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Fiche 3 : Cache & SIMD

1 Cache reuse with scrollup kernel

We’re going to modify the scrollup kernel of EasyPAP in order to provoke some cache faults
and observe their impact on performance.

1. Modify the Makefile to compile with level of optimisation -O1. This disables automatic
vectorisation and will allow us to better distinguish the influence of the program’s perfor-
mance.

2. Duplicate the function compute_seq() by naming it scrollup_compute_ji() :

1 for (int i = 0; i < DIM; i++) {
2 int src = (i < DIM - 1) ? i + 1 : 0;
3 for (int j = 0; j < DIM; j++)
4 next_img (i, j) = cur_img (src, j);
5 }

and invert the order of loops that iterate over i and j. Also, compute the last line of the
image out of the loop. Remove the test and but after the loop, the following code :

1 for (int j = 0; j < DIM; j++)
2 next_img (DIM - 1, j) = cur_img (0, j);

3. En utilisant l’image shibuya.png, vérifier visuellement le résultat. Comparer « visuelle-
ment » la fluidité de l’animation obtenues par les versions seq et ji du noyau scrollup.

4. Visually check the result on the image shibuya.png. Compare visually the fluidity of the
animation obtained by the seq and ji versions of the scrollup kernel.
Use the script plots/run-xp-scrollup.py to run a series of experiments a series of ex-
periments that will vary the image size and the number of iterations to maintain a constant
of computation time.

nb_iterations =
4096× 4096

DIM × DIM

5. Use the folowing command in order to generate curve :

./plots/easyplot.py -y time -x size --yscale log --xscale log \
--delete iterations -if scrollup.csv

6. Interprete the figure knowing that a pixel is encoded on 4 bytes and that the cache size of
your machine is given by the commande lstopo.
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7. Implement a tiled version of the initial row-major path. Play with the tile dimension. Com-
pare performance.
NOTE : DO NOT FORGET to put back the -O3 level of compilation in the Makefile.

2 Auto-vectorization of blur kernel

This exercise deals with the optimisation of sequential code and vectorisation.
The blur kernel blurs an image by calculating, for each pixel, the average value of the pixels

located in its immediate neighbourhood. However, two different pixels may have a different num-
ber of neighbours depending on their position in the image. Here is a code that treats all cases in
the same way.

int blur_do_tile_default (int x, int y, int width, int height)
{

for (int i = y; i < y + height; i++)
for (int j = x; j < x + width; j++) {
unsigned r = 0, g = 0, b = 0, a = 0, n = 0;

int i_d = (i > 0) ? i - 1 : i;
int i_f = (i < DIM - 1) ? i + 1 : i;
int j_d = (j > 0) ? j - 1 : j;
int j_f = (j < DIM - 1) ? j + 1 : j;

for (int yloc = i_d; yloc <= i_f; yloc++)
for (int xloc = j_d; xloc <= j_f; xloc++) {

unsigned c = cur_img (yloc, xloc);
...

}

1. When a tile is far from the edges, a certain number of tests are unnecessary. Write a variant
of the tiling function which treats edge tiles differently from the ones of the center, in order
to drastically simplify their calculation.
Here’s what the start of this function might look like :

// Optimized implementation of tiles
int blur_do_tile_opt (int x, int y, int width, int height)
{

// Outer tiles are computed the usual way
if (x == 0 || x == DIM - width || y == 0 || y == DIM - height)
return blur_do_tile_default (x, y, width, height);

// Inner tiles involve no border test
...

2. Check your program is working correctly by saving the calculated image after 50 itera-
tions via the --dump option (you can work with the image ./images/shibuya.png)
and comparing them (command diff).
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3. Observe the application’s behaviour by using the monitoring and pressing the h key to
activate the heat mode. The light intensity of the tile is proportional to its duration (relative
to the others). Use vary the grain.

4. To compare the relative performance of these two tiling variants, it is possible to generate
execution traces and compare them. For thus purpose, you can do for example :

# run regular version
./run -l images/shibuya.png -k blur -v tiled -wt default -nt 32 -i 10 -t -n \
-lb "Regular 32x32"
# run optimized version
./run -l images/shibuya.png -k blur -v tiled -wt opt -nt 32 -i 10 -t -n \
-lb "Optimized 32x32"
# compare last two traces
./view -c

5. Experimentally determine a good tile size. Doesn’t this give us ideas for further optimising
the programme?

6. Implement the blur_compute_omp_tiled version. Load balance as best you can with
the help the execution traces. How can you initiate the tile distribution in order to enhance
this pathological pattern?

7. We are now looking to optimise the cache reuse. For example, two images of size 1920×1920
will easily fit in the set of caches L3. Propose a distribution policy that encourages cache
reuse.

3 Vectorisation of spin kernel

The spin kernel, which performs a few simple trigonometric calculations, gives the compiler
a hard time, as it is unable to vectorise it automatically. So we’re going to manually vectorise the
calculations using intrinsics.

The interactive Intel Intrinsics Guide will undoubtly become your best friend during this assignment !

3.1 Start of vectorisation

The file spin-codelet.c contains pieces of code you copy and paste at the end of your
kernel/c/spin.c file. Do not move spin-codelet.c into the the EASYPAP tree.

After recompiling the application, you now have an avx tiling variant which performs signi-
ficantly better than the sequential version. To try it out :

./run -k spin -v tiled -wt avx

Examine the code to see that the vectorisation is partial at this stage (look for the // FIXME
in particular).

3.2 Arc tangent

Let’s start with the _mm256_atan_ps function, which poses no any particular problems, since
it does not contain any conditional statement.
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Replace the sequential iterative code with vector instructions to calculate AVX_VEC_SIZE_
FLOAT values (i.e. 8) of arc tangents simultaneously. Note that you will probably need to use the
function _mm256_abs_ps which calculates the absolute of the elements of a vector : take a look
at how it works !

Check that your code works in interactive mode, then measure the time saved compared with
the old version (option -i 100 -n).

3.3 Fonction atan2

Complete the vectorisation of the function _mm256_atan2_ps. Notice how the first sequential
instructions have been transformed into vector operations...

In particular, note that the test :
if (y[i] < 0) th[i] = -th[i];

can be read as ‘propagate the sign bit from y to th.
Visually check that the calculations are still correct, and appreciate the performance gains

you’ve made !

4 Back to the tasks : search for related components in an image

This exercise is about finding related components in an image in OpenMP. We will use the max
kernel. A sequential version is provided in EasyPAP.

4.1 Introduction

The aim is to identify the non-transparent objects present in an image. We are working here
with 4-connexity : two pixels are connected if they are adjacent by an edge (north, south, east,
west). Two pixels belong to the same object if they are related or if there is a there is a chain of
related pixels (non empty) connecting them.

To identify objects, we start by assigning a unique colour to each non-zero pixel. We then
propagate the maximum in the neighbourhood of the coloured pixels by iterating the calculation.

At the iteration end (bounded by the number of pixels), the pixels belonging to the same object
have all acquired the same colour, that of the pixel with the greatest colour. When propagation has
reached a stable, the calculation is complete.

To achieve this propagation, it is natural to iterate a scan of all the pixels by assigning to each
non-zero pixel the maximum between the current pixel and its four neighbouring pixels until
stagnation. The efficiency of such conventional scan can be significantly improved by replacing it
by two scans :

1 // first scan in the usual path
2 for (int i = 0; i < DIM; i++)
3 for (int j = 0; j < DIM; j++)
4 ...
5

6 // then a second scan in the reverse path
7 for (int i = DIM-1; i >= 0 ;i--)
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8 for (int j = DIM-1; j >= 0 ;j--)
9 ...

It therefore seems pointless to calculate the maximum on all the 4 neighbouring pixels, but
simply on those most likely to propagate the maximum.

By convention, let’s assume that the downward path corresponds to the path of the table from
left to right and then from top to bottom. The max is downwards by consulting the value of the
west and north cells. Going up corresponds to scanning from right to left, then from bottom to
top. The max is brought up by consulting the south and east cells.

This algorithm is implemented by the function max_compute_seq (in max.c).
You can test it with the command :

./run -l images/spirale.png -k max

The propagation can be carried out in parallel without any care because the order of the cal-
culations does not matter as long as a stable state is reached. Thus, parallelize the code using
OpenMP loops without respecting the data dependencies induced by sequential algorithm. Here,
the aim is to parallelize the functions tile_down_right and tile_up_left (copy them in
order to save sequential versions) really simply by adding only two OpenMP directives.

— Check that the code works correctly on the image spirale.png :

./run -l images/spirale.png -k max -v omp

— Measure the performance obtained for DIM = 2048 with spirals of 100 turns :

./run -s 2048 -k max -v omp -a 100 -n

Experimentally, we can see that if we simply straightforward parallelise the for loops, the pa-
rallel version performs significantly more iterations than the sequential version when image is
large. Indeed, if all the pixels are opaque, then the parallel version will require as many iterations
as there are threads to raise the max, instead of just one for the sequential version.

4.2 Parallelization with tasks

One way of improving the efficiency of parallelization is to lightly sacrifice the parallelism to
maintain good transmission of the max. In figure 1 below, each square represents a ‘tile’ of pixels.
The contents of each tile are processed sequentially.

In the top-down phase (Figure 1 left) , the top left tile is processed first. Then, as a general rule,
a tile can be processed a tile after its north and west neighbours have been processed.

Symmetrically, in the rising phase (Figure 1 right) , the tile at the bottom right is processed
first. Then, as a general rule, it can be computed after its southern and eastern neighbours have
been processed.

The ‘tiled’ version of this algorithm is implemented by the function max_compute_tiled (in
max.c), with the number of tiles being set by NB_TILES_X × NB_TILES_Y. To simplify things,
square tiles can be used by setting an identical number horizontally and vertically using the option
--nb-tiles (or -nt). Example using 16× 16 tiles :
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FIGURE 1 – Dependencies between tiles during descent (a) and when rising (b).

./run -s 2048 -k max -v tiled -a 100 -nt 16

Parallelize the tiled version (by creating a new variant max_compute_task) by computing
each tile by an OpenMP task. Then use the depend clause to constrain the execution order of the
tasks in order to maintain the sequential order of max propagation. To simplify the expression of
dependencies, you can use an appendix table which will only be used to express the dependen-
cies :

int tile[NB_TILES_Y][NB_TILES_X + 1] __attribute__ ((unused));

Once again, check that the code is working correctly on the image spirale.png :

[my-machine] ./run -k max -v task -l images/spirale.png -nt 16 -n
Using kernel [max], variant [task]
Computation completed after 284 iterations

Also check, thanks to an execution trace, that the dependencies between tasks are respected.
For this purpose, you can use this sequence of commands :

# generate thumbnails
[my-machine] ./run -k max -v task -l images/stars.png -nt 16 -tn -n
# trace
[my-machine] ./run -k max -v task -l images/stars.png -nt 16 -t -n
# observe
[my-machine ./view

If you move the mouse over the Gantt chart, from left to right, you should see a ‘front’ of tasks
progressing towards the bottom right-hand corner (see Figure 2), then to the top left corner, etc.
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FIGURE 2 – Progression of the task front during the descending phase of maximum propagation.
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