
HardwareHardware

VirtualizationVirtualization

Mathieu Bacou
mathieu.bacou@telecom-sudparis.eu

Télécom SudParis, IMT, IP Paris, Inria

2024–2025 CSC5004 — Cloud Computing Infrastructures

1 / 40

What is virtualization?What is virtualization?

Abstraction of physical resources into virtual resources
More complex management: sharing, access rights
Unified hardware access: easier development

Many kinds:
Operating systems: virtual memory, threads…

Microsoft Windows, Linux, Mac OSX, BSDs, Android…
Emulators: instruction translation
Language virtual machines: optimized emulator

Java Virtual Machine (JVM), Python…
Containers: virtual OS

Docker, LXC…
Virtual machines: virtual hardware

QEMU/KVM, Xen, VMWare ESXi, VirtualBox, Microsoft Hyper-V…

2 / 40

What is hardware virtualization?What is hardware virtualization?

Virtualize hardware for multiple OSes at the same time!
Virtual CPUs
Additional level of memory addressing
Virtual storage
Virtual network
IRQs, clocks…

A hypervisor runs guest OSes in virtual machines

3 / 40

Actors of hardware virtualizationActors of hardware virtualization

1. Hypervisor
2. Virtual machine and guest OS
3. User interface

4 / 40

HypervisorHypervisor

A hypervisor (HV) is a special OS that runs guest OSes
Manages virtual machines (VM) where guest
OSes are run: also called virtual machine
manager (VMM)

Two types:
Type 1: native

Bare metal
Guest OSes are processes

Type 2: hosted
Process of a normal OS
Guest OSes are subprocesses

Types of hypervisors.

5 / 40

Hypervisors in the cloudHypervisors in the cloud

Type 1 (Xen, KVM…):
Optimized for maximum resource virtualization

Bare metal
Low performance overhead

Only one (big) task: run guest OSes
More secure

Isolation of guest OSes at lower level
Type 2 (VirtualBox, QEMU/KVM…):

Easier to install and use
For these reasons, the cloud relies on type 1 rather than type 2

But also operating system-level virtualization (next chapter)

6 / 40

Virtual machineVirtual machine

Cohesive ensemble of virtualized resources that represent a complete machine
Hardware is virtualized: a guest OS is still needed!

Status: running, suspended, shut down
When running:

State of virtual hardware
Memory, I/O queues, processor registers and flags…
“Easy” checkpointing with snapshots

When stopped:
A disk image

Files of guest OS
Easy replication by copying disk image

7 / 40

Virtual machine: the stackVirtual machine: the stack

Stack of a virtual machine.

8 / 40

User-interfaceUser-interface

Use hypervisor’s features to let a user manage VMs and related resources
Examples: VirtualBox, QEMU’s CLI, virsh, virtmanager…

GUIs, TUIs
Graphical display emulation for desktop environments in VMs, etc.

9 / 40

Demo: QEMU/KVMDemo: QEMU/KVM

Creation and usage of a QEMU/KVM VM:
Run a guest OS in a VM booting from “CD-ROM”
Run the installed OS booting from overlayed disk image in a fully-featured VM
Run the same OS in a weaker VM

QEMU is a bit hard to use: prefer libvirt for VM management and configuration

QEMU logo.

KVM logo.
libvirt logo.

10 / 40

User-friendly interface: libvirtUser-friendly interface: libvirt

Common and stable layer to manage VMs
Works with many hypervisors
Also manages storage and network

Used by user front-ends: virsh, virtmanager…
Clients to libvirtd daemon

11 / 40

Commands and conceptsCommands and concepts

Interactive shell: virsh
Help: virsh help

Managing VM images:
Manage storage pools (collections of VM images):

virsh pool- commands family
Manage volumes (VM images) in storage pools

virsh vol- commands family
Abstraction of VM images to manage them across the cloud

Useful for migration, replication, etc.
Managing domains (specifications of VM guests)

High-level command to install guests: virt-install
Manually edit a defined domain: virsh edit

Administrating domains:
Start: virsh start
End: virsh destroy

Force-stops the domain (think “pulling the plug”!)
virsh shutdown to demand shutdown gracefully as from (virtual) hardware

Accessing domains:
Get a TTY console: virsh console
Connect to display: virt-viewer

12 / 40

Virtualization in the cloudVirtualization in the cloud

1. Life-cycle
2. Scalability
3. Resource management
4. Security and reliability

13 / 40

Life-cycle of VMs in the cloudLife-cycle of VMs in the cloud

Easy deployment: one VM image, multiple VMs–services
Easy administration: all software, no hardware
Seen as a resource unit in the cloud

Accounting based on VM size and uptime

Excerpt of Google Cloud Platform pricing for generic VMs of the Compute Engine (Nov. 2020).

14 / 40

ScalabilityScalability

Horizontal: add VMs
Under load spikes, replicate the service

Kill useless replicates after burst
Load balance between replications
Often with automatic scaling

Vertical: enlarge VMs
All hardware is virtual: dynamic addition of vCPUs or memory

Hard to implement: how to reclaim unused memory from the guest OS when downscaling?
Also: shutdown and replace with stronger VM

Keep the same image!
Reconfigure applications

15 / 40

Resource managementResource management

Fit N VMs on M physical hosts
Many resources to take into consideration: memory, CPU, disk, network…
Hard optimization problem with many dimensions

Overcommitment: resources are virtual, so give out more than physically available
Rarely, or very cautiously used: too harmful when it collapses

Migration: VMs are loosely attached to hosts, so move them around
Migration allows consolidation

Optimize resource usage on physical hosts
Optimize datacenter usage by powering only needed hosts

Seamless live migration of a VM.

16 / 40

Resource management: memoryResource management: memory

Hard to manage: spatial sharing
You can’t get more memory!
Different from CPU: time sharing, you can simply wait

Overcommitment: resources are virtual, so give more memory than
physically available

Rarely used: too harmful when it collapses because the system
thrashes, swapping pages

Ballooning: reclaim memory from guests
1. Inflate: ask for memory pages
2. Give the pages back to the HV

Paravirtualized mechanism
Rarely used: too hard to estimate balloon size

Too hard to estimate working set size
Too big makes the VM swap, destroys performance

Paravirtualized ballooning.

17 / 40

Security and reliabilitySecurity and reliability

Isolation between VMs
Different guest OSes, virtual hardware
Access policies enforced by the hypervisor

Automatic checkpointing and resuming
Automatic failure handling
Redundancy

18 / 40

Cloud infrastructure: overviewCloud infrastructure: overview

Example of cloud infrastructure: OpenStack (simplified)

19 / 40

Internals of an hypervisorInternals of an hypervisor

1. Modes of virtualization
2. Architectural overview of QEMU/KVM
3. Virtualization of CPUs
4. Virtualization of memory
5. Virtualization of I/O and devices

20 / 40

Modes of virtualizationModes of virtualization

Three modes to virtualize a guest OS:
1. Full virtualization: total simulation of virtual hardware

Unmodified guest OS
Binary translation

2. Paravirtualization: virtualization interface between guest OS and HV
Paravirtualized guest OS: deep changes, paravirtualized drivers
Software optimizations of guest OS * HV interaction: hypercalls

3. Hardware-assisted virtualization: the physical hardware helps executing virtualized OS operations
Unmodified guest OS
Hardware support for virtualized execution (Intel VT-x, AMD-V…)

Orthogonal to HV types

21 / 40

Modes of virtualization of a guest OSModes of virtualization of a guest OS

Full virtualization. Paravirtualization. Hardware-assisted virt. Hardware-assisted virt.

22 / 40

Architectural overview of QEMU withArchitectural overview of QEMU with

KVMKVM

Architecture of QEMU when using KVM.

23 / 40

Virtualization of CPUsVirtualization of CPUs

Problems: the guest OS has expectations
1. Unlimited control over the hardware

But now it’s the hypervisor!
2. Exclusive control over the hardware

But now there are many OSes to share with!
Effects:

Changes in protection rings to de-privilege guest OS
VM context switching to share hardware among guests

24 / 40

CPU protection ringsCPU protection rings

General protection mechanism
Userspace in ring 3

Use hardware by asking the kernel through system calls
(syscalls)

Kernel in ring 0
Full, exclusive control over the hardware

Other rings generally unused

Privilege rings for x86 (numbered from
highest privilege to lower).

25 / 40

CPU protection rings: full virtualization (1/2)CPU protection rings: full virtualization (1/2)

Guest userspace in ring 3
Use hardware by asking the kernel through system calls
(syscalls)
Implementation of syscalls uses interrupts, which control is
privileged: the hypervisor redirects syscalls to the kernel in
ring 1

Kernel in ring 1, unmodified
Privileged operations are caught by the hypervisor

Hypervisor in ring 0
Full, exclusive control over the hardware

Privilege rings with a hypervisor: full
virtualization.

26 / 40

CPU protection rings: full virtualization (2/2)CPU protection rings: full virtualization (2/2)

The hypervisor implements trap and emulate workflow
1. Privileged operations from the guest OS in ring 1 trigger

General Protection Faults
2. Hardware calls into ring 0 (i.e., hypervisor) to handle them
3. Hypervisor emulates guest OS operations (shadowing)

Upside: unmodified guest OS
Downside: huge performance impact

This is visible when running a VM with QEMU, but without
KVM!

Privilege rings with a hypervisor: full
virtualization.

27 / 40

CPU protection rings: paravirtualization (1/2)CPU protection rings: paravirtualization (1/2)

Guest userspace in ring 3
Use hardware by asking the kernel through system calls
(syscalls)
Implementation of syscalls uses interrupts, which control is
privileged: the hypervisor redirects syscalls to the kernel in
ring 1

Kernel in ring 1, modified for paravirtualization
Unmodified privileged operations are caught by the
hypervisor
Modified privilege operations are implemented by requesting
the hypervisor via hypercalls

Hypervisor in ring 0
Full, exclusive control over the hardware

Privilege rings with a hypervisor:
paravirtualization.

28 / 40

CPU protection rings: paravirtualization (2/2)CPU protection rings: paravirtualization (2/2)

The hypervisor offers an API (hypercalls) for the guest OS to ask
for privileged operations without trap and emulation
Upside: very good performance
Downside: work to paravirtualize the guest OS
Extends to paravirtualized devices:

Implementations tailored for virtual environments
Two sides: a front-end driver in the guest OS, and a back-end
driver in the hypervisor
In QEMU/KVM: virtio drivers

Privilege rings with a hypervisor:
paravirtualization.

29 / 40

CPU protection rings: hardware-assisted virtualization (1/2)CPU protection rings: hardware-assisted virtualization (1/2)

Guest userspace in ring 3
Use hardware by asking the kernel through system calls
(syscalls)

Kernel in ring 0, unmodified
Most privileged operations are actually executed by the
hardware, in a safe way
Some may be selected for trapping by the hypervisor

They trigger a VMEXIT to pass control
Hypervisor in ring “-1”

Full, exclusive control over the hardware
Not an actual ring, but conceptually similar

Privilege rings with a hypervisor: hardware-
assisted virtualization.

30 / 40

CPU protection rings: hardware-assisted virtualization (1/2)CPU protection rings: hardware-assisted virtualization (1/2)

Support from the hardware allows selected traps to be taken by
the hypervisor
Upside: very good performance with unmodified guest
Downside: none (hardware upgrades, but it’s now widely available)
Extends to memory: Second Level Address Translation (SLAT)

Intel: Extended Page Table (EPT)
AMD: Nested Page Table

Extends to devices: IOMMU, virtualization of interrupts…

Privilege rings with a hypervisor: hardware-
assisted virtualization.

31 / 40

Hardware-assisted virtualization with KVMHardware-assisted virtualization with KVM

Pseudo-code of a vCPU thread.

KVM relies on structures managed by the CPU: Virtual
Machine Control Structure (VMCS, Intel)

Stores vCPU context: registers, flags, etc.)
Includes reason for switching to hypervisor
context…

KVM ioctls use special CPU instructions (examples

are from Intel’s set)

Codeflow of KVM with Intel VT-x.

open("/dev/kvm");
ioctl(KVM_CREATE_VM);
ioctl(KVM_CREATE_VCPU);
for (;;) {
 // Jump into guest code with VMLAUNCH/VMRESUME until next VMEXIT (hypercall, etc.)
 exit_reason = ioctl(KVM_RUN);
 switch (exit_reason) {
 case KVM_EXIT_IO: // Handle VM I/O
 case KVM_EXIT_HLT: // Handle VM halting
 //...
 }
}

32 / 40

Virtualization of memoryVirtualization of memory

Problem of translating memory addresses
How to implement a “virtual MMU”?

Native case: virtual memory of a process. Virtualized case: guest memory vs. host memory.

33 / 40

Virtualized memory translationVirtualized memory translation

Translation of virtual addresses in a virtualized environment.

The physical MMU is already used for the hypervisor page table
Add a level of memory address translation:

Software solution: shadow page table
Hardware-assisted solution: Second Level Address Translation (SLAT)

34 / 40

Virtualized memory translation: shadow page tableVirtualized memory translation: shadow page table

Maintain a shadow page table (GVA to HPA) in the hypervisor
This is the one installed in the MMU
The guest OS’s page table (GVA to GPA) is unused

Trap changes to the page table made by the guest OS
Every write is recalculated and stored in the shadow page table

Pros: 1-dimension page walk (see SLAT next)
Cons:

Very inefficient because of traps (full virtualization) on the critical path of memory management operations
Complex implementation

Shadow page table.

35 / 40

Virtualized memory translation: Second Level AddressVirtualized memory translation: Second Level Address

Translation (SLAT) (1/2)Translation (SLAT) (1/2)

1. Guest OS writes to its page table as natively, installs it in the MMU (GVA to GPA)
2. Hypervisor manages a second level page table, also installs it in the MMU (HVA to HPA)
3. The SLAT-capable MMU understands GPA as Host Virtual Address (HVA)

Second Level Address Translation (Nested Page Table).

36 / 40

Virtualized memory translation: Second Level AddressVirtualized memory translation: Second Level Address

Translation (SLAT) (2/2)Translation (SLAT) (2/2)

Pros:
Efficient memory management operations for an unmodified guest OS
Almost no implementation work

Cons: 2-dimension page walk, 6 times slower address translation in the worst case
Still the better solution:

Avoids complex implementation of shadow paging
Shadow paging is very slow anyway because of traps on memory management operations
Most performance overhead is compensated by:

The Translation Look aside Buffer (TLB) caches most translations
Huge pages avoid one level of translation

37 / 40

Virtualized memory translation: Second Level AddressVirtualized memory translation: Second Level Address

Translation (SLAT): Problem of 2-D page walkTranslation (SLAT): Problem of 2-D page walk

Given the native case: 1-D, 4 levels of page table → 4 memory accesses
Virtualized case with SLAT: 4 levels of GVA to GPA, times 4 levels of GPA to HPA → 24 memory accesses

4 levels of guest page table, addressed as GPA
→ 4 memory accesses to translate the GPA of 1 level to HPA, plus 1 access to actually read the level = (4+1) × 
4  =  20 accesses to walk the page table
The walk gives a GPA -> 4 more memory accesses to translate to HPA

2-D memory address translation.
From Bergman et al. Translation Pass-Through for Near-Native Paging Performance in VMs. In USENIX ATC 2023.

38 / 40

Virtualization of I/O and devicesVirtualization of I/O and devices

1. Traps and emulation
Guest OS uses drivers for real hardware
Hypervisor traps driver operations and emulate them on its own drivers
Bad performance

2. Paravirtualization (virtio)
Front-end driver in the guest OS, back-end driver in the hypervisor
Optimized interfaces between guest and HV (for I/O: network, block device)

3. Hardware assistance:
IOMMU: MMU to manage Direct Memory Access (DMA) of guests to devices

Handle HPA to GPA translation
Passthrough of physical functions

Single Root Input Output Virtualization (SR-IOV): virtualizable devices
Physical devices shared by exposing virtual functions

39 / 40

Hardware virtualizationHardware virtualization

Virtualization is about abstracting resources
Hardware virtualization: create virtual machines with a hypervisor to run a guest OS

Full, para-, hardware-assisted virtualization
Example: QEMU/KVM, libvirt

Virtualization is the cloud’s cornerstone
Resource sharing, scalability and service delivery

Virtualization of the hardware: CPU, memory, devices
A matter of collaboration between guest OS, HV and HW

40 / 40

