
Introduction to
ontologies

Amel Bouzeghoub
CSC5003

What is an ontology ?

¢ No exact definition
¢ A tool to help organize knowledge
¢ Or a way to convey a theory on how to represent a class

of things
¢ The term ontology is originated from philosophy. In that

context it is used as the name of a subfield of
philosophy, namely, the study of the nature of existence.

Page 2

Definition

¢ Webster’s Third New International Dictionary defines
Ontology:
1. A science or study of being specifically, a branch of

metaphysics relating to the nature and relations of
being.

2. A theory concerning the kinds of entities and specifically
the kinds of abstract entities that are to be admitted to a
language system.

¢An ontology in Computer Sciences
• « explicit formal specifications of the terms in the domain

and relations among them » (Gruber 1993)
• Semantic Relations
• Composition and inheritance relationships

Page 3

Definition (Hudelot 2006)

¢ An ontology is a formal and explicit specification of a
shared conceptualization of a field of knowledge.

¢ Conceptualization: a certain view of the world in relation
to a domain, often conceived as a set of concepts, their
definition, their interrelationships.

¢ Explicit: explicit definition of the types of concepts used
and constraints on their use.

¢ Formal: understandable by the machine.
¢ Shared: consensus, knowledge accepted by a group.

Page 4

The Role of Ontology

¢ Basic Role
• To provide a language which allows a group of people to

share information reliably in a chosen area of work
• Reuse

- Create and maintain reusable knowledge bases

- Build knowledge bases from reusable modules
• Knowledge sharing and communication

- Ensure interoperability between systems

- Enable knowledge exchange between systems

Page 5

The Role of Ontology

¢Some areas of application
• Indexing
• Knowledge Sharing & Reuse
• Artificial Intelligence (AI)
• Enterprise Modeling
• Software Design
• Molecular Biology
• eCommerce
• Semantic Web….

Page 6

Why do I need to develop an
ontology?

¢ To provide more precise definition to resources and
make them more suitable to machine processing

¢ To separate domain knowledge from operational
knowledge
• Re-use domain and operational knowledge separately

¢ A common reference to define concepts and
relationships between concepts and other axioms in a
domain

¢ To share a consistent understanding of a domain
¢ Reasoning / inference

• Building and discovering new information and/or knowledge from
existing ontologies and resources

Page 7

Example

Page 8

¢ An ontology structure is a quintuplet O := {C, R , HC , Rel ,
AO }
• C and R : disjointed sets of concepts and relations
• HC hierarchy (taxonomy) of concepts : HCÍ C x C , HC(C1, C2)

means that C1 is a sub-concept of C2 (oriented relation)
• Rel : relation rel: R ® C x C (defines non-taxonomic semantic

relations) with 2 associated functions

- dom : R ® C with dom(R):= Õ1(rel(R))

- range : R ® C with range(R):= Õ2(rel(R)) co-domaine

- rel(R) = (C1,C2) or R(C1,C2)
• AO : set of axioms, expressed in an adapted logical language

(description logic, 1st order logic)

Definition: ontology structure

Definition: structure of a knowledge base

¢ Structure of a knowledge base : quadruplet KB:= {O, I, inst, instr}

• O:= {C, R, HC, rel, AO} is an ontology

• I is a set of individual

• inst : C-> 2I Concept instantiation

• Instr : R -> 2IxI Relationship instantiation

¢ Lexicon of a knowledge base LKB := (LI,J)

personne

entrepriseemployé Travaille-pour

Dupont SNCFTravaille-pour

ontology

KB

Different types of ontologies
[Guarino, 98]

Describe very general concepts like space, time, event, which
are independent of a particular problem or domain. It seems

reasonable to have unified top-level ontologies for large
communities of users.

Describe the
vocabulary related

to a generic
domain by

specializing the
concepts introduced

in the top-level
ontology.

Describe the
vocabulary
related to a

generic task or
activity by

specializing the
top-level

ontologies.

These are the most specific ontologies. Concepts in application
ontologies often correspond to roles played by domain entities

while performing a certain activity.

Heavyweight vs. Lightweight

¢ They differ in their expressiveness, reasoning capacity,
complexity, decidability.
• Lightweight

- E-R diagrams, UML
• Heavyweight

- Description logic (DL), 1st order logic
¢ There are standards for each case (RDF, RDF Schema,

OWL)

Life cycle of an ontology

Create/Select
Development and/or Selection

Populate
Knowledge Base Generation

Validate
Consistency Checks

Evolve
Extension, Modification

Maintain
Usability Tests

Deploy
Knowledge Retrieval

Knowledge
representation

Knowledge representation

¢ Definition :
Knowledge representation refers to a set of tools and

technologies designed to organize human knowledge for
use and sharing.

¢ Some solutions :
• Ontologies
• Logical Representations
• Production Rules
• Semantic Networks
• Conceptual graphs, frames
• Description Logics

From data to knowledge (1/4)

¢ Data:
• Non-interpreted signals
• Example : « It is 2:00 pm »
à data= 2:00 (discrete)
• Example : « The temperature in the room B313»
à data= [20°, 25°] (continue)

¢ Information:
• An interpretation of the data
• Example : « today it is grey, the temperature is below 10°C and

we are in room B313»
à climate = grey
à Temperature = [0 °C, 10°C]
à room= B313
• Representation :
à Couple (attribute, value)

From data to knowledge (2/4)

¢ Knowledge:
• Links between data and information
• uses information in the context of actions, with a specific goal:

- Logic operators: AND, OR, EXCEPT

- Set operators: Î,Ï,È,Ç,É,Ê

From data to knowledge (3/4)

¢ Expression of knowledge :
• (T°, 10) AND (room, B313) AND (climate,

grey)

true true true

true

true

From data to knowledge (4/4)

¢ Knowledge = logical object(s)
¢ Logical object = properties, axioms and rules.

• Property = data / information
• Axiom = data/information that admits a truth

value (true, false).
• Rule = way of inferring new true information

(inferring new knowledge)
If (T°>20°C) and (sky is blue) then "it is sunny".

Paul

X

Y

Z

grandfather
Jean

father

father

Rule:

If father(X,Y) and father(Y,Z) Then grandfather(X,Z).

father(X,Y): "X is the father of Y".

grandfather(X,Y): "X is the grandfather of Y".

Example of rule

Exercise

¢ Axioms : (true facts)
• father(jean, paul)
• father(max, nadine)
• father(paul, max)

¢ Question : Grandfather(X,Y) ?
¢ Answer: 2 solutions (new facts inferred)

• grandfather(jean,max)
• grandfather(paul,nadine)

¢ Question : grandfather(Pierre,Y) ?
• No answer (not applicable facts)

Several ways to represent knowledge

¢ Logics
• Propositional Logic
• Predicate Logic
• Temporal Logic
• ...

¢ Structured
• Ontologies
• Semantic networks

¢ Degrees of belief
• Bayesian networks
• Fuzzy logic

Different Logics

¢ Order 0 : propositional logic
• If Ferrari and Michael then fast

¢ Order 0+ : typed propositional logic (attribute-value)
• Si car= Ferrari and pilot=Michael then speed=fast

¢ Order 1 : predicate logic (first-order logic)
• X,Y : IF car(X) and X=Ferrari and drives(Y,X) and Y=Michael then

fast(X)
¢ Order 2 : second-order logic

• R, X,Y : IF type(R)=symmetric and R(X,Y) then R(Y,X)

Reasoning: rules of inference

¢ Modus ponens

¢ Modus tollens

¢ …

A , A → B
B

¬B , A → B
¬A

Reasoning: the basic cycle

¢ Detection
• Determines the rules and relevant facts by means of "pattern matching"

unifications
¢ Choice

• Decides which of the applicable rules should actually be triggered
¢ Execution

• Executes the action part of the rule.
• Updates the Knowledge base.

The selection phase

¢ Selects a rule from the set of applicable rules
¢ Methods:

• The first applicable rule (e.g. Prolog)
• The most specific rule
• The most useful rule (according to a utility value to be calculated)

¢ The metarules
• Rules controlling the selection of rules to be applied

The triggering phase

¢ Three inference algorithms :

• Forward chaining (data driven)
- to deduce a particular fact: the rules whose premises are known are triggered - up to -

the fact to be deducted is also known - or that no rule can be triggered any more
• Backward chaining (goal oriented)

- start from the fact to prove,

- search for all the rules that conclude on that fact,

- draw up a list of facts that need only be proved in order for them to be triggered and
then

- apply recursively the same mechanism to the facts contained in those lists

- These facts in turn become facts to be proven.

- Recursion stops when the goal to prove belongs to the fact base
• Mixed chaining

A , A → B
B

B , A → B
A

Forward Chaining example

¢R1: B et D et E → F
¢R2: D et G → A
¢R3: C et F → A
¢R4: C → D
¢R5: D → E
¢R6: A → H
¢R7: B → X
¢R8: X et C → A

B Vrai
C Vrai
H ?

Strategy 1: the first rule
B, C ____ B, C, D ____ B, C, D, E ____ B, C, D, E, F ____

B, C, D, E, F, A ____ B, C, D, E, F, A, H
Strategy 2: the last rule

B, C ____ B, C, X ____ B, C, X, A ____ B, C, X, A, H

Backward Chaining Example

¢ R1: B et D et E → F
¢ R2: D et G → A
¢ R3: C et F → A
¢ R4: C → D
¢ R5: D → E
¢ R6: A → H
¢ R7: B → X
¢ R8: X et C → A

B Vrai
C Vrai
H ?

B
D
E

H

D
G

OR
C
F

X
C

C
Fail

C
D C

B

A

Example 2 : Knowledge base

¢ The law states that it is a crime for an American to sell
arms to hostile nations. The country Nono, an enemy of
America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American.

¢⇒ Let's prove that West is a criminal

Page 30

Example 2 : Knowledge base

¢ “... it is a crime for an American to sell arms to hostile nations.”:
• American(x) ∧ Arm(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

¢ “Nono ... has some missiles”:i.e∃x Missile(x) ∧ Owns(Nono, x)
• Own(Nono, M1) ∧ Missile (M 1)

¢ “.. all of its missiles were sold to it by Colonel West” :
• ∀x Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono)

¢ Missiles are armes :
• ∀x Missile(x) ⇒ Arme(x)

¢ An enemy of America count as « hostile » :
• ∀x Enemy(x, America) ⇒ Hostile(x)

¢ “…West, who is American”:
• American(West)

¢ “The country Nono, an enemy of America” :
• Enemy(Nono, America)

Page 31

Forward Chaining Proof

Page 32

American(West) Missile(M1) Owns(Nono, M1) Enemy(Nono, America)

Sells(West, M1, Nono) Hostile(Nono)

Criminal(West)

Arm(M1)

American(x) Ù Arm (y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)
Owns(Nono,M1) Ù Missile(M1)
Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)
Missile(x) Þ Arme) Enemy(x,America) Þ Hostile(x)
American(West) Enemy(Nono,America)

OWL

Introduction

¢ is based on research carried out in the field of
description logic

¢used to describe ontologies, i.e. it enables
terminologies to be defined to describe concrete
domains

¢ is an important step forward in the representation
and organisation of knowledge available on the Web

¢ is designed as an extension of the Resource
Description Framework (RDF) and RDF Schema
(RDFS).

Introduction

¢ RDF and RDFs alone are too limited :
• Cannot specify the nature of the relationships between

resources (reflexivity, etc.)
• No capacity for reasoning
• Very limited logic

¢ The need for OWL :
• Derives from RDF + RDFS
• Logical connectors between classes (union, intersection,

etc.)
• Cardinality on properties
• Characterization of properties (transitivity, inverse, etc.)

OWL

RDF + RDF Schema

XML + Schema XML

Metadata

Syntax

Logc

Main advantages

¢ Brings better integration, evolution, sharing and easier
inference of ontologies

¢ Adds the concepts of equivalent classes, equivalent
properties, equality of two resources, their differences,
the opposite, symmetry and cardinality

¢ Thanks to its formal semantics based on a widely
studied logical foundation, allows to define more
complex associations of resources as well as the
properties of their respective classes

¢ Is suitable for the Semantic Web, as it offers a strictly
defined syntax, and depending on the level can allow
automated reasoning on knowledge inferences and
conclusions

OWL sub-languages

¢OWL has three expressive languages for use by
different communities of developers and users.

OWL
LiteOWL DLOWL Full

Structure of an owl ontology

¢ Based on RDFS
¢ An OWL ontology is an OWL document (file extension

.rdf or .owl) with:
• Namespace declarations (owl, rdf, and others)
• The header (<owl:Ontology>) to describe the content of the ontology
• The definition of classes
• The definition of properties
• Assertion of facts

¢ Extensibility of existing ontologies :
• <owl:import> to use other OWL ontolgies and extend them :

Definition of OWL classes
¢ A class can be declared in several ways:

• By naming the class or,
• By enumeration of its individuals
• By restricting the properties of its individuals
• By intersection (AND), union (OR) or complement (NOT) of another

class
==> Anonymous Classes: The members of an anonymous class are the
set of Individuals that satisfy its logical definition

¢ There is an inheritance mechanism (<owl:subClassOf>)
¢ The superclass owl:Thing is the mother of all the other

classes
¢ owl:Nothing is subclass of all classes
¢ In OWL Full, a class can be an instance of another class

(a "metaclass").
¢ The set of instances of a class is called "the extension".

Restriction Types

$ Existential,
someValuesFrom

“Some”, “At least one”

" Universal,
allValuesFrom

“Only”

' hasValue “equals x”

= Cardinality “Exactly n”

£ Max Cardinality “At most n”

³ Min Cardinality “At least n”

Property Characteristics

¢ Domain and range can be set
¢ OWL offers a mechanism for property inheritance:

owl:ObjectProperty rdf:ID="aPourFrere">
<rdfs:subPropertyOf rdf:resource="#estDeLaFamilleDe" />
<rdfs:range rdf:resource="#Humain" />
<rdfs:domain rdf:resource="#Humain" />
</owl:ObjectProperty>

¢ Properties can be characterized:
• Inverse
• Transitivité
• Symétrie
• Fonctionnelle
• fonctionnelle Inverse
<<owl:ObjectProperty rdf:ID="aPourFrere">
<rdf:type rdf:resource="&owl;SymmetricProperty" />
<rdfs:range rdf:resource="#Humain" />
<rdfs:domain rdf:resource="#Humain" />
</owl:ObjectProperty>

Inverse Property

• P1(X ,Y) iff P2(Y , X)

• X mange Y iff Y estMangéPar X
• X aPourParent Y iff Y aPourFils X

aPourParent

X Y

aPourFils

Transitive Property

• If P(X,Y) and P(Y,Z) then P(X,Z)

• X ancetreDe Y, Y ancetreDe Z, then X ancetreDe Z

Est-AncetreDe

X Y

Est-AncetreDe

Z

Est-AncetreDe

Symmetric Property

• P(X,Y) iff P(Y,X)

• X estFrère Y iff Y estFrère X

Est-Frère

X Y

estFrère

Functional Property

¢ Unicity
• Only one instance can be linked
If P(X,Y) and P(X,Z) then Y=Z

• If X aPourMereBiologique Y and X aPourMereBiologique Z
then Y=Z

X

YaPourMereBiologique

ZaPourMereBiologique
=

Inverse Functional Property

• P(Y,X) and P(Z,X) then Y=Z

• Y aPourNumPasseport X and Z aPourNumPasseport X
then Y=Z

X

Y aPourNumPasseport

Z aPourNumPasseport

=

OWL Class Constructors

Page 47

