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Actually, VMs are bad
● A guest OS is required

– Overhead of deployment and maintenance
● Very slow: a new VM starts in minutes

– Allocate disk, deploy image, create VM, boot guest OS
– Not quick enough for workload bursts

● Coarse grained:
– In resource management: allocate to a full OS
– In application architecture: monolithic layout

● Horizontal scaling must replicate whole VM instead of components
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Introducing: OS-level virt.
● Cloud users don’t want to run OSes

– They want to run their applications
● How to share cloud resources closer to the 

applications?
– Virtualization layer just between the OS and the application

● Virtualize the OS for multiple applications at the same 
time!

● An OS executes a container engine that runs 
containers
– Docker, LXC, OpenVZ...
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Actors of OS-level virtualization
I.Container engine
II.Container
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Containers and engines
● Engine:

– Manage container lifecycle: create container from image, start 
and stop containers...

– Handle out-of-container tasks: virtual networking…
– Many engines for many uses: generic, HPC, scientific…

● With interchangeable underlying container engine cores

● A container image packages an application and its 
runtime
– Business core, dependencies, semi-static configuration
– Registries of reusable images (DockerHub, local…)

● Typically written in a portable, constant manner
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Containers
● Container: isolated and limited virtual copy 

of the host OS
– Deploys the image to “fill” the virtual copy

● Isolation: users, devices, processes…
– Virtual filesystem: built from container image

● Limits: CPU, memory, I/O…
– Also monitoring
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Comparison with HW virt.
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Comparison with HW virt.
OS-level virtualization Hardware virtualization

Security - +
Usability + -

Performance 0 0
Startup time + -

Image size + -
Memory overhead + -

● Containers are better overall for cloud-native applications
– Applications architectured to be deployed on the cloud

● With reduced security
● VMs still have use cases: interactive environment, robustness...



CSC5004 Operating system-level virtualization 9

Demo: Docker
● Creation and usage of a Docker container:

– Run an interactive image
– Pull and run a daemon service
– List images, monitor containers

● Docker is a bit low-level for applications:
docker-compose for multi-component apps
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Build containers: two ways
1)Interactively

– From a base distribution image (Ubuntu, Alpine…)
– Use package manager
– docker commit to tag the current state of the container 

as an image
– Testing and experimenting

2)Dockerfile
– DSL to describe how to install and configure app
– Proper method: clean, reusable, reproducible
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Build containers: Dockerfile
FROM alpine

RUN apk add --no-cache perl

COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

ENTRYPOINT ["/usr/local/bin/cowsay"]

Start from base image

● And then: docker build -t namespace/name:tag .
● Can start from empty image: FROM scratch

– Used by distribution base images: build from archive
● Also declare users, volumes, network ports

Execute commands to build 
and configure the image

Add external files

Set default executable

Dockerfile for docker/cowsay
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Internals of Docker
I.Isolation
II.Limit
III.Operation control
IV.Virtual filesystem
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Isolation: namespaces

1) mnt: mount points
– I.e. filesystem

2) pid: PID hierarchy
– First process in the container is PID 1

3) net: network facilities
– Interfaces, ports, protocol stack…

4) ipc: interprocess communication
– Semaphore, message queue, shared 

mem

5) user: users, groups and privileges
– Mappings of UIDs/GIDs between host 

and container
● UID 0 is root, available in container: if you 

escape the container, you are root!

6) uts: hostname
– Stands for “UNIX TimeSharing”, or said 

otherwise: multi-user in UNIX

7) time: clock
8) cgroup: control groups (next slide)

● Provide an isolated view of the OS
– chroot on steroids (CHange ROOT of a process)

● 8 dimensions:
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Limit: control groups (cgroups)

1) cpu: CPU time

2) cpuacct: CPU accounting

3) cpuset: CPU pinning

4) memory: memory and swap

5) devices: access rights to devices

6) freeze: freeze, suspend 
processes

7) net_cls: network packets classes

8) net_prio: network packets 
priority

9) blkio: block devices (disk) I/O

10)perf_event: performance mon.

11)hugetlb: huge pages usage

12)pids: number of processes

● Constrain resource usage
– Also monitoring facilities

● 12 dimensions:
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Demo: namespaces & cgroups
● Spawn new process in namespaces
● Put process in control groups

– Set limit and monitor resource usage
● Demonstrated filesystem interface

– Also a programmatic interface with syscalls
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Operation control: caps and MAC

1) CHOWN: change owner

2) SETGID/SETUID: change process 
GIDs/UIDs

3) KILL: send signals

4) NET_ADMIN: network admin

5) NET_RAW: use RAW sockets

6) SYS_ADMIN: system admin (mount...)

7) SYS_CHROOT: change root path of 
process

8) SYS_MODULE: (un)load kernel modules

9) SYS_NICE: change process niceness

10)SYS_TIME: change system clock

● Capabilities: selectively drop root privileges
– Remove privileges from a “root” container

● Mandatory Access Control (MAC): system-level operational policies
– SELinux, AppArmor...

● 40 capabilities (CAP_XXX):
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Virtual filesystem
● Isolated filesystem: mnt namespace

– Also with chroot
● Two parts:

– Container image: basis for virtual filesystem
● Docker specifics, see next

– Volumes: external data storage
● Mounted into the virtual FS of the container
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Container image with Docker
● An image has layers

– Like git commits
– Reusable by other images, caching
– docker image history IMAGE_NAME

● Layers from Dockerfile are read-only
– For execution, add a writeable layer
– Use copy-on-write to modify files from 

lower layers
● Union file system: virtual FS driver 

for layers
– Many drivers: AUFS, OverlayFS, 

devicemapper...

container
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layer 1
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volume

layer 2

layer 3

layer 1

layer 2

Container image layers and volumes
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Union FS and copy-on-write

Illustration of union filesystem and copy-on-write
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Docker container engine

Everything else 
are features from 

Linux kernel!

Low-level facilities of Docker container engine

user interface
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users,

hostname

network

kernel resources
devices

storage
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base image
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initial process (PID 1)
child processes

initial process (PID 1)
child processes

Isolation, limit and 
operation control

Docker facilities

capabilities & MAC
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Containers for the cloud
I.Application architecture in the cloud
II.Micro-services
III.Orchestration



CSC5004 Operating system-level virtualization 22

Cloud application architecture
● Historic pattern: monolithic application

– All components are ad-hoc, tightly coupled
● Unfit for the cloud

– Must manage all components at once for 
scalability, deployment, service quality

– Hard to reconfigure
● New paradigm enabled by container:

micro-services
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Micro-services

Monolithic container

● Components as processes
– Manual interfacing

● Need in-container PID 1 to run 
multiple processes

– Cons of monolithic apps

● Components as containers
– Max reuse of images
– High flexibility, easy 

configuration
– Fine-grained scalability
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Composition of containers: micro-services
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Network for micro-services
● Configuration of network by Docker

– Dedicated links between component containers
– Controlled link to the Internet

● Network drivers:
– Host: expose host network devices to the container
– Bridge: local virtual network

● Can be exposed to the Internet
– Overlay: inter-host inter-container network
– None: no networking
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Network for micro-services
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Orchestration
● Composition: build application as micro-services

– Example: docker-compose
● Orchestration: manage micro-services

– Distribution
– Replication
– Load-balancing
– Availability
– Higher-level interfaces to composition features

● Acts as the user front-end
– Examples: Kubernetes, Docker Swarm

● Abstraction of management unit: the pod
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Orchestration: scheduling
● Manual criteria: filters

– Handle host heterogeneity
● Settings of Docker engine, host OS…

– Container affinity: force placement for resource access
● Image availability, volume placement, other container...

● Strategies for deployment on physical hosts
– Spread: balance load over hosts
– Binpack: colocate as much as possible

● Handle colocation of tightly-coupled containers: pods
– Containers in a pod share the same network namespace and same 

volumes
– Pod = service container + helper containers (logging, interfacing...)
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Orchestration of pods
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Demo: Kubernetes
● Create and use a pod
● Create and use a deployment

– Scalability
– Roll-out
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Kubernetes app.: deployment.yml
kind: Deployment
# [...]
spec:
  replicas: 3
  selector:
    matchLabels:
      app: simpleserver
  template:
    metadata:
      labels:
        app: simpleserver
    spec:
      containers:
      - name: pythonserver
        image: python:simpleserver
        resources:
          requests:
            cpu: 0.5
        ports:
          - containerPort: 8080

Scalability: set number of replicas

Pod composition (containers)
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OS-level virtualization
● Virtualize the OS instead of the hardware

– Containers: lighter, faster, simpler
● Based on Linux kernel: namespaces, cgroups

– Container engines bring usability and networking
● Enable new cloud-native application 

architecture: micro-services
– Managed with orchestrators
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