Hardware 1
Virtualization K . .

Mathieu Bacou
mathieu.bacougtelecom-sudparis.eu
Télécom SudParis, IMT, IP Paris, Inria

2024-2025 CSC5004 — Cloud Computing Infrastructures

What 1s virtualization?

* Abstraction of physical resources into virtual resources
= More complex management: sharing, access rights
= Unified hardware access: easier development
* Many kinds:
= QOperating systems: virtual memory, threads...
o Microsoft Windows, Linux, Mac OSX, BSDs, Android...
Emulators: instruction translation
Language virtual machines: optimized emulator
o Java Virtual Machine (JVM), Python...
Containers: virtual OS
o Docker, LXC...
Virtual machines: virtual hardware
o QEMU/KVM, Xen, VMWare ESXi, VirtualBox, Microsoft Hyper-V...

What is hardware virtualization?

* Virtualize hardware for multiple OSes at the same time!
= Virtual CPUs

Additional level of memory addressing

Virtual storage

Virtual network

IRQs, clocks...

* Ahypervisor runs guest OSes in virtual machines

Actors of hardware virtualization

1. Hypervisor
2. Virtual machine and guest OS
3. User interface

Hypervisor

» Ahypervisor (HV) is a special OS that runs guest OSes
= Manages virtual machines (VM) where guest
OSes are run: also called virtual machine
manager (VMM)
» Two types:
= Type 1: native
o Bare metal
o Guest OSes are processes
= Type 2: hosted
o Process of anormal OS
o Guest OSes are subprocesses

-

\

0S

VM

~

J

-

-

0S

VM

~

J/

//

.

O)l©
0S 0S
VM VM

/.

\\

J

0S

-

J

Hardware

Hardware

Type 1: native

Type 2: hosted

Types of hypervisors.

Hypervisors in the cloud

* Type 1 (Xen, KVM...):
= Optimized for maximum resource virtualization
o Bare metal
= Low performance overhead
o Only one (big) task: run guest OSes
= More secure
o |solation of guest OSes at lower level
* Type 2 (VirtualBox, QEMU/KVM...):
= Easier toinstall and use
» For these reasons, the cloud relies on type 1 rather than type 2
= But also operating system-level virtualization (next chapter)

Virtual machine

Cohesive ensemble of virtualized resources that represent a complete machine
= Hardware s virtualized: a guest OS is still needed!
Status: running, suspended, shut down
When running:
= State of virtual hardware
o Memory, I/O queues, processor registers and flags...
o “Easy” checkpointing with snapshots
When stopped:
= Adiskimage
o Files of guest OS
o Easy replication by copying disk image

Virtual machine: the stack

/- Ne N\
0S 0S
. .) .
vcpu | vepu virtual virtual VCPU virtual
memory network adapter | memory
N
vCPU / vdisk (vGPU vCPU / vdisk
/
VM VM
NG AN J

VIRTUALIZE STUFF

Hypervisor

CPU | CPU [network adapter] (GPU)
memory
CPU | CPU / disk / [network adapter]

Hardware

Stack of a virtual machine.

User-interface

* Use hypervisor’s features to let a user manage VMs and related resources
= Examples: VirtualBox, QEMU’s CLlI, virsh, virtmanager...
e GUIs, TUlIs

= Graphical display emulation for desktop environments in VMs, etc.

Demo: QEMU/KVM

* Creation and usage of a QEMU/KVM VM:
= Runaguest OSinaVM booting from “CD-ROM”
= Runtheinstalled OS booting from overlayed disk image in a fully-featured VM
= Runthe same OS in a weaker VM

* QEMU is a bit hard to use: prefer libvirt for VM management and configuration

@EMU VM

QEMU logo.

libvirt logo.

KVM logo.

User-friendly interface: libvirt

e Common and stable layer to manage VMs
= Works with many hypervisors
= Also manages storage and network

e Used by user front-ends: virsh, virtmanager...
= Clients to libvirtd daemon

Commands and concepts

Interactive shell: virsh
= Help:virsh help
Managing VM images:
= Manage storage pools (collections of VM images):
o virsh pool-commands family
= Manage volumes (VM images) in storage pools
o virsh vol-commandsfamily
= Abstraction of VM images to manage them across the cloud
o Useful for migration, replication, etc.
Managing domains (specifications of VM guests)
= High-level command toinstall guests: virt-install
= Manually edit a defined domain: virsh edit
Administrating domains:
= Start:virsh start
= End:virsh destroy
o Force-stops the domain (think “pulling the plug”!)
o virsh shutdown todemand shutdown gracefully as from (virtual) hardware
Accessing domains:
= GetaTTY console:virsh console
= Connecttodisplay:virt-viewer

Virtualization in the cloud

1. Life-cycle
2.Scalability
3. Resource management
4. Security and reliability

Life-cycle of VMs in the cloud

* Easy deployment: one VM image, multiple VMs-services
* Easy administration: all software, no hardware
* Seen as aresource unit in the cloud

= Accounting based on VM size and uptime

Zurich (europe-west6) ~ Par mois Par heure
Type de machine Processeurs virtuels Mémoire Prix (USD) ;;g[)c;es RMELCEHES

nl-standard-1 1 3.75GB $0.0665 $0.01400
nl-standard-2 2 7.5GB $0.1329 $0.02800
nl-standard-4 4 15GB $0.2658 $0.05600
nl-standard-8 8 30GB $0.5317 $0.11210
nl-standard-16 16 60GB $1.0634 $0.22420
nl-standard-32 32 120GB $2.1268 50.44840
nl-standard-64 64 240GB $4.2535 50.89670
nl-standard-96 96 360GB $6.3803 §1.3451

Excerpt of Google Cloud Platform pricing for generic VMs of the Compute Engine (Nov. 2020).

Scalability

Horizontal: add VMs

= Under load spikes, replicate the service

o Kill useless replicates after burst

= Load balance between replications

= Often with automatic scaling
Vertical: enlarge VMs

= All hardware is virtual: dynamic addition of vCPUs or memory
Hard to implement: how to reclaim unused memory from the guest OS when downscaling?
Also: shutdown and replace with stronger VM

= Keep the sameimage!

= Reconfigure applications

Resource management

* Fit NVMs on M physical hosts
= Many resources to take into consideration: memory, CPU, disk, network...
= Hard optimization problem with many dimensions
* Overcommitment: resources are virtual, so give out more than physically available
= Rarely, or very cautiously used: too harmful when it collapses
* Migration: VMs are loosely attached to hosts, so move them around
= Migration allows consolidation
o Optimize resource usage on physical hosts
o Optimize datacenter usage by powering only needed hosts

Copy of left-over
Suspend (dirty pages,
CPU state)

Resume on
new host

Initial copy

to new host

Seamless live migration of a VM.

Resource management: memory

» Hard to manage: spatial sharing

= You can’t get more memory! (e .
= Different from CPU: time sharing, you can simply wait ' Dalloon s
» Overcommitment: resources are virtual, so give more memory than || s . -

physically available 0S
= Rarely used: too harmful when it collapses because the system
thrashes, swapping pages : \ VM
» Ballooning: reclaim memory from guests _ virtual memory
1. Inflate: ask for memory pages
2. Give the pages back to the HV
= Paravirtualized mechanism
= Rarely used: too hard to estimate balloon size
o Too hard to estimate working set size
o Too big makes the VM swap, destroys performance

physical memory

Paravirtualized ballooning.

Security and reliability

* Isolation between VMs

= Different guest OSes, virtual hardware

= Access policies enforced by the hypervisor
* Automatic checkpointing and resuming

= Automatic failure handling

= Redundancy

Cloud infrastructure: overview
Identity Dashboard — Telemetry
(authentication) (central administration) (monitoring)
(registry of VM images) — (VM management) —

Orchestration
(live migration)

Networking Storage

Image service Scheduling

(virtual network) (block, object, database)

Example of cloud infrastructure: OpenStack (simplified)

Internals of an hypervisor

1. Modes of virtualization

2. Architectural overview of QEMU/KVM
3. Virtualization of CPUs

4. Virtualization of memory

5. Virtualization of I/O and devices

Modes of virtualization

e Three modes to virtualize a guest OS:
1. Full virtualization: total simulation of virtual hardware
= Unmodified guest OS
= Binary translation
2. Paravirtualization: virtualization interface between guest OS and HV
= Paravirtualized guest OS: deep changes, paravirtualized drivers
= Software optimizations of guest OS * HV interaction: hypercalls
3. Hardware-assisted virtualization: the physical hardware helps executing virtualized OS operations
= Unmodified guest OS
= Hardware support for virtualized execution (Intel VT-x, AMD-V...)
¢ Orthogonal to HV types

Modes of virtualization of a guest OS

/ I I |
driver 0S driver 0S
i |g i
g ; VM = VM i i VM
driver HV driver HV HV
i i
] [}
] |
device device device device
hardware hardware hardware hardware

Full virtualization. Paravirtualization. Hardware-assisted virt. Hardware-assisted virt.

Architectural overview of QEMU with
KVM

QEMU 4 ™\
KVM guest
hardware
emulation

file system
block devices

A physical drivers

kernel
37 \f
memory

— ~—

file system /

block devices

physical drivers

r_/i

hardware

kernel

Architecture of QEMU when using KVM.

Virtualization of CPUs

* Problems: the guest OS has expectations
1. Unlimited control over the hardware
= But now it’s the hypervisor!
2. Exclusive control over the hardware
= But now there are many OSes to share with!
o Effects:
= Changes in protection rings to de-privilege guest OS
= VM context switching to share hardware among guests

CPU protection rings

General protection mechanism
Userspaceinring 3
= Use hardware by asking the kernel through system calls
(syscalls)
KernelinringO
= Full, exclusive control over the hardware
Other rings generally unused

ring 3
ring 2
ring 1
ring 0
ring -1
hypervisor

System calls

kernel
device drivers

device drivers

applications

Privilege rings for x86 (numbered from
highest privilege to lower).

CPU protection rings: full virtualization (1/2)

» Guest userspaceinring 3
= Use hardware by asking the kernel through system calls
(syscalls)
= Implementation of syscalls uses interrupts, which control is
privileged: the hypervisor redirects syscalls to the kernel in
ring 1
» Kernelinring 1, unmodified
= Privileged operations are caught by the hypervisor
» Hypervisorinring0
= Full, exclusive control over the hardware

System calls Trap&Emulate

[

hypervisor
kernel

applications

Privilege rings with a hypervisor: full
virtualization.

CPU protection rings: full virtualization (2/2)

» The hypervisor implements trap and emulate workflow
1. Privileged operations from the guest OS inring 1 trigger
General Protection Faults
2.Hardware calls into ring O (i.e., hypervisor) to handle them
3. Hypervisor emulates guest OS operations (shadowing)
» Upside: unmodified guest OS
» Downside: huge performance impact
= This is visible when running a VM with QEMU, but without
KVM!

System calls Trap&Emulate

[

hypervisor
kernel

applications

Privilege rings with a hypervisor: full
virtualization.

CPU protection rings: paravirtualization (1/2)

» Guest userspaceinring 3
= Use hardware by asking the kernel through system calls
(syscalls)
= |mplementation of syscalls uses interrupts, which control is
privileged: the hypervisor redirects syscalls to the kernel in
el o
» Kernelinring 1, modified for paravirtualization System calls (+ Trap&Emulate)
= Unmodified privileged operations are caught by the —
hypervisor hypervisor
= Modified privilege operations are implemented by requesting kernel
the hypervisor via hypercalls
» Hypervisorinring O applications
= Full, exclusive control over the hardware

Privilege rings with a hypervisor:
paravirtualization.

CPU protection rings: paravirtualization (2/2)

The hypervisor offers an API (hypercalls) for the guest OS to ask
for privileged operations without trap and emulation
Upside: very good performance

Downside: work to paravirtualize the guest OS Hypercalls
Extends to paravirtualized devices: System calls
= |mplementations tailored for virtual environments —

= Two sides: a front-end driver in the guest OS, and a back-end hypervisor

driver in the hypervisor kernel
* |nQEMU/KVM: virtiodrivers

applications

Privilege rings with a hypervisor:
paravirtualization.

CPU protection rings: hardware-assisted virtualization (1/2)

» Guest userspaceinring 3 r!ng1
= Use hardware by asking the kernel through system calls ring 0
(syscalls) ring -1
» Kernelinring 0, unmodified ' Selected traps
= Most privileged operations are actually executed by the hypervisor (VMEXIT)
hardware, in a safe way System calls
= Some may be selected for trapping by the hypervisor —
o They trigger a VMEXIT to pass control kernel
» Hypervisorinring “1” device drivers
= Full, exclusive control over the hardware

= Not an actual ring, but conceptually similar applications

Privilege rings with a hypervisor: hardware-
assisted virtualization.

CPU protection rings: hardware-assisted virtualization (1/2)

Support from the hardware allows selected traps to be taken by
the hypervisor
Upside: very good performance with unmodified guest
Downside: none (hardware upgrades, but it's now widely available)
Extends to memory: Second Level Address Translation (SLAT)

= Intel: Extended Page Table (EPT)

= AMD: Nested Page Table
Extends to devices: IOMMU, virtualization of interrupts...

ring 1
ring 0
ring -1
Selected traps

hypervisor (VMEXIT)

System calls

[

kernel
device drivers

applications

Privilege rings with a hypervisor: hardware-
assisted virtualization.

Hardware-assisted virtualization with KVM

open("/dev/kvm");

ioct1(KVM_CREATE_VM);

ioct1(KVM_CREATE_VCPU);

for (;;) {
// Jump into guest code with VMLAUNCH/VMRESUME until next VMEXIT (hypercall, etc.)
exit_reason = 1oct1(KVM_RUN);
switch (exit_reason) {

case KVM_EXIT_IO: // Handle VM I/0
case KVM_EXIT_HLT: // Handle VM halting
/e

}

Pseudo-code of a vCPU thread.

» KVMrelies on structures managed by the CPU: Virtual
Machine Control Structure (VMCS, Intel)

= Stores vCPU context: registers, flags, etc.) g O)
= Includes reason for switching to hypervisor e | §
context... i

» KVM ioctlsusespecial CPU instructions (examples
are from Intel’s set) host} ymexr | gvest

context ! 1 context

Codeflow of KVM with Intel VT-x.

Virtualization of memory

* Problem of translating memory addresses
= How to implement a “virtual MMU"?

B 1 S.
process gg_:
1E
A
guest virtual memory [NEES
L. -4 D
kernel guest 0S
. _*i
page table <.
@ process virtual MMU 5_:
3 =
B guest physical memory
kernel 0S kernel hypervisor
" l ~ ~“\‘ A 4
age table UV MM S
] = ‘ page table U] 3]
v 5 3 5
® @

physical memory host physical memory

Native case: virtual memory of a process. Virtualized case: guest memory vs. host memory.

Virtualized memory translation

guest virtual address [RALCEIRUIY > guest physical address [JURICIRUIY > host physical address
GVA GPA HPA

Translation of virtual addresses in a virtualized environment.

* The physical MMU is already used for the hypervisor page table
¢ Add alevel of memory address translation:
= Software solution: shadow page table
= Hardware-assisted solution: Second Level Address Translation (SLAT)

Virtualized memory translation: shadow page table

Maintain a shadow page table (GVA to HPA) in the hypervisor

= Thisis the one installed in the MMU

= The guest OS’s page table (GVA to GPA) is unused
Trap changes to the page table made by the guest OS

= Every write is recalculated and stored in the shadow page table

Pros: 1-dimension page walk (see SLAT next)

Cons:

= Very inefficient because of traps (full virtualization) on the critical path of memory management operations

= Complex implementation

guest kernel

shadow
page table

hypervisor

GVA

GPA

MMU

page table

I‘““

Shadow page table.

Virtualized memory translation: Second Level Address
Translation (SLAT) (1/2)

1. Guest OS writes to its page table as natively, installs it in the MMU (GVA to GPA)
2. Hypervisor manages a second level page table, also installs it in the MMU (HVA to HPA)
3. The SLAT-capable MMU understands GPA as Host Virtual Address (HVA)

guest kernel hypervisor

A 4 A 4
guest page table gd HVA g4 host page table

SLAT-capable MMU

a “

o 8

Second Level Address Translation (Nested Page Table).

Virtualized memory translation: Second Level Address
Translation (SLAT) (2/2)

e Pros:
= Efficient memory management operations for an unmodified guest OS
= Almost no implementation work
e Cons: 2-dimension page walk, 6 times slower address translation in the worst case
e Still the better solution:
= Avoids complex implementation of shadow paging
= Shadow paging is very slow anyway because of traps on memory management operations
= Most performance overhead is compensated by:
o The Translation Look aside Buffer (TLB) caches most translations
o Huge pages avoid one level of translation

Virtualized memory translation: Second Level Address
Translation (SLAT): Problem of 2-D page walk

» Given the native case: 1-D, 4 levels of page table — 4 memory accesses
* Virtualized case with SLAT: 4 levels of GVA to GPA, times 4 levels of GPA to HPA - 24 memory accesses
= 4 levels of guest page table, addressed as GPA
= _ 4 memory accesses to translate the GPA of 1 level to HPA, plus 1 access to actually read the level = (4+1) x
4 = 20 accesses to walk the page table
= The walk gives a GPA -> 4 more memory accesses to translate to HPA

GVA->GPA dimension >
......... [¥ w h 4 .
. gCR3 :| | gPDPT gPD gPT gPA
S b N - ¥
@ [PML4 PML4 PML4 PML4 PML4
e v - - v -
5 | PDPT || | PDPT || | PDPT || | PDPT |[:| PDPT
§ b v - - v
A PD PD PD PD PD
SRl S P pEER N e g
TiL PT [l:| PT ||i[_PT ||i| PT || PT
Lo ig g toe) b
[[47:39] | [38:30] [:[29:21] | [20:12] [11:0] |
----) Host huge-pages [29:12]

Guest huge-pages

2-D memory address translation.
From Bergman et al. Translation Pass-Through for Near-Native Paging Performance in VMs. In USENIX ATC 2023.

Virtualization of I/0 and devices

1. Traps and emulation
* Guest OS uses drivers for real hardware
* Hypervisor traps driver operations and emulate them on its own drivers
* Bad performance
2. Paravirtualization (virtio)
* Front-end driver in the guest OS, back-end driver in the hypervisor
* Optimized interfaces between guest and HV (for 1/0O: network, block device)
3. Hardware assistance:
¢ |OMMU: MMU to manage Direct Memory Access (DMA) of guests to devices
= Handle HPA to GPA translation
= Passthrough of physical functions
» Single Root Input Output Virtualization (SR-1OV): virtualizable devices
= Physical devices shared by exposing virtual functions

Hardware virtualization

* Virtualization is about abstracting resources
= Hardware virtualization: create virtual machines with a hypervisor to run a guest OS
o Full, para-, hardware-assisted virtualization
= Example: QEMU/KVM, libvirt
» Virtualization is the cloud’s cornerstone
= Resource sharing, scalability and service delivery
* Virtualization of the hardware: CPU, memory, devices
= A matter of collaboration between guest OS, HV and HW

