Operating System-
level Virtualization

Mathieu Bacou
mathieu.bacougtelecom-sudparis.eu
Télécom SudParis, IMT, IP Paris, Inria

2024-2025 CSC5004 — Cloud Computing Infrastructures

Do we really want Virtual Machines?

* They require a guest OS
= Overhead of deployment and maintenance
* Very slow: anew VM starts in dozens of seconds, plus provisioning
= Allocate disk, deploy image, create VM, boot guest OS
= Not quick enough for bursty workloads
* Coarse grained:
= For resource management: allocate for a full OS
= For application architecture: monolithic layout
o Horizontal scaling must replicate whole VM instead of components

Introducing: OS-level virtualization

Cloud users do not want to run OSes
= They want to run their applications

How to share cloud resources closer to the applications?
= Virtualization layer just between the OS and the application

Virtualize the OS for multiple applications at the same time!

An OS executes a container runtime that uses a container engine to run containers
= Docker, LXC, OpenVZ...

Actors of OS-level virtualization

1. Container runtime
2. Container engine
3. Container

Containers runtimes

High-level management of containers, artifacts and runtime configuration
= Business-oriented container lifecycle
= Build, download container images
= Configure networking, volumes, security, etc.
A container image packages an application and its runtime
= Business core, dependencies, pre-configuration
Ecosystem of reusable images stored in registries (DockerHub, GitLab registries, local registry...)
= Images are built immutable for portability, reusability and composability
Examples: Docker (containerd), Podman, Apptainer...

Container engines

* Low-level management of containers

= Create, start, stop, destroy...

= Prepare images for usage

= Last-mile setup of networking, mounts, security...
» Different engines for different usages or orientations: generic, security-oriented, scientific...
* Examples: runc, Kata Container, gVisor, wasmtime...

Containers

* Container: isolated and limited virtual copy of the host OS
= Deploys the image to “fill in” the virtual copy

* |solation: users, devices, processes...
= Virtual filesystem: built from container image

e Limits: CPU, memory, |/0O...
= Also monitoring

Comparison with hardware
virtualization: stack

() (N [™\
0S container .m .@
’ runtime ——\ e
_ . virtual virtual
vCPU | vCPU virtual [twrlfu?jl . network | S network | S
memory network adapter =1 =
/ adapter 2 | adapter =
vCPU / vdisk (vGPU) virtual | — virtual | —=
container memory memory

VM engine virtual virtual
_ / / FS FS
\ J & J

|
operating system
network network
CPU | CPU memory [adapter J CPU | CPU memory [adapter]
CPU | CPU / disk GPU CPU | CPU / disk GPU
Hardware Hardware

Stack for hardware virtualization. Stack for OS-level virtualization.

Comparison with hardware
virtualization: features

Comparison of features between hardware and OS-level virtualization techniques.

Operating system-level virtualization Hardware virtualization
Security - +
Usability ++ -
Performance 0 0
Startup time + - -
Image size + --
Memory overhead + - -

* Containers are better overall for cloud-native applications
= Applications are architectured to be deployed on the cloud
e Security concerns
= Kernel shared between containers
* VMs still have use cases: persistent, interactive environments, robustness, first-level resource provisioningss

Demo: Docker

¢ Creation and usage of a Docker container
= Runaninteractive image
= Pull and run adaemon service
= Listimages, monitor containers
* Docker is rather “low-level” for applications: compose multiple components (containers) in a single application with
Docker Compose

o0 Compose

docker Dpocker

Docker logo.

Docker Compose logo.

Building containers: two ways

1. Interactively
1. From a base distribution image
e Linuxdistributions: Ubuntu, Alpine...
* Runtime distributions (based on Linux distributions): Python...
2. Use the package manager to add software

3.docker commit tagsthe current state of the container as animage
» Efficient for testing and experimenting
2. Writing a Dockerfile

* DSL to describe how to install and configure the bundled applications
* Proper method: clean, reusable, reproducible, auditable...

Building containers with a Dockerfile

Starting from a base image.
FROM alpine

Execute commands to build and configure the image.
RUN apk add --no-cache perl

Add local files.
COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

Set the default executable.
ENTRYPOINT ["/usr/local/bin/cowsay"]

Sample Dockerfile for docker/cowsay.

 Build theimage withdocker build --tag namespace/name:tag
e Canstart from an empty image: FROM scratch

= Rarely used, only by base images of distributions, where the image is built from an archive
* May also include users, volumes, network ports...

Internal of a container engine

1. Isolation

2. Limit

3. Operation control
4. Virtual filesystem

Isolation: namespaces

¢ Provide anisolated view of the OS
¢ 8dimensions:

1. mnt: mount points 6. user:users, groups and privileges
* Hierarchy of sub-filesystems * The engine establishes a mapping between host
2. p1id: hierarchy of processes UIDs (GIDs) and in-container UIDs (GIDs)
* The first process in the container gets PID 1 = rootisdefined as UID O, which is available
3. net: networking facilities inside the container: escape the container as
* Interfaces, ports, protocol stack... root, and you are root on the host!
4.1pc:interprocess communication 7. uts:hostname and domain name
* SysV IPC mechanisms: semaphores, message * For UNIX TimeSharing, from an era of remote
gueues, shared memory segments computers and client terminals

5. time:date and time 8. cgroup: control groups (see next)

Limit: control groups (cgroups)

* Constrain resource usage
= Also prioritization, accounting, control
¢ 8“dimensions” (controllers):

cpu: CPU time
cpuset:task placement on memory and CPU nodes
memory: memory usage
10: block I/0
pid: number of PIDs (i.e., of processes)
device: accessto device files
o special: only through BPF
perf_event: performance monitoring
net:network packets priority and classes for QoS

* Other specialized controllers: rdma, hugetlb,misc

Operation control: capabilities and MAC

» Capabilities: selectively drop root privileges

* Mandatory Access Control (MAC): system-level operational policies with Linux Security Modules
= SELinux, AppArmor, seccomp...

* More than 40 capabilities (CAP_ XXX):

1.SYS _NICE: change process niceness 5.SETGID/UID: change process GIDs/UIDs
2.SYS_ADMIN: system admin (mount...) 6. KILL:send signals
3.SYS_CHROOT: change root path of 7.NET_ADMIN: network admin

process 8.NET_RAW: use RAW sockets

4.SYS _MODULE: (un)load kernel modules 9. CHOWN: change owner

Virtual filesystem

* [solated filesystem:
= mnt namespace to isolate hierarchy
= chroot toisolate the process to a subtree
* Two parts to the filesystem visible to the container:
1. Container image: basis for virtual filesystem
= Bundle of files and filesystem operations in layers
2.Volumes: external data storage
= Mounted into the virtual filesystem of the running container

Virtual filesystem: layers and volumes

&
=
writeable S
layer
()
e Animage is made of layers ,%
= Like git commits, to represent modifications on the filesystem %'
= Reusable by other images, with caching "-_2.
= Visiblewithdocker image history $IMAGE_NAME =
» Layers of animage, built from a Dockerfile, are read-only o
= The engine adds a writeable layer on top during container execution
= Use copy-on-write to modify files from lower layers
* Managed by a union filesystem: driver of a layered virtual filesystem (Overlayfs)
layer 2 §
D
g.
layer1 | <3

Container image layers and
volumes.

running layer
read-write

container image

base image
read-only

read-only

Virtual filesystem: OverlayFS and copy-on-write

[llustration of a union filesystem and copy-on-write.

container view
A Y A 4 A 4 A 4
~ | — 1
: run nginx.pid |: : : === T .
I ’7 I | o= m - i\ | _---Tivolume »— -~ directory union
/ 3 : sv | indexhtml [---""
! | N\ I - _____ ll |
i | | etc | nginx.conf
> SRR S e P e) copy-on-wnte .
| | I etc ! nginx.conf
| | ' o I
! l | l | nginx .
N : : : copy-on-write: deleted file
k | | | | 1 is replaced With tombstone J
' I | I :
/ - - bin apk
T | | | T
: : : bash
— I | | | |

Low-level view of a container engine

namespace : [users, processes
/E hostname)
cgroup capabilities,
5 (network j
kernel resources
devices
storage
volumes

base image B Container engine
-- (O Isolations and limits

initial process (PID 1)
& child processes

,
K
\

pu

YN
AL

writeable layer

Low-level components and interface of a container engine.

¢ Most features that make a container, come from the Linux kernel!

Demo: namespaces and cgroups

e Spawn a new process in namespaces
e Put aprocessin control groups

= Set limit and monitor resource usage
* Using the virtual filesystem interface

= There are also syscalls

Linux logo.

Containers for the cloud

1. Application architecture in the cloud
2. Micro-services
3. Orchestration

Cloud application architecture

» Historic pattern: monolithic application
= All components are ad-hoc, tightly coupled

* Unfit for the cloud
= Must manage all components at once for scalability, deployment, service quality
= Hard to reconfigure

* New paradigm enabled by containers: micro-services

Micro-services

container container container

{ web server H business core]4—»[DB server] <4] <4+
web server business core DB server

container

] | |

e > <> >
app data app data
volume volume volume volume
host host

Y Monolithic container.

4 Composition of containers.

» Components as processes » Components as containers
= Manualinterfacing = Maximum reuse of images
o Need in-container PID 1 (service manager) = High flexibility, clean configuration and
to run multiple processes interfacing

= Cons of monolithic apps (see previous slide) = Fine-grained scalability

Networking for micro-services

* Configuration of networking by the container runtime
= Dedicated links between component containers
= Controlled link to the outside world
* Network drivers:
= Host: expose host network devices to the container (no isolation)
= Bridge: local virtual network
o May be exposed to the outside world via virtual routing
= Qverlay: inter-host inter-container network
= None: no networking at all

Networking for micro-services: illustrations

container

container

container

container

I -
i - =l veth
container container veth veth = oo -
[
. o = : E |
host host NIC host | host NIC E host NIC
Host. Bridge. Overlay.

Orchestration

Composition: build applications as micro-services
= Roughly: manage multiple containers as one application
= Example: Docker Compose
Orchestration: manage micro-services
= Deployment
= Distribution
= Replication
= Load-balancing
= Availability
= Rolling updates

Orchestration exposes higher-level interfaces to the features of composition
= |nthe end, the orchestrator is the user front-end

Examples: Kubernetes, Docker Swarm

Abstraction of management unit: the pod

Orchestration: scheduling

e Manual criteria: filters
= Handle host heterogeneity
o Settings of container runtime, host OS...
= Container affinity: force placement for resource access
o Image availability, volume placement, other container...
o Strategies for deployment on physical hosts
= Spread: balance load over hosts
= Binpack: colocate as much as possible
* Handle colocation of tightly-coupled containers: pods
= Containers in a pod share the same network namespace and same volumes
= Pod = service container + helper (sidecar) containers (logging, interfacing...)

Orchestration of pods

—

container

template
processor

container

web server

pod

container

monitor

—,

I

container

container

business
core

container container

DB server

<

web page
volume

"
e

Application architecture with pods.

=
|

app

volume

v
—

Demo: Kubernetes

* Create and use a pod

* Create and use adeployment
= Scalability
= Roll-out

kubernetes

Kubernetes logo.

Kubernetes application: example of
deployment.yaml

kind: Deployment
#[...]
spec:
Scalability: set number of replicas.
replicas: 3
selector:
matchLabels:
app: simpleserver
template:
metadata:
labels:
app: simpleserver
spec:
Pod: composition of containers.
containers:
- name: pythonserver
image: python:simpleserver
resources:
requests:
cou: 0.5

Example of deployment description file.

Operating system-level virtualization

* Virtualize the OS instead of the hardware

= Containers: simpler, lighter, faster
o Not safer!

» Based on the Linux kernel (LinuX Containers, LXC): namespaces, cgroups, etc.
= Container engines wrap those features and deliver unified specifications
= Container runtimes bring usability, networking, development processes...

* Enabling new cloud-native application architecture: micro-services
= Compositions of containers managed by orchestrators

