
Containers andContainers and

Orchestration: aOrchestration: a

SecuritySecurity

PerspectivePerspective

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

Télécom SudParis, IMT, IP Paris, Inria

2024–2025 NET5039 — Systèmes, virtualisation et sécurité

1 / 43

Cloud applicationsCloud applications

Traditional applications and monolithic
Everything is tightly coupled
On full servers, managed from OS to deployment

This is a constraint on the user
In the cloud, you don’t manage real servers

You share servers, thanks to virtualization
You get new resources (“servers”) on-the-fly

We can drive this model further!

2 / 43

Cloud native applicationsCloud native applications

No OS management by the user
Component-level application scalability

3 / 43

Introducing: containersIntroducing: containers

Cloud users do not want to run OSes
They want to run their applications

How to share cloud resources closer to the applications?
Virtualization layer just between the OS and the application

Virtualize the OS for multiple applications at the same time!
In other words, containers are OS-level virtualization

An OS executes a container runtime that uses a container engine to run containers
Docker, LXC, OpenVZ…

4 / 43

Actors of OS-level virtualizationActors of OS-level virtualization

1. Container runtime
2. Container engine
3. Container

5 / 43

Containers runtimesContainers runtimes

High-level management of containers, artifacts and runtime configuration
Business-oriented container lifecycle
Build, download container images
Configure networking, volumes, security, etc.

A container image packages an application and its runtime
Business core, dependencies, pre-configuration

Ecosystem of reusable images stored in registries (DockerHub, GitLab registries, local registry…)
Images are built immutable for portability, reusability and composability

Examples: Docker (containerd), Podman, Apptainer…

6 / 43

Container enginesContainer engines

Low-level management of containers
Create, start, stop, destroy…
Prepare images for usage
Last-mile setup of networking, mounts, security…

Different engines for different usages or orientations: generic, security-oriented, scientific…
Examples: runc, Kata Container, gVisor, wasmtime…

7 / 43

ContainersContainers

Container: isolated and limited virtual copy of the host OS
Deploys the image to “fill in” the virtual copy

Isolation: users, devices, processes…
Virtual filesystem: built from container image

Limits: CPU, memory, I/O…
Also monitoring

8 / 43

Comparison with hardwareComparison with hardware

virtualization: stackvirtualization: stack

Stack for hardware virtualization. Stack for OS-level virtualization.

9 / 43

Comparison with hardwareComparison with hardware

virtualization: featuresvirtualization: features

Comparison of features between hardware and OS-level virtualization techniques.

Operating system-level virtualization Hardware virtualization

Security - +

Usability ++ -

Performance 0 0

Startup time + - -

Image size + - -

Memory overhead + - -

Containers are better overall for cloud-native applications
Applications are architectured to be deployed on the cloud

Security concerns
Kernel shared between containers

VMs still have use cases: persistent, interactive environments, robustness, first-level resource provisioning…10 / 43

Demo: DockerDemo: Docker

Creation and usage of a Docker container
Run an interactive image
Pull and run a daemon service
List images, monitor containers

Docker is rather “low-level” for applications: compose multiple components (containers) in a single application with
Docker Compose

Docker logo.

Docker Compose logo.

11 / 43

Building containers: two waysBuilding containers: two ways

1. Interactively
1. From a base distribution image

Linux distributions: Ubuntu, Alpine…
Runtime distributions (based on Linux distributions): Python…

2. Use the package manager to add software
3. docker commit tags the current state of the container as an image

Efficient for testing and experimenting
2. Writing a Dockerfile

DSL to describe how to install and configure the bundled applications
Proper method: clean, reusable, reproducible, auditable…

12 / 43

Building containers with a DockerfileBuilding containers with a Dockerfile

Sample Dockerfile for docker/cowsay.

Build the image with docker build --tag namespace/name:tag
Can start from an empty image: FROM scratch

Rarely used, only by base images of distributions, where the image is built from an archive
May also include users, volumes, network ports…

Starting from a base image.
FROM alpine

Execute commands to build and configure the image.
RUN apk add --no-cache perl

Add local files.
COPY cowsay /usr/local/bin/cowsay
COPY docker.cow /usr/local/share/cows/default.cow

Set the default executable.
ENTRYPOINT ["/usr/local/bin/cowsay"]

13 / 43

Security of containersSecurity of containers

1. Isolation
2. Threat models and vectors
3. Good practices

14 / 43

IsolationIsolation

Fundamental issue for cloud providers: execute untrusted code
When using containers: tenants and provider share the kernel

No mitigation when the kernel is compromised
Incompatibility of kernel-level security policies

Because security measures are mostly not namespaces (AppArmor, etc.)
Vast attack surface and trusted code base

Virtual Machines (VMs) are better in this regard (hypervisor interface vs. whole host kernel)
Isolation of untrusted code

To protect containers from each other
To protect the system from containers

15 / 43

Threat models: goals and targetsThreat models: goals and targets

Attack goals:
Disrupt services: bad neighbor, denial of service
Subvert services: steal identity, steal resources
Steal data

Targets are cloud-oriented: applications are regular services
Mostly web servers or applications accessed by HTTP requests
But sometimes containers include system services

SSH, cron jobs, logs…
More privileged requirements => more care!

16 / 43

Threat models: overviewThreat models: overview

1. direct attack from outside, on the containerized
application

2. indirect attack from a container, on another
containerized application

3. attack from a container, on the host system

Threat models of containerization.

17 / 43

Threat model (A): direct attack from outsideThreat model (A): direct attack from outside

Containers are not security magic for Internet-facing applications!
A vulnerable web server remains vulnerable

But containers help against vulnerabilities:
Breach containment

Importance of the micro-service model
Safe configuration is easier to achieve

More secure defaults
Fewer configuration items to tweak thank to virtualized environment

Simpler audit
Limited set of dependencies and software pieces

Fast, easy distribution of security updates
Container distribution model: generic images pulled from a centralized place

Regarding the distribution model: it can also be a threat vector (attacks on the distribution channel)
Do not pull unaudited images or updates: may be freshly vulnerable or compromised

Malicious updates or owner, typosquatting…
Use a private repository of audited images

18 / 43

Threat model (B): indirect attack between containersThreat model (B): indirect attack between containers

Containers run arbitrary code by definition
B1: Escape to another container

Bug in namespaces implementation
Leaks in the filesystem

B2 : Abuse of the container network
Packet forging
Layer 2 attacks

B3 : Escalation to root
Vulnerable SUID binaries
Vulnerable container engine implementation

B4 : Execute arbitrary kernel code
Exploitable system calls

Not always container-specific

Threat models of containerization.

19 / 43

Threat model (C): attack on the host systemThreat model (C): attack on the host system

Containers run arbitrary code by definition
Escape containment

Namespace bug
Filesystem leak

Escalate to root
Vulnerable SUID binaries
Vulnerable container engine implementation

Execute arbitrary kernel code
Exploitable system calls

Not always container-specific

Threat models of containerization.

20 / 43

Good practices: as a userGood practices: as a user

Audit public images
Fix versions, but monitor for security updates

Use the micro-services architectures
For intrusion detection and containment
Every micro-service can be augmented with its own monitor

Mount volumes read-only when possible
Container images are already immutable thanks to the overlay FS

Drop capabilities
Many are dropped by default, but more can usually be dropped

21 / 43

Good practices: as an image developerGood practices: as an image developer

Use and build immutable container images
I.e., images that can be deployed identically everywhere, only configured to fit the environment
Example: do not build images that download binaries when starting

Do not run as root in the container (non root images)
User namespaces allow that, but this is not an excuse
Do not rely on SUID binaries in general

22 / 43

Good practices: as a system administratorGood practices: as a system administrator

Harden the kernel
Enable MAC: Linux Security Modules (AppArmor, SELinux, etc.), seccomp…

Not really containerization-aware but still very well usable
Use a hardened kernel (GRSEC…)
Update the kernel to vetted versions

It is a critical part, because it is shared with all containers (huge trusted codebase between tenants)
Configure container networking tightly

Do not use host mode
Think about shared network namespaces, open ports, common virtual networks…

In practice: managed by docker-compose, Kubernetes, etc.
Why not go one step beyond: use virtual machines!

An application in a Docker container in a virtual machine (in a container ?)
Kata Containers, gVisor…
Or just split physical servers by tenants using VMs

23 / 43

Internal of a container engineInternal of a container engine

1. Isolation
2. Limit
3. Operation control
4. Virtual filesystem

24 / 43

Isolation: namespacesIsolation: namespaces

Provide an isolated view of the OS
8 dimensions:

1. mnt: mount points

Hierarchy of sub-filesystems
2. pid: hierarchy of processes

The first process in the container gets PID 1
3. net: networking facilities

Interfaces, ports, protocol stack…
4. ipc: interprocess communication

SysV IPC mechanisms: semaphores, message
queues, shared memory segments

5. time: date and time

6. user: users, groups and privileges

The engine establishes a mapping between host
UIDs (GIDs) and in-container UIDs (GIDs)

root is defined as UID 0, which is available
inside the container: escape the container as
root, and you are root on the host!

7. uts: hostname and domain name
For UNIX TimeSharing, from an era of remote
computers and client terminals

8. cgroup: control groups (see next)

25 / 43

Limit: control groups (cgroups)Limit: control groups (cgroups)

Constrain resource usage
Also prioritization, accounting, control

8 “dimensions” (controllers):
cpu: CPU time
cpuset: task placement on memory and CPU nodes

memory: memory usage
io: block I/O

pid: number of PIDs (i.e., of processes)
device: access to device files

special: only through BPF
perf_event: performance monitoring
net: network packets priority and classes for QoS

Other specialized controllers: rdma, hugetlb, misc

26 / 43

Operation control: capabilities and MACOperation control: capabilities and MAC

Capabilities: selectively drop root privileges
Mandatory Access Control (MAC): system-level operational policies with Linux Security Modules

SELinux, AppArmor, seccomp…
More than 40 capabilities (CAP_XXX):

1. SYS_NICE: change process niceness

2. SYS_ADMIN: system admin (mount…)
3. SYS_CHROOT: change root path of

process
4. SYS_MODULE: (un)load kernel modules

5. SETGID/UID: change process GIDs/UIDs
6. KILL: send signals
7. NET_ADMIN: network admin

8. NET_RAW: use RAW sockets
9. CHOWN: change owner

27 / 43

Virtual filesystemVirtual filesystem

Isolated filesystem:
mnt namespace to isolate hierarchy

chroot to isolate the process to a subtree
Two parts to the filesystem visible to the container:

1. Container image: basis for virtual filesystem
Bundle of files and filesystem operations in layers

2. Volumes: external data storage
Mounted into the virtual filesystem of the running container

28 / 43

Virtual filesystem: layers and volumesVirtual filesystem: layers and volumes

An image is made of layers
Like git commits, to represent modifications on the filesystem
Reusable by other images, with caching
Visible with docker image history $IMAGE_NAME

Layers of an image, built from a Dockerfile, are read-only
The engine adds a writeable layer on top during container execution
Use copy-on-write to modify files from lower layers

Managed by a union filesystem: driver of a layered virtual filesystem (Overlayfs)

Container image layers and
volumes.

29 / 43

Virtual filesystem: OverlayFS and copy-on-writeVirtual filesystem: OverlayFS and copy-on-write

Illustration of a union filesystem and copy-on-write.

30 / 43

Low-level view of a container engineLow-level view of a container engine

Low-level components and interface of a container engine.

Most features that make a container, come from the Linux kernel! 31 / 43

Demo: namespaces and cgroupsDemo: namespaces and cgroups

Spawn a new process in namespaces
Put a process in control groups

Set limit and monitor resource usage
Using the virtual filesystem interface

There are also syscalls

Linux logo.

32 / 43

Containers for the cloudContainers for the cloud

1. Application architecture in the cloud
2. Micro-services
3. Orchestration

33 / 43

Cloud application architectureCloud application architecture

Historic pattern: monolithic application
All components are ad-hoc, tightly coupled

Unfit for the cloud
Must manage all components at once for scalability, deployment, service quality
Hard to reconfigure

New paradigm enabled by containers: micro-services

34 / 43

Micro-servicesMicro-services

❌ Monolithic container. ✅ Composition of containers.

Components as processes
Manual interfacing

Need in-container PID 1 (service manager)
to run multiple processes

Cons of monolithic apps (see previous slide)

Components as containers
Maximum reuse of images
High flexibility, clean configuration and
interfacing
Fine-grained scalability

35 / 43

Networking for micro-servicesNetworking for micro-services

Configuration of networking by the container runtime
Dedicated links between component containers
Controlled link to the outside world

Network drivers:
Host: expose host network devices to the container (no isolation)
Bridge: local virtual network

May be exposed to the outside world via virtual routing
Overlay: inter-host inter-container network
None: no networking at all

36 / 43

Networking for micro-services: illustrationsNetworking for micro-services: illustrations

Host.

Bridge.

Overlay.

37 / 43

OrchestrationOrchestration

Composition: build applications as micro-services
Roughly: manage multiple containers as one application
Example: Docker Compose

Orchestration: manage micro-services
Deployment
Distribution
Replication
Load-balancing
Availability
Rolling updates
…

Orchestration exposes higher-level interfaces to the features of composition
In the end, the orchestrator is the user front-end

Examples: Kubernetes, Docker Swarm
Abstraction of management unit: the pod

38 / 43

Orchestration: schedulingOrchestration: scheduling

Manual criteria: filters
Handle host heterogeneity

Settings of container runtime, host OS…
Container affinity: force placement for resource access

Image availability, volume placement, other container…
Strategies for deployment on physical hosts

Spread: balance load over hosts
Binpack: colocate as much as possible

Handle colocation of tightly-coupled containers: pods
Containers in a pod share the same network namespace and same volumes
Pod = service container + helper (sidecar) containers (logging, interfacing…)

39 / 43

Orchestration of podsOrchestration of pods

Application architecture with pods.

40 / 43

Demo: KubernetesDemo: Kubernetes

Create and use a pod
Create and use a deployment

Scalability
Roll-out

Kubernetes logo.

41 / 43

Kubernetes application: example ofKubernetes application: example of

deployment.yamldeployment.yaml

Example of deployment description file.

kind: Deployment
[...]
spec:
 # Scalability: set number of replicas.
 replicas: 3
 selector:
 matchLabels:
 app: simpleserver
 template:
 metadata:
 labels:
 app: simpleserver
 spec:
 # Pod: composition of containers.
 containers:
 - name: pythonserver
 image: python:simpleserver
 resources:
 requests:
 cpu: 0.5

42 / 43

Operating system-level virtualizationOperating system-level virtualization

Virtualize the OS instead of the hardware
Containers: simpler, lighter, faster

Not safer!
Based on the Linux kernel (LinuX Containers, LXC): namespaces, cgroups, etc.

Container engines wrap those features and deliver unified specifications
Container runtimes bring usability, networking, development processes…

Enabling new cloud-native application architecture: micro-services
Compositions of containers managed by orchestrators

43 / 43

