
Operating System-Operating System-

level Virtualizationlevel Virtualization

Mathieu Bacou
mathieu.bacou@telecom�sudparis.eu

Télécom SudParis, IMT, IP Paris, Inria

2024–2025 CSC5004 — Cloud Computing Infrastructures

1 / 32

Do we really want Virtual Machines?Do we really want Virtual Machines?

They require a guest OS
Overhead of deployment and maintenance

Very slow: a new VM starts in dozens of seconds, plus provisioning
Allocate disk, deploy image, create VM, boot guest OS
Not quick enough for bursty workloads

Coarse grained:
For resource management: allocate for a full OS
For application architecture: monolithic layout

Horizontal scaling must replicate whole VM instead of components

2 / 32

Introducing: OS-level virtualizationIntroducing: OS-level virtualization

Cloud users do not want to run OSes
They want to run their applications

How to share cloud resources closer to the applications?
Virtualization layer just between the OS and the application

Virtualize the OS for multiple applications at the same time!
An OS executes a container runtime that uses a container engine to run containers

Docker, LXC, OpenVZ…

3 / 32

Actors of OS-level virtualizationActors of OS-level virtualization

1. Container runtime
2. Container engine
3. Container

4 / 32

Containers runtimesContainers runtimes

High-level management of containers, artifacts and runtime con�guration
Business-oriented container lifecycle
Build, download container images
Con�gure networking, volumes, security, etc.

A container image packages an application and its runtime
Business core, dependencies, pre-con�guration

Ecosystem of reusable images stored in registries (DockerHub, GitLab registries, local registry…)
Images are built immutable for portability, reusability and composability

Examples: Docker (containerd), Podman, Apptainer…

5 / 32

Container enginesContainer engines

Low-level management of containers
Create, start, stop, destroy…
Prepare images for usage
Last-mile setup of networking, mounts, security…

Different engines for different usages or orientations: generic, security-oriented, scienti�c…
Examples: runc, Kata Container, gVisor, wasmtime…

6 / 32

ContainersContainers

Container: isolated and limited virtual copy of the host OS
Deploys the image to “�ll in” the virtual copy

Isolation: users, devices, processes…
Virtual �lesystem: built from container image

Limits: CPU, memory, I/O…
Also monitoring

7 / 32

Comparison with hardwareComparison with hardware

virtualization: stackvirtualization: stack

Stack for hardware virtualization. Stack for OS-level virtualization.

8 / 32

Comparison with hardwareComparison with hardware

virtualization: featuresvirtualization: features

Comparison of features between hardware and OS-level virtualization techniques.

Operating system-level virtualization Hardware virtualization

Security - +

Usability ++ -

Performance 0 0

Startup time + - -

Image size + - -

Memory overhead + - -

Containers are better overall for cloud-native applications
Applications are architectured to be deployed on the cloud

Security concerns
Kernel shared between containers

VMs still have use cases: persistent, interactive environments, robustness, �rst-level resource provisioning…9 / 32

Demo: DockerDemo: Docker

Creation and usage of a Docker container
Run an interactive image
Pull and run a daemon service
List images, monitor containers

Docker is rather “low-level” for applications: compose multiple components (containers) in a single application with
Docker Compose

Docker logo.

Docker Compose logo.

10 / 32

Building containers: two waysBuilding containers: two ways

1. Interactively
1. From a base distribution image

Linux distributions: Ubuntu, Alpine…
Runtime distributions (based on Linux distributions): Python…

2. Use the package manager to add software
3. docker commit tags the current state of the container as an image

Ef�cient for testing and experimenting
2. Writing a Docker�le

DSL to describe how to install and con�gure the bundled applications
Proper method: clean, reusable, reproducible, auditable…

11 / 32

Building containers with a DockerfileBuilding containers with a Dockerfile

Sample Docker�le for docker/cowsay.

Build the image with docker build ��tag namespace/name:tag
Can start from an empty image: FROM scratch

Rarely used, only by base images of distributions, where the image is built from an archive
May also include users, volumes, network ports…

Starting from a base image.
FROM alpine

Execute commands to build and conf�gure the image.
RUN apk add ��no�cache perl

Add local f�les.
COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

Set the default executable.
ENTRYPOINT ["/usr/local/bin/cowsay"]

12 / 32

Internal of a container engineInternal of a container engine

1. Isolation
2. Limit
3. Operation control
4. Virtual �lesystem

13 / 32

Isolation: namespacesIsolation: namespaces

Provide an isolated view of the OS
8 dimensions:

1. mnt: mount points

Hierarchy of sub-�lesystems
2. pid: hierarchy of processes

The �rst process in the container gets PID 1
3. net: networking facilities

Interfaces, ports, protocol stack…
4. ipc: interprocess communication

SysV IPC mechanisms: semaphores, message
queues, shared memory segments

5. time: date and time

6. user: users, groups and privileges

The engine establishes a mapping between host
UIDs (GIDs) and in-container UIDs (GIDs)

root is de�ned as UID 0, which is available
inside the container: escape the container as
root, and you are root on the host!

7. uts: hostname and domain name
For UNIX TimeSharing, from an era of remote
computers and client terminals

8. cgroup: control groups (see next)

14 / 32

Limit: control groups (cgroups)Limit: control groups (cgroups)

Constrain resource usage
Also prioritization, accounting, control

8 “dimensions” (controllers):
cpu: CPU time
cpuset: task placement on memory and CPU nodes

memory: memory usage
io: block I/O

pid: number of PIDs (i.e., of processes)
device: access to device �les

special: only through BPF
perf_event: performance monitoring
net: network packets priority and classes for QoS

Other specialized controllers: rdma, hugetlb, misc

15 / 32

Operation control: capabilities and MACOperation control: capabilities and MAC

Capabilities: selectively drop root privileges
Mandatory Access Control (MAC): system-level operational policies with Linux Security Modules

SELinux, AppArmor, seccomp…
More than 40 capabilities (CAP_XXX):

1. SYS_NICE: change process niceness

2. SYS_ADMIN: system admin (mount…)
3. SYS_CHROOT: change root path of

process
4. SYS_MODULE: (un)load kernel modules

5. SETGID/UID: change process GIDs/UIDs
6. KILL: send signals
7. NET_ADMIN: network admin

8. NET_RAW: use RAW sockets
9. CHOWN: change owner

16 / 32

Virtual filesystemVirtual filesystem

Isolated �lesystem:
mnt namespace to isolate hierarchy

chroot to isolate the process to a subtree
Two parts to the �lesystem visible to the container:

1. Container image: basis for virtual �lesystem
Bundle of �les and �lesystem operations in layers

2. Volumes: external data storage
Mounted into the virtual �lesystem of the running container

17 / 32

Virtual filesystem: layers and volumesVirtual filesystem: layers and volumes

An image is made of layers
Like git commits, to represent modi�cations on the �lesystem
Reusable by other images, with caching
Visible with docker image history $IMAGE_NAME

Layers of an image, built from a Docker�le, are read-only
The engine adds a writeable layer on top during container execution
Use copy-on-write to modify �les from lower layers

Managed by a union �lesystem: driver of a layered virtual �lesystem (Overlayfs)

Container image layers and
volumes.

18 / 32

Virtual filesystem: OverlayFS and copy-on-writeVirtual filesystem: OverlayFS and copy-on-write

Illustration of a union �lesystem and copy-on-write.

19 / 32

Low-level view of a container engineLow-level view of a container engine

Low-level components and interface of a container engine.

Most features that make a container, come from the Linux kernel! 20 / 32

Demo: namespaces and cgroupsDemo: namespaces and cgroups

Spawn a new process in namespaces
Put a process in control groups

Set limit and monitor resource usage
Using the virtual �lesystem interface

There are also syscalls

Linux logo.

21 / 32

Containers for the cloudContainers for the cloud

1. Application architecture in the cloud
2. Micro-services
3. Orchestration

22 / 32

Cloud application architectureCloud application architecture

Historic pattern: monolithic application
All components are ad-hoc, tightly coupled

Un�t for the cloud
Must manage all components at once for scalability, deployment, service quality
Hard to recon�gure

New paradigm enabled by containers: micro-services

23 / 32

Micro-servicesMicro-services

❌ Monolithic container. ✅ Composition of containers.

Components as processes
Manual interfacing

Need in-container PID 1 (service manager)
to run multiple processes

Cons of monolithic apps (see previous slide)

Components as containers
Maximum reuse of images
High �exibility, clean con�guration and
interfacing
Fine-grained scalability

24 / 32

Networking for micro-servicesNetworking for micro-services

Con�guration of networking by the container runtime
Dedicated links between component containers
Controlled link to the outside world

Network drivers:
Host: expose host network devices to the container (no isolation)
Bridge: local virtual network

May be exposed to the outside world via virtual routing
Overlay: inter-host inter-container network
None: no networking at all

25 / 32

Networking for micro-services: illustrationsNetworking for micro-services: illustrations

Host. Bridge. Overlay.

26 / 32

OrchestrationOrchestration

Composition: build applications as micro-services
Roughly: manage multiple containers as one application
Example: Docker Compose

Orchestration: manage micro-services
Deployment
Distribution
Replication
Load-balancing
Availability
Rolling updates
…

Orchestration exposes higher-level interfaces to the features of composition
In the end, the orchestrator is the user front-end

Examples: Kubernetes, Docker Swarm
Abstraction of management unit: the pod

27 / 32

Orchestration: schedulingOrchestration: scheduling

Manual criteria: �lters
Handle host heterogeneity

Settings of container runtime, host OS…
Container af�nity: force placement for resource access

Image availability, volume placement, other container…
Strategies for deployment on physical hosts

Spread: balance load over hosts
Binpack: colocate as much as possible

Handle colocation of tightly-coupled containers: pods
Containers in a pod share the same network namespace and same volumes
Pod = service container + helper (sidecar) containers (logging, interfacing…)

28 / 32

Orchestration of podsOrchestration of pods

Application architecture with pods.

29 / 32

Demo: KubernetesDemo: Kubernetes

Create and use a pod
Create and use a deployment

Scalability
Roll-out

Kubernetes logo.

30 / 32

Kubernetes application: example ofKubernetes application: example of

deployment.yamldeployment.yaml

Example of deployment description �le.

kind: Deployment
[���]
spec:
 # Scalability: set number of replicas.
 replicas: 3
 selector:
 matchLabels:
 app: simpleserver
 template:
 metadata:
 labels:
 app: simpleserver
 spec:
 # Pod: composition of containers.
 containers:
 - name: pythonserver
 image: python:simpleserver
 resources:
 requests:
 cpu: 0.5

31 / 32

Operating system-level virtualizationOperating system-level virtualization

Virtualize the OS instead of the hardware
Containers: simpler, lighter, faster

Not safer!
Based on the Linux kernel (LinuX Containers, LXC): namespaces, cgroups, etc.

Container engines wrap those features and deliver uni�ed speci�cations
Container runtimes bring usability, networking, development processes…

Enabling new cloud-native application architecture: micro-services
Compositions of containers managed by orchestrators

32 / 32

