
CSC5004 — CLOUD COMPUTING ARCHITECTURES2022 — 2023

Hardware
virtualization
Hardware
virtualization
Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

CSC5004 Hardware virtualization 2

What is virtualization?
● Abstraction of physical resources into virtual resources

– More complex management: sharing, access rights
– Unified hardware access: easier development

● Many kinds:
– Operating systems: virtual memory, threads…

● Microsoft Windows, Linux, Mac OSX, BSDs, Android...

– Emulators: instruction translation
– Language virtual machines: optimized emulator

● Java Virtual Machine (JVM), Python...

– Containers: virtual OS
● Docker, LXC...

– Virtual machines: virtual hardware
● QEMU/KVM, Xen, VMWare ESXi, VirtualBox, Microsoft Hyper-V...

CSC5004 Hardware virtualization 3

What is hardware virtualization?
● Virtualize hardware for multiple OSes at

the same time!
– Virtual CPUs
– Additional level of memory addressing
– Virtual storage
– Virtual network
– IRQs, clocks…

● A hypervisor runs guest OSes in virtual machines

CSC5004 Hardware virtualization 4

Actors of hardware virtualization
I.Hypervisor

II.Virtual machine and guest OS

III.User interface: libvirt

CSC5004 Hardware virtualization 5

Hypervisor
● A hypervisor (HV) is a special OS that runs guest

OSes
– Manages virtual machines (VM) where guest OSes are

run: also called virtual machine manager (VMM)
● Two types:

– Type 1: native
● Bare metal
● Guest OSes are processes

– Type 2: hosted
● Process of a normal OS
● Guest OSes are subprocesses Hardware

Hypervisor

VM

OS

App

VM

OS

App

OS

Hardware

Hypervisor

VM

OS

App

VM

OS

App

Type 1: native Type 2: hosted

CSC5004 Hardware virtualization 6

Hypervisors in the cloud
● Type 1 (Xen, KVM...):

– Optimized for maximum resource virtualization
● Bare metal

– Low performance overhead
● Only one (big) task: run guest OSes

– More secure
● Isolation of guest OSes at lower level

● Type 2 (VirtualBox, QEMU/KVM...):
– Easier to install and use

● For these reasons, the cloud relies on type 1 rather than type 2
– But also operating system-level virtualization (next chapter)

CSC5004 Hardware virtualization 7

Virtual machine
● Cohesive ensemble of virtualized resources that represent a complete

machine
– Hardware is virtualized: a guest OS is still needed!

● States: running, suspended, shut down

● When running:
– State of virtual hardware

● Memory, I/O queues, processor registers and flags…

● “Easy” checkpointing with snapshots

● When stopped:
– A disk image

● Files of guest OS

● Easy replication by copying disk image

CSC5004 Hardware virtualization 8

Virtual machine: the stack

VM

OS

Hypervisor

Hardware

app

vCPU vCPU

vCPU

CPU CPU

CPU CPU

memory

virtual
memory

network adapter 1

network adapter 2disk

vdisk

virtual
network adapter

VM

OS
app

vCPU

vCPU

virtual
memory

vdisk

VIRTUALIZATION MAGIC

GPU

vGPU

CSC5004 Hardware virtualization 9

User-friendly interface: libvirt
● Common and stable layer to manage VMs

– Works also with other hypervisors
– Also to manage storage and network

● Used by user front-ends: virsh,
virtmanager…
– Clients to libvirtd daemon

CSC5004 Hardware virtualization 10

Commands and concepts
● Interactive shell: virsh

– Help: virsh help

● Create a storage pool (a collection of VM images):

virsh pool-define-as mypool dir - - - - /path/to/pool/images
virsh pool-build
virsh pool-start

● Create a volume (a VM image):

virsh vol-create-as mypool myvolume 10GiB --format qcow2

● Create a domain (a VM specification) using virt-install and a given install method (here, CD-ROM):

virt-install --name myubuntudomain --os-type=linux –os-variant=ubuntu20.04 \
--memory 4096 --vcpus=4,maxvcpus=8 --network bridge=virtbr0 \
--virt-type kvm --cpu host --disk 10,format=qcow2 --cdrom ubuntu.iso

– Will also create the volume (so you can skip vol-create-as)

● Start a domain (run a VM): virsh start myubuntudomain

● Interactively jump into the domain: virt-viewer --connect qemu:///session myubuntudomain

● Shutdown a domain (terminate a VM): virsh shutdown myubuntudomain (force terminate with virsh destroy)

● Manually edit XML configuration of a domain: virsh edit myubuntudomain

● And more for network, checkpointing, device configuration...

Abstraction of VM images to
manage them across the cloud
(migration, replication...)

CSC5004 Hardware virtualization 11

Virtualization in the cloud
I.Life-cycle

II.Scalability

III.Resource management

IV.Security and reliability

CSC5004 Hardware virtualization 12

Life-cycle of VMs in the cloud
● Easy deployment: one

VM image, multiple
VMs – services

● Easy administration:
all software, no
hardware

● Seen as a resource
unit in the cloud
– Accounting based on

VM size and uptime Excerpt of Google Cloud Platform pricing
for generic VMs

CSC5004 Hardware virtualization 13

Service scalability
● Horizontal: add VMs

– Under load spikes,
replicate the service

● Kill useless replicates after
burst

– Load balance between
replications

● Automatic scaling

● Vertical: enlarge VMs
– All hardware is virtual:

dynamic addition of
vCPUs or memory

● Hard to implement:
how to unmap unused
memory from the
guest OS?

● Also: shutdown and
replace with stronger
VM
– Keep the same image!

CSC5004 Hardware virtualization 14

Resource management
● Fit N VMs on M physical hosts

– Many resources to take into consideration: memory, CPU, disk, network...

– Hard optimization problem with many dimensions

● Overcommitment: resources are virtual, so give out more than
physically available
– Rarely used: too harmful when it collapses

● Migration: VMs are loosely attached to hosts, so move them around
– Optimize resource usage on physical hosts

– Optimize datacenter usage by powering only needed hosts

Initial copy
to new host Suspend

Copy of left-over
(dirty pages,
CPU state)

Resume on
new host

Seamless live migration of a VM

consolidation

CSC5004 Hardware virtualization 15

Resource management: memory
● Hard to manage: spatial

sharing
– You can’t get more

memory!
– Different from CPU: time

sharing, you can simply
wait

● Overcommitment: resources
are virtual, so give more
memory than physically
available
– Rarely used: too harmful when it

collapses because the system
thrashes, swapping pages

HV

VM

OS

app

physical memory

virtual memory

balloon

Paravirtualized ballooning

● Ballooning: reclaim memory from guests

1) Inflate: ask for memory pages

2) Give the pages back to the HV

– Paravirtualized mechanism

– Rarely used: too hard to estimate balloon size
● Too hard to estimate working set size

● Too big makes the VM swap, destroys performance

CSC5004 Hardware virtualization 16

Security and reliability
● Isolation between VMs

– Different guest Oses, virtual hardware
– Access policies enforced by the hypervisor

● Automatic checkpointing and resuming
– Automatic failure handling
– Redundancy

CSC5004 Hardware virtualization 17

Cloud infrastructure overview

Dashboard
(central administration)

Telemetry
(monitoring)

Identity
(authentication)

Orchestration
(live migration)

Storage
(block, object, database)

Scheduling
(VM management)

Image service
(registry of VM images)

Networking
(virtual network)

Cloud infrastructure example:
OpenStack (simplified view)

CSC5004 Hardware virtualization 18

Demo: QEMU/KVM
● Creation and usage of a QEMU/KVM VM:

– Run a guest OS in a VM booting from “CD-
ROM”

– Run the installed OS booting from overlayed
disk image in a fully-featured VM

– Run the same OS in a weaker VM
● QEMU is a bit hard to use: libvirt for VM

management and configuration

CSC5004 Hardware virtualization 19

Internals of an hypervisor
I.Modes of virtualization

II.Architectural overview of QEMU/KVM

III.Virtualization of CPUs

IV.Virtualization of memory

V.Virtualization of I/O and devices

CSC5004 Hardware virtualization 20

Modes of virtualization
● Three modes to virtualize a guest OS:

1) Full virtualization: total simulation of virtual hardware
● Unmodified guest OS
● Binary translation

2) Paravirtualization: virtualization interface between guest OS and HV
● Paravirtualized guest OS: deep changes, paravirtualized drivers
● Software optimizations of guest OS – HV interaction: hypercalls

3) Hardware-assisted virtualization: the physical hardware helps executing
virtualized OS operations

● Unmodified guest OS
● Hardware support for virtualized execution (Intel VT-x, AMD-V...)

● Orthogonal to HV types

CSC5004 Hardware virtualization 21

Virtualization modes of guest OS

VM

OSvirtual driver

hardware

HV

app

virtual device

device

VM

hardware

HV

virtual device

device

OSdriver

virtual device

app

VM

HV

virtual device

OSdriver

hardware

device

driver

virtual device

app

VM

HV

virtual device

OSvirtual driver

hardware

device

driver

app

Full virtualization Hardware-assisted
virtualization

Paravirtualization Hardware-assisted
paravirtualization

hypercalls

hypercalls

CSC5004 Hardware virtualization 22

Architectural overview

QEMU

hardware

kernel
physical drivers

KVM
file system

block devices

hardware
emulation

KVM guestapplications

vCPU vCPU virtual
memory

kernel
physical drivers

file system
block devices

CSC5004 Hardware virtualization 23

Virtualization of CPUs
● Problems: the guest OS has expectations

1)Unlimited control over the hardware
● But now it’s the hypervisor!

2)Exclusive control over the hardware
● But now there are many OSes to share with!

● Effects:
– Changes in protection rings to de-privilege guest

OS
– VM context switching to share hardware among

guests

CSC5004 Hardware virtualization 24

CPU Protection rings
ring 3

applications

ring 2

device drivers

ring 1

device drivers

ring 0

kernel

● General protection
mechanism

● Userspace in ring 3
– Use hardware by asking

the kernel through
syscalls

● Kernel in ring 0
– Full, exclusive control

over the hardware
● Other rings generally

unused Privilege rings for x86
(numbered from highest

privilege to lower)

syscalls

CSC5004 Hardware virtualization 25

CPU rings: full virtualization
● Guest userspace in ring 3

– Use hardware by asking the
kernel through syscalls

● Kernel in ring 1,
unmodified

● Hypervisor in ring 0
– Full, exclusive control over

the hardware
– Trap requests from guest

kernel Privilege rings with hypervisor:
full virtualization

ring 3

applications

ring 2

device drivers

ring 1

kernel

ring 0

hypervisor

syscalls

traps
binary translation

CSC5004 Hardware virtualization 26

Full virtualization
● Install traps to intercept privileged instructions

– Other instructions are directly executed as normal
● On trap: simulate the instruction with shadowing

– Security checks to maintain isolation between guest
VMs

– Binary translate instruction before privileged execution
● Upside: unmodified guest OS
● Downside: huge performance impact

– You can check it by running a QEMU VM without KVM!

CSC5004 Hardware virtualization 27

CPU rings: paravirtualization
● Guest userspace in ring 3

– Use hardware by asking the
kernel through syscalls

● Kernel in ring 0, modified
for paravirtualization
– Use hardware by asking the

hypervisor through
hypercalls

● Hypervisor in ring 0
– Full, exclusive control over

the hardware Privilege rings with hypervisor:
paravirtualization

ring 3

applications

ring 2

device drivers

ring 1

device drivers

ring 0

hypervisor

syscalls

kernel

hypercalls

CSC5004 Hardware virtualization 28

Paravirtualization
● Modify guest OS for paravirtualization

– Use an API provided by the hypervisor: hypercalls
– Otherwise run in ring 0 as usual

● Upside: very good performance
● Downside: work to paravirtualize guest OS
● Extends to paravirtualized devices and drivers

– Front-end driver in guest OS, back-end driver in
HV

– In QEMU/KVM: virtio drivers

CSC5004 Hardware virtualization 29

CPU rings: hardware-assisted
● Guest userspace in ring

3
– Use hardware by asking

the kernel through
syscalls

● Kernel in ring 0,
unmodified

● Hypervisor in ring -1
– Full, exclusive control

over the hardware
Privilege rings with hypervisor:
hardware-assisted virtualization

ring 3

applications

ring 2

device drivers

ring 1

device drivers

ring 0

kernel

ring -1

hypervisor

syscalls

CSC5004 Hardware virtualization 30

Hardware-assisted virtualization
● Hypervisor in new, over-privileged ring -1

– Guest OS in expected ring 0, with ring 3 for userspace

● On privileged operations from the guest, transition from VM context
to HV context
– Similar to the OS handling events and exceptions from its userspace with

processor help

– The hard work is moved down to the processor (Intel VT-x, AMD-V)

● Upside: unmodified guest, very good performance

● Downside: none

● Extends to memory: Extended Page Tables

● Extends to devices: IOMMU, IRQ virtualization...

CSC5004 Hardware virtualization 31

Code speaks: KVM virtualization
open("/dev/kvm")
ioctl(KVM_CREATE_VM)
ioctl(KVM_CREATE_VCPU)
for (;;) {
 ioctl(KVM_RUN)
 switch (exit_reason) {
 case KVM_EXIT_IO: /* ... */
 case KVM_EXIT_HLT: /* ... */
 }
}

Pseudo-code of a vCPU thread

● KVM relies on structures managed by the
CPU: Virtual Machine Control Structure
(VMCS, Intel)

– Stores vCPU context (registers, flags,
etc.), reason for switching to HV
context...

● KVM ioctls use special CPU instructions
(Intel set)

Jump into guest code with
VM{LAUNCH,RESUME} until
VMEXIT (hypercall, etc.)

Handle virtualization:
I/O, VM halt...

host
mode

guest
mode

VMXON

VMEXIT

VMRESUME

VM
LAUNCH

C
o
d
efl

o
w

 o
f

K
V
M

w

it
h
 I

n
te

l
V
T-

x

CSC5004 Hardware virtualization 32

VM context switching
● Schedule VMs
● Switch world: CPU

registers, IRQs, memory
maps...

● QEMU is in Linux userland:
normal scheduler switching
threads

● Threading model: one per
vCPU + event loop for I/O
– Sub-threads for blocking I/O
– Global mutex around QEMU

QEMU process

kernel

iothread
(event loop)

KVM guest

vCPU vCPU
guest physical

memory

blo
ck

ing
 I/

O

blo
ck

ing
 I/

O

vC
PU

th

re
ad

vC
PU

th

re
ad

virtual
memory of
QEMU VM

process

QEMU threading model

CSC5004 Hardware virtualization 33

Virtualization of memory
● Problem of translating

memory addresses

OS

process virtual memory

hardware
physical
memory

MMU

page table

kernel

instruction

install

Native case: virtual
memory of a process

hypervisor

virtual machine

guest OS

hardware

host physical memory

MMU

page table

kernel

processinstruction

install

virtual HW

guest physical memory

virtual MMU

page table

kernel
install

guest virtual memory

Virtualized case: guest
memory vs. host memory

How to
implement this
virtual MMU?

CSC5004 Hardware virtualization 34

Virtualized memory translation

● The physical MMU is already used for the HV
page table

● Add a level of memory address translation:
shadow page table
– Maintain a shadow page table in the hypervisor

● Trap changes to the page table made by the guest OS
● Map host physical memory to guest physical memory
● Apply changes to the shadow page table

– Very inefficient, in the critical path

guest virtual address
GVA

guest physical address
GPA

host physical address
HPA

Translation of virtual addresses in virtualized environment

virtual
MMU

physical
MMU

CSC5004 Hardware virtualization 35

HW-assisted memory translation
● With KVM and hardware assistance: Second

Level Address Translation (SLAT)
– Intel: Extended Page Table (EPT)

● “Nest” the host page table into the guest
table

● The physical MMU handles the whole
translation from guest virtual addr. to host
physical addr.

CSC5004 Hardware virtualization 36

Virtualization of I/O and devices
1) Traps and emulation

– Using physical drivers in the HV

– Bad performance

2) Paravirtualization (virtio)

– Front-end driver in the guest OS, back-end driver in the hypervisor

– Optimized interfaces between guest and HV (for I/O: network, block device)

– (QEMU/KVM) vhost: emulate devices in kernel to use kernel-only optimizations

3) Hardware assistance:

– IOMMU: MMU to manage Direct Memory Access (DMA) of guests to devices
● Passthrough of physical functions

– Single Root Input Output Virtualization (SR-IOV): virtualizable devices
● Physical devices shared by exposing virtual functions

CSC5004 Hardware virtualization 37

Hardware virtualization
● Virtualization is about abstracting resources

– Hardware virtualization: creates virtual machines with
a hypervisor to run a guest OS

● Full, para-, hardware-assisted virtualization
– Example: QEMU/KVM, libvirt

● Virtualization is the cloud’s cornerstone
– Resource sharing, scalability and service delivery

● Virtualization of the hardware: CPU, memory,
devices
– A matter of collaboration between guest OS, HV and

HW

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

