: CPU accounting

3) cpuset: CPU pinning

4) memory: memory and swap

5) devices: access rights to devices

6) freeze: freeze, suspend 
processes

7) net_cls: network packets classes

8) net_prio: network packets 
priority

9) blkio: block devices (disk) I/O

10)perf_event: performance mon.

11)hugetlb: huge pages usage

12)pids: number of processes

● Constrain resource usage
– Also monitoring facilities

● 12 dimensions:
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Demo: namespaces & cgroups
● Spawn new process in namespaces
● Put process in control groups

– Set limit and monitor resource usage
● Demonstrated filesystem interface

– Also a programmatic interface with syscalls
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Operation control: caps and MAC

1) CHOWN: change owner

2) SETGID/SETUID: change process 
GIDs/UIDs

3) KILL: send signals

4) NET_ADMIN: network admin

5) NET_RAW: use RAW sockets

6) SYS_ADMIN: system admin (mount...)

7) SYS_CHROOT: change root path of 
process

8) SYS_MODULE: (un)load kernel modules

9) SYS_NICE: change process niceness

10)SYS_TIME: change system clock

● Capabilities: selectively drop root privileges
– Remove privileges from a “root” container

● Mandatory Access Control (MAC): system-level operational policies
– Linux Security Modules (LSM): SELinux, AppArmor...

● 40 capabilities (CAP_XXX):
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Virtual filesystem
● Isolated filesystem: mnt namespace

– Also with chroot
● Two parts:

– Container image: basis for virtual filesystem
● Docker specifics, see next

– Volumes: external data storage
● Mounted into the virtual FS of the container
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Container image with Docker
● An image has layers

– Like git commits
– Reusable by other images, caching
– docker image history IMAGE_NAME

● Layers from Dockerfile are read-only
– For execution, add a writeable layer
– Use copy-on-write to modify files from 

lower layers
● Union file system: virtual FS driver 

for layers
– Many drivers: AUFS, OverlayFS, 

devicemapper...

container

container image

base image

layer 1

writeable layer

volume

layer 2

layer 3

layer 1

layer 2

Container image layers and volumes
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Union FS and copy-on-write
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Docker container engine
user interface

namespace
cgroup

users,
hostname

network

kernel resources
devices

storage
volumes

writeable layer

base image

union FS

initial process (PID 1)
child processes

initial process (PID 1)
child processes

Isolation, limit and 
operation control

Docker facilities

capabilities & MAC

Low-level facilities of Docker container engine

Everything else 
are features from 

Linux kernel!
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Containers for the cloud
I.Application architecture in the cloud
II.Micro-services
III.Orchestration
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Cloud application architecture
● Historic pattern: monolithic application

– All components are ad-hoc, tightly coupled
● Unfit for the cloud

– Must manage all components at once for 
scalability, deployment, service quality

– Hard to reconfigure
● New paradigm enabled by container:

micro-services



NET5039 Containers and orchestration 23

Micro-services

Monolithic container

● Components as processes
– Manual interfacing

● Need in-container PID 1 to run 
multiple processes

– Cons of monolithic apps

● Components as containers
– Max reuse of images
– High flexibility, easy 

configuration
– Fine-grained scalability

host
container

web server business core DB server

app
volume

data
volume

host
container

web server
container

business core
container

DB server

app
volume

data
volume

Composition of containers: micro-services
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Network for micro-services
● Configuration of network by Docker

– Dedicated links between component containers
– Controlled link to the Internet

● Network drivers:
– Host: expose host network devices to the container
– Bridge: local virtual network

● Can be exposed to the Internet
– Overlay: inter-host inter-container network
– None: no networking
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Network for micro-services
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Orchestration
● Composition: build application as micro-services

– Example: docker-compose
● Orchestration: manage micro-services

– Distribution
– Replication
– Load-balancing
– Availability
– Higher-level interfaces to composition features

● Acts as the user front-end
– Examples: Kubernetes, Docker Swarm

● Abstraction of management unit: the pod
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Orchestration: scheduling
● Manual criteria: filters

– Handle host heterogeneity
● Settings of Docker engine, host OS…

– Container affinity: force placement for resource access
● Image availability, volume placement, other container...

● Strategies for deployment on physical hosts
– Spread: balance load over hosts
– Binpack: colocate as much as possible

● Handle colocation of tightly-coupled containers: pods
– Containers in a pod share the same network namespace and same 

volumes
– Pod = service container + helper containers (logging, interfacing...)
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Orchestration of pods
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Application architecture with pods
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Demo: Kubernetes
● Create and use a pod
● Create and use a deployment

– Scalability
– Roll-out
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Kubernetes app.: deployment.yml
kind: Deployment
# [...]
spec:
  replicas: 3
  selector:
    matchLabels:
      app: simpleserver
  template:
    metadata:
      labels:
        app: simpleserver
    spec:
      containers:
      - name: pythonserver
        image: python:simpleserver
        resources:
          requests:
            cpu: 0.5
        ports:
          - containerPort: 8080

Scalability: set number of replicas

Pod composition (containers)
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Security of containers
I.Isolation
II.Threat models
III.Good practices
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Isolation
● Fundamental issue in the cloud: execute untrusted code
● With containers: on the same shared kernel

– No mitigation when the kernel is compromised
– Incompatibility of kernel-level security policies

● No security namespacing
– Vast attack surface and trusted code base

● Virtual Machines (VMs) are better in this regard (but less flexible)

● Isolation of untrusted code
– To protect containers from each other
– To protect the system from containers
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Threats
● Attack goals:

– Disrupt service: bad neighbor, denial of service
– Subvert service: usurp identity, steal resources
– Steal data

● Cloud-oriented: applications are regular services
– Containers are also good for system services

● SSH, cron jobs, logs…
– More privileged requirements = more care!
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Threat models
● Threat models: 

attack...
A. from outside, on the 

containerized 
application

B. from a container, on 
another container

C. from a container, on 
the system
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Threat models of containers
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Threats from outside (A)
● For Internet-facing applications: containers are not magic

– If your web server is vulnerable, it remains vulnerable
● However containers help:

– Breach containment
● Micro-service model

– Easier to achieve secure configuration
● More secure defaults, less knobs to tweak

– Fast, easy distribution of security updates
● Generic images from a centralized place

– Simpler audit
● Limited set of dependencies and software pieces

But this also works the 
other way around with 
vulnerable or compromised 
images (malicious updates 
or owner, typosquatting…)
Use private repository of 
audited images!
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Threats between containers (B)
● Containers run arbitrary code by 

definition
● B1: Leak to another container

– Namespace bug
– Filesystem leak

● B2: Abuse container network
– Packet forging
– Layer 2 attack

● B3: Escalate to root
– Vulnerable SUID binaries

● B4: Execute arbitrary kernel code
– Exploitable syscalls

operating system
(kernel + admin. user space)

server userspace

container network

container engine

cont. 1

app. / data

threat B1

threat B2

threat B3

threat B4

cont. 2

mal. app.

Container-to-container threat models
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Threats to the system (C)
● Containers run arbitrary code by definition
● Escape containment

– Namespace bug
– Filesystem leak

● Escalate to root
– Vulnerable SUID binaries

● Execute arbitrary kernel code
– Exploitable syscalls
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Good practices (1/2)
● As a Docker user:

– Audit public images
● Fix versions but stay aware of security updates

– Use micro-services model (pods) for intrusion detection and containment
● Each micro-service can be “equipped” of its monitor

– Mount read-only as much as possible
● Images are already immutable with overlay FS

– Drop capabilities
● Docker drops many by default

● As a Docker image developer:
– Use and build immutable container images

● All deployments execute the same code eventually
– Don’t run as root

● Even with user namespaces
● Eliminate SUID binaries for normal use
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Good practices (2/2)
● As a Docker system administrator:

– Harden the kernel
● Enable MAC: SELinux / AppArmor; also seccomp
● Use hardened kernel (GRSEC…)
● Update kernel to vetted versions

– It is shared by all containers: critical part

– Configure container network tightly
● Do not use host mode
● Think about shared network namespaces, open ports…

– In practice: abstracted by docker-compose, or Kubernetes, etc.

– Go one step further: use virtual machines!
● An application in a Docker container in a virtual machine in a container
● Kata Containers, unikernels...
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OS-level virtualization
● Virtualize the OS

– Containers: lighter, faster, simpler
● Based on Linux kernel: namespaces, cgroups

– Container engines bring usability and networking
● Enable new cloud-native application architecture: micro-

services
– Managed with orchestrators

● Security challenge:
– Major cloud challenge: execution of arbitrary code
– Specifically: vast attack surface, enables dangerous behaviors
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