
Hadoop Julien Romero CSC5003

Hadoop And MapReduce

Hadoop Julien Romero CSC5003

Hadoop Fundamentals

Hadoop Julien Romero CSC5003

Hadoop Fundamentals
Meet Hadoop

Hadoop Julien Romero CSC5003

Data!

Size of the
digital universe

(IDC)

44 zettabytes

= 10²¹ bytes
= 10⁹ terabytes

1 hard drive per person!

Hadoop Julien Romero CSC5003

Data! Big Numbers!

Size of the
digital universe

(IDC)

44 zettabytes

= 10²¹ bytes
= 10⁹ terabytes

Facebook

7 petabytes/month

Ancestry.com

10 petabytes

Internet Archive

212 petabytes

Hadron Collider

30 petabytes/year

New York Stock
Exchange

5 terabytes/day

Hadoop Julien Romero CSC5003

Data! Internet Of Things

Size of the
digital universe

(IDC)

44 zettabytes

= 10²¹ bytes
= 10⁹ terabytes

RFID tags

Sensors

GPS tracesTransactions

Machine logs

Hadoop Julien Romero CSC5003

Open Data!

OPENDATA

opendata.aws

data.gouv.fr

Kaggle

datasetsearch.research.google.com

opendata.paris.fr

data.worldbank.org

who.int/data/gho
data.europa.eu

data.fivethirtyeight.com

data.gov

yelp.com/dataset

data.unicef.org

ncdc.noaa.gov

Hadoop Julien Romero CSC5003

“More data usually beats better algorithms”

Hadoop Julien Romero CSC5003

How to store and exploit this large amount of data?
● We need potentially several hundreds of hard drives
● We need to write programs that can be run in parallel, on several computers
● We need to limit data transfers on the network
● The data will be unstructured

Hadoop Julien Romero CSC5003

Problem With Hard Drives - The Throughput Does Not Change Fast
Enough

Source: https://tylermuth.wordpress.com/2011/11/02/a-little-hard-drive-history-and-the-big-data-problem/

https://tylermuth.wordpress.com/2011/11/02/a-little-hard-drive-history-and-the-big-data-problem/

Hadoop Julien Romero CSC5003

Consequence: Moving The Data Is Expensive

DATA HDD

Hadoop Julien Romero CSC5003

Solution - We can Parallelize The Writing

DATA

HDD

HDD

HDD

HDD

SOFTWARE

Hadoop Julien Romero CSC5003

New Problem - How To Handle Failure?

DATA

HDD

HDD

HDD

HDD

SOFTWARE

Hadoop Julien Romero CSC5003

New Problem - How To Recombine the Data?

USER

HDD

HDD

HDD

HDD

SOFTWARE

Hadoop Julien Romero CSC5003

The “Seek” Problem - Accessing Random Data Is Expensive

Source: goughlui.com

Hadoop Julien Romero CSC5003

Reminder - Blocks
● A file is not stored continuously in the memory, it is split into several blocks

○ It makes the storage more flexible: We might not be able to store several Gb continuously, but we
might have a lot of “holes” in the memory

FILE

MEMORY

Hadoop Julien Romero CSC5003

Reminder - Blocks
● A file is not stored continuously in the memory, it is split into several blocks

○ It makes the storage more flexible: We might not be able to store several Gb continuously, but we
might have a lot of “holes” in the memory

FILE = 5 blocks

MEMORY

Hadoop Julien Romero CSC5003

The “Seek” Problem - Too Many Small Blocks Causes Overhead
● Unix blocks are generally of a few Kb

○ With a throughput of 100Mb/s = 100kb/ms, transferring a block of 4kb takes 0.04ms. In comparison,
a typical seek time is 10ms.

○ For a file of 1Tb, a block size of 4Kb, and a seek time of 10ms, the worst total seek time for reading
the file is the number of blocks (3*10⁸) time the seek time = 1 month.

○ In practice, this time is much smaller as the OS tries not to fragment a file too much by storing
blocks continuously in the memory. This is particularly true for large files.

● A system to store big files must have a large block size

Hadoop Julien Romero CSC5003

What Kind of Computers Do We Need?

HDD

HDD

HDD

HDD

SOFTWARE

Supercomputer
€€€€€
Not scalable
Fast

HDD

HDD

HDD

HDD

SOFTWARE

Commodity Hardware
€
Scalable
Slow

OR

Hadoop Julien Romero CSC5003

Different Applications: Grid Computing/HPC vs Hadoop

HPC Hadoop

Supercomputer = Compute-intensive jobs Commodity hardware = simple computations

Data accessed through a shared file system,
hosted by a Storage Area Network

Data locality = data with compute nodes
Network bandwidth is critical

More control (data flow, low level C)
More complex (failure handling, recovery)

High level
Easy to use

Hadoop Julien Romero CSC5003

Different Processing Methods: Batch vs Online Processing
Online/Interactive Processing Batch Processing

Process one datapoint at the time Process all data at once

Relatively simple computation on few data Large data and complex computation

Latency in seconds or less Latency in minutes or more (priority =
throughput)

Complex and expensive hardware Simple to implement and inexpensive
hardware

E.g.: Fraud detection, bank ATM, customer
service, radar systems, …

E.g.: Payroll and billing systems, log analysis,
Web exploration, …

Hadoop Julien Romero CSC5003

Hadoop Fundamentals
Map Reduce

Hadoop Julien Romero CSC5003

MapReduce - Motivation
● In August 2022, Common crawl collected 2.6 billion pages, for a total of 300 TB

○ We need 300 hard drives per month to store it (less if we compress the data)
● With a hard drive reading at 80Mb/s, it takes 1.5 months to read the data

sequentially
● With a connection at 10Gbps, it requires 3 days to transfer everything
● So we need:

○ To store the data on several computers to parallelize the reading time
○ To reduce the data transfers by making the computation where the data is

Hadoop Julien Romero CSC5003

What Is MapReduce?
MapReduce is a programming model in which the programmer must implement two
functions:

● A map function that transforms a single data point
● A reduce function that summarizes a group of similar data points

The mapper and the reducer will be executed on several machines.

Writing a MapReduce program forces to rethink our algorithm and use a more
functional approach (c.f. Scala)

Example of MapReduce program: WordCount. It computes the frequency of each work
in a file;

Hadoop Julien Romero CSC5003

MapReduce - Overview

Input Data

key, value

key, value

key, value

…

Mapper

Mapper

Mapper

key, value

key, value

key, value

…

key1,
values of

key1

key2,
values of

key2

keyN,
values of

keyN

Reducer

Reducer

Reducer

key, value

key, value

key, value

…

Output
Data

List of
(Key, value)… … …

Splitting MAP SHUFFLE REDUCE

Hadoop Julien Romero CSC5003

MapReduce - Splitting
● The input of MapReduce is a list of (key, value)

○ In general, at the beginning, we just have a meaningless identifier and a value
● E.g.: Word count: (id, sentence)
● The step is already implemented by the frameworks

Hadoop Julien Romero CSC5003

MapReduce - Map
● The Map is a function that transforms the input.

○ Input: a (key, value) pair
○ Output: zero, one or several (key, value) pair(s) (not necessary the same)

● E.g.: Word count
○ Input: (0, “the cat eats the food”)
○ Output: (“the”, 2), (“cat”, 1), (“eats”, 1), (“food”, 2)

● WARNING: All the map functions are the same and do not know about other data
except the one given as input.

Hadoop Julien Romero CSC5003

MapReduce - Shuffle
● The shuffle performs a group by key

○ Input: List of (key, value)
○ Output: List of (key, list of values) where the keys are all different

● It is already implemented by most frameworks
● E.g. Word count:

○ Input: (“the”, 2), (“cat”, 1), (“eats”, 1), (“food”, 1), (“the”, 1), (“cat”, 1), (“sleeps”, 1)
○ Output: (“the”, [2, 1]), (“cat”, [1, 2]), (“eats”, [1]), (“food”, [1]), (“sleeps”, [1])

Hadoop Julien Romero CSC5003

MapReduce - Reduce
● A reduce function transforms the values associated to a key into a single value

○ Input: (key, list of values)
○ Output: (key, value)

● E.g.: Word count
○ Input (“the”, [2, 1])
○ Output (“the”, 3)

Hadoop Julien Romero CSC5003

MapReduce Summary

Input Data Collection of
(key: K1, value: V1)

Collection of
(key: K2, value: V2)

Collection of
(key: K2, value: Iterable[V2])

Collection of
(key: K3, value: V3)

Output
Data

Split Map

Shuffle

Reduce

Hadoop Julien Romero CSC5003

MapReduce Summary - Equivalent In Scala - WordCount
val inputData = List((0, "The cat eats the grass"), (1, "The cat sleeps on
the bed"))

inputData.map((x, y) => y.split(" ").map(z => (z, 1))) // Mapper
 .flatten.groupBy(x => x._1).map((x, y) => (x, y.map(z => z._2))) //
Shuffle
 .map((x, y) => (x, y.reduce(_ + _))) // Reducer

val res: Map[String, Int] = HashMap(grass -> 1, bed -> 1, The -> 2, on -> 1,
cat -> 2, sleeps -> 1, eats -> 1, the -> 2)

Hadoop Julien Romero CSC5003

MapReduce - Word Count

“the cat
eats the
food”,

“the cat
sleeps”

0, “the cat
eats the

food”

1, “the cat
sleeps”

Mapper

Mapper

“the”, 2

“cat”, 1
“the”,
[2, 1]

“cat”,
[1, 1]

Reducer

Reducer

“the”, 3

“cat”, 2 “the”, 3
“cat”, 2

“eats”, 1
“food”, 1

“sleeps”, 1

Splitting MAP SHUFFLE REDUCE

“eats”, 1

“food”, 1

“the”, 1

“cat”, 1

“sleeps”,
1

“eats”,
[1]

“food”,
[1]

“sleeps”,
[1]

Reducer

Reducer

Reducer

“eats”, 1

“food”, 1

“sleeps”,
1

Hadoop Julien Romero CSC5003

MapReduce - Word Count Pseudocode
● The programmer needs to provide two functions: map and reduce

function map(int id, String text):
 List[String] words = text.split(“ “)
 for word in words:
 emit(word, 1)

function reduce(String word, List[int] counts):
 emit(word, sum(counts))

Hadoop Julien Romero CSC5003

MapReduce - Exercice 1
● Given a file with integers, find the maximum value
● We suppose the splitter splits the document into list of integers

Hadoop Julien Romero CSC5003

MapReduce - Exercice 1
● Given a file with integers, find the maximum value
● We suppose the splitter splits the document into list of integers

function map(int id, List[int] integers):
 emit(1, max(integers))

function reduce(int id, List[int] maxima):
 emit(id, max(maxima))

Hadoop Julien Romero CSC5003

MapReduce - Exercice 2
● Given a file with integers, find the mean value
● We suppose the splitter splits the document into list of integers

Hadoop Julien Romero CSC5003

MapReduce - Exercice 2
● Given a file with integers, find the mean value
● We suppose the splitter splits the document into list of integers

function map(int id, List[int] integers):
 emit(1, (len(integers), sum(integers))

function reduce(int id, List[(int, int)] values):
 res = 0
 sum_weights = 0
 for weight, total in values:
 res += total
 sum_weights += weight
 emit(id, res / sum_weights)

Hadoop Julien Romero CSC5003

MapReduce - Exercice 3
● Given a file with integers, find the set of unique integers
● We suppose the splitter splits the document into list of integers

Hadoop Julien Romero CSC5003

MapReduce - Exercice 3
● Given a file with integers, find the set of unique integers
● We suppose the splitter splits the document into list of integers

function map(int id, List[int] integers):
 for integer in integers:
 emit(integer, 1)

function reduce(int id, List[int] values):
 emit(id, 1)

Hadoop Julien Romero CSC5003

MapReduce - Exercice 4
● Given a file with integers, find the number of unique integers
● We suppose the splitter splits the document into list of integers

Hadoop Julien Romero CSC5003

MapReduce - Exercice 4
● Given a file with integers, find the number of unique integers
● We suppose the splitter splits the document into list of integers

function map1(int id, List[int] integers):
 for integer in integers:
 emit(integer, 1)

function reduce1(int id, List[int] values):
 emit(1, 1)

function map2(int id, int integer):
 emit(id, integer)

function reduce2(int id, List[int] values):
 emit(1, sum(values))

Hadoop Julien Romero CSC5003

MapReduce - Exercice 5
● Given a matrix M of size n*n and a vector v for size n, compute Mv (n is large!)
● We suppose that M is stored as ((i, j), M[i,j]) and that v fits in the memory and is

a global variable.

Hadoop Julien Romero CSC5003

MapReduce - Exercice 5
● Given a matrix M of size n*n and a vector v for size n, compute Mv (n is large!)
● We suppose that M is stored as ((i, j), M[i,j]) and that v fits in the memory and is

a global variable.

function map((int, int) pos, float value):
 emit(pos[0], value * v[pos[1]])

function reduce(int i, List[float] values):
 emit(i, sum(values))

Hadoop Julien Romero CSC5003

MapReduce - Exercice 6
● Given a matrix M of size l*m and a matrix N of size m*n, compute MN
● We suppose that M is stored as ((“M”, i, j), M[i,j]) and N as ((“N”, i, j) N[i, j])

Hadoop Julien Romero CSC5003

MapReduce - Exercice 6
● Given a matrix M of size l*m and a matrix N of size m*n, compute MN
● We suppose that M is stored as ((“M”, i, j), M[i,j]) and N as ((“N”, i, j) N[i, j])

function map1((String, int, int) pos, float value):
 if pos[0] == “M”:
 emit(pos[2], (pos[0], pos[1], value))
 else:
 emit(pos[1], (pos[0], pos[2], value))

function reduce1(int j, List[(String, int, float)] values):
 M_values = [(value[1], value[2]) for value in values if value[0] == “M”]
 N_values = [(value[1], value[2]) for value in values if value[0] == “N”]
 for (i, m) in M_values:
 for (k, n) in N_values:
 emit((i, k), m*n)

function map2((int, int) pos, float value):
 emit(pos, value) function reduce2((int, int) pos, List[float] values):

 emit(pos, sum(values))

Hadoop Julien Romero CSC5003

When To Use MapReduce
● With true “big” data (>terabytes)

○ Not so frequent: Microsoft/Yahoo! median job size is under 14G, 90% of Facebook jobs are < 100G
○ https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

● Do not require fast response time
○ Often used for precomputing

● Application compatible with batches
○ No human interaction, process all data, no real-time data (sensors), no random access

● Can express data with key/value pairs
○ E.g.: No graph data

● Algorithms do not require interdependence between data points
○ E.g.: Comparisons, graph algorithms, some machine learning algorithms

https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

Hadoop Julien Romero CSC5003

RDBMS vs MapReduce
RDBMS MapReduce

Data Size Gigabytes Petabytes

Access Interactive/Batch Batch

Update Read/Write many times Write only, Read many times

Transactions ACID None

Structure Schema-on-write Schema-on-read

Integrity High Low

Scaling Nonlinear Linear

Hadoop Julien Romero CSC5003

MapReduce In Hadoop
● The unit of work is called a job
● A job is decomposed into tasks: map tasks and reduce tasks
● The tasks are scheduled by YARN on the nodes of the cluster
● The input file is splitted in input splits (or just splits)

○ One map task for each split
○ Apply the map function on each record

● Tradeoff for the splits sizes:
○ Small = more jobs, overhead of managing
○ Big = less parallelism
○ In general, HDFS block, 128 MB (maximum size guaranteed on a single node)

Hadoop Julien Romero CSC5003

MapReduce In Hadoop - Data Locality Optimization
● Try to run the map task on the node where the data is.

○ If not possible, run it on a node on the same rack
○ If not possible, run it where you can

Hadoop Julien Romero CSC5003

MapReduce In Hadoop - Data Flow

Hadoop Julien Romero CSC5003

MapReduce In Hadoop - Data Flow
● Map results stored locally

○ Expensive and useless to distribute
● Map results are partitioned by key

○ Each partition will go to a different reducer
○ Possible to change partition function

Hadoop Julien Romero CSC5003

MapReduce In Hadoop - Data Flow
● No data locality for reduce tasks
● Results stored on distributed file

system for reliability

Hadoop Julien Romero CSC5003

MapReduce In Hadoop - The Combiner Function Optimization
● If the reduce function is associative and commutative, it can be executed after the

map task and before the split
○ We reduce the data to transfer (throughput is critical)
○ Ok: Max, Min, sum
○ Not Ok: Mean, median

● No guarantee that the combiner will be executed
○ The program should work the same!

Hadoop Julien Romero CSC5003

Hadoop Fundamentals
Hadoop Distributed File System

Hadoop Julien Romero CSC5003

Hadoop Distributed File System
The HDFS is a distributed file system designed for:

● Managing very large files (several gigabytes)
● Streaming data access: files are written once, read several time, often entirely
● Running on commodity hardware: failure tolerant

It does not work well for:

● Low-latency data access
● Lot of small files
● Multiple writer
● File modification (except append)

Hadoop Julien Romero CSC5003

Hadoop Concepts - Blocks
Blocks: Minimum of data that can be read or written.

● Similar to Linux blocks (CSC3102) but:
○ Much bigger (128MB vs a few KB)
○ If data smaller that a block, does not take entire block

● Block size = tradeoff seek time/transfer time
○ If seek time = 10ms and transfer rate = 100MB/s, to have seek time = 1% total time we need a block

size of 100MB
● Advantages:

○ Can split a file on several disks
○ Simple for the filesystem
○ Good for replication

Hadoop Julien Romero CSC5003

Hadoop Concepts - Namenodes/Datanodes
● Master-slave pattern:

○ Namenode manages the filesystem (master)
○ Datanodes store the blocks

● How to make the namenode resilient to failure?
○ Back up the files (e.g., NFS)
○ Secondary namenode that follows the namenode (faster but lags behind)

Hadoop Julien Romero CSC5003

Hadoop Concepts - Others
● Block caching: take advantage of blocks already in RAM
● HDFS federation: if too many files, the filesystem might not fit into a single

namenode. We can split it using an HDFS federation.

Hadoop Julien Romero CSC5003

Hadoop Command Line - Local/Hadoop Filesystem
Hadoop commands are similar to Linux ones, but they start with hadoop fs -

Copy a file from local filesystem to Hadoop filesystem

hadoop fs -copyFromLocal src target

Copy a file from Hadoop filesystem to local filesystem

hadoop fs -copyToLocal src target

To make the difference between the local filesystem and Hadoop filesystem, we can
add: file:/// and hdfs://

Hadoop Julien Romero CSC5003

Hadoop Command Line - Traditional Commands
● Create directory: hadoop fs -mkdir
● List files: hadoop fs -ls path
● Change permissions: hadoop fs -chmod
● …

(cd does not make sense here)

● Beware! hadoop fs -cp src target copies a file that is already on the
HDFS to a file also on the HDFS! It cannot go from the local filesystem to HDFS.

Hadoop Julien Romero CSC5003

Dataflow - Read

Namenode

DatanodeDatanodeDatanode

Client (JVM)

Hadoop
Client

Get block locations

Hadoop Julien Romero CSC5003

Dataflow - Read

Namenode

DatanodeDatanodeDatanode

Client (JVM)

Hadoop
Client

Read the blocks

Hadoop Julien Romero CSC5003

Dataflow - Write

Namenode

DatanodeDatanodeDatanode

Client (JVM)

Hadoop
Client

Ask to create file +
location of the blocks

Hadoop Julien Romero CSC5003

Dataflow - Write

Namenode

DatanodeDatanodeDatanode

Client (JVM)

Hadoop
Client

Write

Hadoop Julien Romero CSC5003

Dataflow - Write

Namenode

DatanodeDatanodeDatanode

Client (JVM)

Hadoop
Client

Replication Replication

