
CSC5004 — CLOUD COMPUTING ARCHITECTURES2022— 2023

Operating system-
level virtualization
Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu



CSC5004 Operating system-level virtualization 2

Actually, VMs are bad
● A guest OS is required

– Overhead of deployment and maintenance
● Very slow: a new VM starts in minutes

– Allocate disk, deploy image, create VM, boot guest OS
– Not quick enough for workload bursts

● Coarse grained:
– In resource management: allocate to a full OS
– In application architecture: monolithic layout

● Horizontal scaling must replicate whole VM instead of components



CSC5004 Operating system-level virtualization 3

Introducing: OS-level virt.
● Cloud users don’t want to run OSes

– They want to run their applications
● How to share cloud resources closer to the 

applications?
– Virtualization layer just between the OS and the application

● Virtualize the OS for multiple applications at the same 
time!

● An OS executes a container engine that runs 
containers
– Docker, LXC, OpenVZ...



CSC5004 Operating system-level virtualization 4

Actors of OS-level virtualization
I.Container engine
II.Container



CSC5004 Operating system-level virtualization 5

Containers and engines
● Engine:

– Manage container lifecycle: create container from image, start 
and stop containers...

– Handle out-of-container tasks: virtual networking…
– Many engines for many uses: generic, HPC, scientific…

● With interchangeable underlying container engine cores

● A container image packages an application and its 
runtime
– Business core, dependencies, semi-static configuration
– Registries of reusable images (DockerHub, local…)

● Typically written in a portable, constant manner



CSC5004 Operating system-level virtualization 6

Containers
● Container: isolated and limited virtual copy 

of the host OS
– Deploys the image to “fill” the virtual copy

● Isolation: users, devices, processes…
– Virtual filesystem: built from container image

● Limits: CPU, memory, I/O…
– Also monitoring



CSC5004 Operating system-level virtualization 7

Comparison with HW virt.

container

operating system

hardware

app

CPU

CPU

memory

virtual
memory

network adapter

disk

virtual
FS

virtual
network
adapter

GPU

container
engine

container

app

virtual
memory

virtual
FS

virtual
network
adapter

VM

OS

hypervisor

app

vCPU vCPU

vCPU

virtual
memory

vdisk

virtual
network adapter

vGPU

hardware

CPU

CPU

memory network adapter

disk GPU

Stack for OS-level virtualization Stack for hardware virtualization



CSC5004 Operating system-level virtualization 8

Comparison with HW virt.
OS-level virtualization Hardware virtualization

Security - +
Usability + -

Performance 0 0
Startup time + -

Image size + -
Memory overhead + -

● Containers are better overall for cloud-native applications
– Applications architectured to be deployed on the cloud

● With reduced security
● VMs still have use cases: interactive environment, robustness...



CSC5004 Operating system-level virtualization 9

Demo: Docker
● Creation and usage of a Docker container:

– Run an interactive image
– Pull and run a daemon service
– List images, monitor containers

● Docker is a bit low-level for applications:
docker-compose for multi-component apps



CSC5004 Operating system-level virtualization 10

Build containers: two ways
1)Interactively

– From a base distribution image (Ubuntu, Alpine…)
– Use package manager
– docker commit to tag the current state of the container 

as an image
– Testing and experimenting

2)Dockerfile
– DSL to describe how to install and configure app
– Proper method: clean, reusable, reproducible



CSC5004 Operating system-level virtualization 11

Build containers: Dockerfile
FROM alpine

RUN apk add --no-cache perl

COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

ENTRYPOINT ["/usr/local/bin/cowsay"]

Start from base image

● And then: docker build -t namespace/name:tag .
● Can start from empty image: FROM scratch

– Used by distribution base images: build from archive
● Also declare users, volumes, network ports

Execute commands to build 
and configure the image

Add external files

Set default executable

Dockerfile for docker/cowsay



CSC5004 Operating system-level virtualization 12

Internals of Docker
I.Isolation
II.Limit
III.Operation control
IV.Virtual filesystem



CSC5004 Operating system-level virtualization 13

Isolation: namespaces

1) mnt: mount points
– I.e. filesystem

2) pid: PID hierarchy
– First process in the container is PID 1

3) net: network facilities
– Interfaces, ports, protocol stack…

4) ipc: interprocess communication
– Semaphore, message queue, shared 

mem

5) user: users, groups and privileges
– Mappings of UIDs/GIDs between host 

and container
● UID 0 is root, available in container: if you 

escape the container, you are root!

6) uts: hostname
– Stands for “UNIX TimeSharing”, or said 

otherwise: multi-user in UNIX

7) time: clock
8) cgroup: control groups (next slide)

● Provide an isolated view of the OS
– chroot on steroids (CHange ROOT of a process)

● 8 dimensions:



CSC5004 Operating system-level virtualization 14

Limit: control groups (cgroups)

1) cpu: CPU time

2) cpuacct: CPU accounting

3) cpuset: CPU pinning

4) memory: memory and swap

5) devices: access rights to devices

6) freeze: freeze, suspend 
processes

7) net_cls: network packets classes

8) net_prio: network packets 
priority

9) blkio: block devices (disk) I/O

10)perf_event: performance mon.

11)hugetlb: huge pages usage

12)pids: number of processes

● Constrain resource usage
– Also monitoring facilities

● 12 dimensions:



CSC5004 Operating system-level virtualization 15

Demo: namespaces & cgroups
● Spawn new process in namespaces
● Put process in control groups

– Set limit and monitor resource usage
● Demonstrated filesystem interface

– Also a programmatic interface with syscalls



CSC5004 Operating system-level virtualization 16

Operation control: caps and MAC

1) CHOWN: change owner

2) SETGID/SETUID: change process 
GIDs/UIDs

3) KILL: send signals

4) NET_ADMIN: network admin

5) NET_RAW: use RAW sockets

6) SYS_ADMIN: system admin (mount...)

7) SYS_CHROOT: change root path of 
process

8) SYS_MODULE: (un)load kernel modules

9) SYS_NICE: change process niceness

10)SYS_TIME: change system clock

● Capabilities: selectively drop root privileges
– Remove privileges from a “root” container

● Mandatory Access Control (MAC): system-level operational policies
– SELinux, AppArmor...

● 40 capabilities (CAP_XXX):



CSC5004 Operating system-level virtualization 17

Virtual filesystem
● Isolated filesystem: mnt namespace

– Also with chroot
● Two parts:

– Container image: basis for virtual filesystem
● Docker specifics, see next

– Volumes: external data storage
● Mounted into the virtual FS of the container



CSC5004 Operating system-level virtualization 18

Container image with Docker
● An image has layers

– Like git commits
– Reusable by other images, caching
– docker image history IMAGE_NAME

● Layers from Dockerfile are read-only
– For execution, add a writeable layer
– Use copy-on-write to modify files from 

lower layers
● Union file system: virtual FS driver 

for layers
– Many drivers: AUFS, OverlayFS, 

devicemapper...

container

container image

base image

layer 1

writeable layer

volume

layer 2

layer 3

layer 1

layer 2

Container image layers and volumes



CSC5004 Operating system-level virtualization 19

Union FS and copy-on-write

Illustration of union filesystem and copy-on-write

container view

/

run nginx.pid

srv index.html

etc nginx.conf

/

etc nginx.conf

bin

bash

nginx

ru
nn

ing
 la

ye
r

re
ad

-w
rit

e
co

nt
ain

er
 im

ag
e

re
ad

-o
nly

/

ba
se

 im
ag

e
re

ad
-o

nly bin apk

 🪦 apk

directory union

copy-
on-write

copy-on-write: 
deleted file replaced 

with tombstone

volume



CSC5004 Operating system-level virtualization 20

Docker container engine

Everything else 
are features from 

Linux kernel!

Low-level facilities of Docker container engine

user interface
namespace

cgroup
users,

hostname

network

kernel resources
devices

storage
volumes

writeable layer

base image

union FS

initial process (PID 1)
child processes

initial process (PID 1)
child processes

Isolation, limit and 
operation control

Docker facilities

capabilities & MAC



CSC5004 Operating system-level virtualization 21

Containers for the cloud
I.Application architecture in the cloud
II.Micro-services
III.Orchestration



CSC5004 Operating system-level virtualization 22

Cloud application architecture
● Historic pattern: monolithic application

– All components are ad-hoc, tightly coupled
● Unfit for the cloud

– Must manage all components at once for 
scalability, deployment, service quality

– Hard to reconfigure
● New paradigm enabled by container:

micro-services



CSC5004 Operating system-level virtualization 23

Micro-services

Monolithic container

● Components as processes
– Manual interfacing

● Need in-container PID 1 to run 
multiple processes

– Cons of monolithic apps

● Components as containers
– Max reuse of images
– High flexibility, easy 

configuration
– Fine-grained scalability

host
container

web server business core DB server

app
volume

data
volume

host
container

web server
container

business core
container

DB server

app
volume

data
volume

Composition of containers: micro-services



CSC5004 Operating system-level virtualization 24

Network for micro-services
● Configuration of network by Docker

– Dedicated links between component containers
– Controlled link to the Internet

● Network drivers:
– Host: expose host network devices to the container
– Bridge: local virtual network

● Can be exposed to the Internet
– Overlay: inter-host inter-container network
– None: no networking



CSC5004 Operating system-level virtualization 25

Network for micro-services

Bridge

host

host NIC

container container
host NIC host NIC

Host

host

host NIC

container
veth

container
veth

bridge

veth veth

host

host NIC

container
veth

bridge

veth

host

host NIC

container
veth

bridge

veth

overlay

Overlay

veth: Virtual ETHernet



CSC5004 Operating system-level virtualization 26

Orchestration
● Composition: build application as micro-services

– Example: docker-compose
● Orchestration: manage micro-services

– Distribution
– Replication
– Load-balancing
– Availability
– Higher-level interfaces to composition features

● Acts as the user front-end
– Examples: Kubernetes, Docker Swarm

● Abstraction of management unit: the pod



CSC5004 Operating system-level virtualization 27

Orchestration: scheduling
● Manual criteria: filters

– Handle host heterogeneity
● Settings of Docker engine, host OS…

– Container affinity: force placement for resource access
● Image availability, volume placement, other container...

● Strategies for deployment on physical hosts
– Spread: balance load over hosts
– Binpack: colocate as much as possible

● Handle colocation of tightly-coupled containers: pods
– Containers in a pod share the same network namespace and same 

volumes
– Pod = service container + helper containers (logging, interfacing...)



CSC5004 Operating system-level virtualization 28

Orchestration of pods
podpodpod

container
web server

container
business core

container
DB server

app
volume

data
volume

container
template proc.

web page
volume

container
monitor

container
backup

container
logger

Application architecture with pods



CSC5004 Operating system-level virtualization 29

Demo: Kubernetes
● Create and use a pod
● Create and use a deployment

– Scalability
– Roll-out



CSC5004 Operating system-level virtualization 30

Kubernetes app.: deployment.yml
kind: Deployment
# [...]
spec:
  replicas: 3
  selector:
    matchLabels:
      app: simpleserver
  template:
    metadata:
      labels:
        app: simpleserver
    spec:
      containers:
      - name: pythonserver
        image: python:simpleserver
        resources:
          requests:
            cpu: 0.5
        ports:
          - containerPort: 8080

Scalability: set number of replicas

Pod composition (containers)



CSC5004 Operating system-level virtualization 31

OS-level virtualization
● Virtualize the OS instead of the hardware

– Containers: lighter, faster, simpler
● Based on Linux kernel: namespaces, cgroups

– Container engines bring usability and networking
● Enable new cloud-native application 

architecture: micro-services
– Managed with orchestrators


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

