
SPARK STREAMING

AMEL BOUZEGHOUB
Amel.Bouzeghoub@telecom-sudparis.eu

CSC5003

MOTIVATION

1. Many important applications need to process large data streams and
provide near real-time results
Ø Social network trends
Ø Website statistics
Ø Intrusion detection systems
Ø etc.

2. Requires large clusters to cope with the workload

3. Requires latency times of a few seconds

SOME DEFINITIONS: DBMS VS DSMS

Query Processing

Countinuous Query Result

Query Processing

Main memoryData Stream Daataa Stream

storage

Main memory

SQL query Result

DBMS DSMS

SOME DEFINITIONS: STREAMS

Stream: succession of data of the same type, incoming at constant or variable intervals
è Massive data: high throughput of the stream, not all the data can be processed
regularly

1. The processing of data slices must be performed in real time
2. RAM is limited and mass storage is too slow
3. The modeling must be incremental
è Solutions : approximate answers to queries

Ø Sliding windows
Ø Batch processing
Ø Sampling and load shedding
Ø Synopsis

SOME DEFINITIONS: DATA MODELING

1. Observation ≠ Modeling
Ø Observation: data that we can read on the stream
Ø Modeling: signal that we want to rebuild from these data

2. Time series model
Ø Sequence of observations (ti, ei)

3. Cash register model (arrivals only)
Ø Ei = (j, vi) vi always > 0
Ø Multi-dimentionnel flow in one pass
Ø Example: <x, 3>, <y, 2>, <x, 2> means

v Arrival of 3 copies of item x,
v 2 copies of y, then 2 copies of x.

4. Turnstile model (arrivals and departures)
Ø vi is either > 0 or <0
Ø The flow elements update the data of the series
Ø Each element of the flow is an update
Ø Example: <x, 3>, <y,2>, <x, -2> means

final state of <x, 1>, <y, 2>.

x
y

x
y

6

SOME DEFINITIONS: BATCH VS STREAM PROCESSING

1. Data processing can be achieved in three different ways :
Ø Batch : available data are processed at a specific time T.
Ø Micro-Batch : available data is processed every n seconds.
Ø Real Time : data is processed as soon as it becomes available.

BATCH STREAM

- Process a	full	(large)	dataset from scratch	
- Focus	on	throughput (time	/	size)	
- Takes a	long	time	(minutes,	hours ...)	to	

obtain results
- Complex analysis requiring multiple	pass over	

data	(e.g.	machine	learning)	
- Good	for	analyzing a	static dataset (post-

mortem)	

- Process recent data	(small window)	to	
continuously update	results

- Focus	on	latency (time	between data	
production	and	results update)	

- Near	real-time	
- Incremental analysis,	see data	only once
- Good	to	analyze live	data	(e.g.	what is

trending on	Twitter?)	

SOME DEFINITIONS: WINDOWS

window

window

window

window window window window

window window window window window window

Sliding:

Jumping:

Overlapping

(adapted from Jarle Søberg)

Logical window vs.	physical window
Fixed window vs.	sliding window

Timestamps
• Used to order the instances
• Useful for the DSMS to define the size of the

windows
• Useful for the user to know the arrival date of

the data
• Explicit: given by the source
• Implicit: given by the DSMS

SPARK STREAMING

SPARK COMPONENTS

Spark Core

Spark
Streaming

(real-time)

GraphX
(graph)

…

Spark SQL
(SQL)

MLlib
(machine
learning)

scalable,	high-throughput,	
fault-tolerant stream	
processing	of	live	data	
streams

SPARK STREAMING

1. Framework	for	large-scale stream processing
Ø Can	handle hundreds of	nodes
Ø Can	reach latencies of	the	order of	a	second
Ø Integrated	into Spark batch	processing
Ø Provides a	simple	batch	API	for	implementing complex algorithms
Ø Can	ingest live	data	streams coming from Kafka,	Flume,	ZeroMQ,	etc.

09/12/2022
11

GENERAL PRINCIPLE : DSTREAM

DSTREAMS

1.Spark	Streaming	provides	a	high-level	abstraction	called discretized
stream (Dstream)
Ø Represents a	continuous	stream	of	data.
Ø DStreams can	be	created	either	from	input	data	streams	from	sources	such	as	

Kafka,	Flume,	and	Kinesis,	or	by	applying	high-level	operations	on	other	
DStreams.	

Ø Internally,	a	DStream is	represented	as	a	sequence	of RDDs.

2.DStreams API	very	similar	to	RDD	API
Ø Functional	APIs	in	Scala,	Java
Ø Create	input	DStreams from	different	sources
Ø Apply	parallel	operations

DSTREAMS TRANSFORMATIONS

ARCHITECTURE

input	data	stream

Time	period Time	period Time	period

Receiver
Spark streaming

Spark core,	SQL,	ML,	GraphX HDFS,	DBs,	Kafka	…

Mini-batch
RDD

Mini-batch
RDD

Mini-batch
RDD

Kafka,	Flume,	kinesis …

SPARK STREAMING : WINDOW OPERATIONS

1. A window is defined by two numbers
Ø How many slices are in the window at any given time (window length)
Ø By how many slices the window moves (sliding step)

2. The RDDs corresponding to the slices that are in the window are grouped
and processed; the operations applied on the RDDs are extended to the
windows (e.g. reduceByKeyAndWindow)

ADVANTAGES

1. Spark Streaming offers failure recovery via the checkpoint method
Ø In	case	of	failure,	Spark Streaming	will start from the	last	checkpoint
Ø The	checkpoint	must	be done periodically
Ø The	frequency of	the	backup	has	a	direct	impact	on	the	performance	
Ø On	average the	backup	is done every 10	microbatches.		

2. Operations on DStreams are stateless, from one batch to another, context is
lost. Spark Streaming offers two methods that allow stateful processing :
Ø reduceByWindow and	reduceByKeyAndWindow

Let’s go	to		the	lab!

