
MPI Internals
CSC5001 – High Performance systems

2

Objectives

● Understand how an MPI implementation works internally
● Understand the impact of these internals on applications

3

Introduction

● MPI: Message Passing Interface
● Defines an API (C, Fortran)

● Several libraries implement this API

● MPI programs are portable from one implementation to another

● API defined by the MPI forum
● academia (Univ. Tennessee, ORNL, ANL, Riken, INRIA, ...)

● industrials (IBM, Intel, Fujitsu, NEC, Mellanox, ...)

4

History

● 1994: MPI 1
● Inspired by PVM

● 1997 : MPI 2
● One-sided communications

● Dynamic creation of MPI processes

● MPI-IO

● 2012: MPI 3
● Non-blocking collective communication

● Fault tolerance

● Improved one-sided communications

● 2020: MPI 4
● Persistent collective communications

● Improved error handling

5

MPI implementations

● Generic implementations
– MPICH
– OpenMPI

● Platform-specific implementations
– Usually derived from a generic implementation
– MVAPICH, Intel MPI, HP MPI, Bull MPI, IBM MPI

6

MPICH

● Developped at Argonne National Laboratory
● Base of several other implementations

– Intel MPI
– MVAPICH
– IBM MPI

7

MPICH3 architecture

● ADIO: high level interface for disk IO (MPI-IO)

● ADI3: high level interface for communications

● Devices: implement the ADI3 interface,

– Drivers for networks with a similar interface to MPI (Blue Gene,
Cray, Myrinet)

– Modules that implement some ADI3 features (collective
communication, etc.)

● Channels: implement point-to-point communications

– Drivers for inter-node communication(ex : Sock)

– Some modules implement intra-node communication (ex :
Nemesis)

MPI
ADI3 ADIO

CH3 BG

C
ra
y

P
V
FS

G
P
FS

X
FS

S
o
ck

N
e
m
e
si
s

S
C
T
P

TCP MX IB

Devices

Channels

Network
modules

8

OpenMPI

● Developped by several academia (Indiana Univ., Univ.
Tennessee, …)

● Rely on several older implementations
– FT-MPI (University of Tennessee)

– LA-MPI (Los Alamos National Lab)

– LAM-MPI (Indiana University)

– MVAPICH (Ohio State University)
● Architecture based on software components

9

OpenMPI architecture

● PML : Point-to-point Messaging Layer
● BML : BTL Management Layer
● BTL : Byte Transfer Layer
● MPool : Memory Pool
● RCache : Registration Cache
● MTL : Message Transfer Layer

MPI interface

PML OB1/DR PML CM

BML - R2 MTL
MX

MTL
Portals

MTL
PSMBTL GM

MPool GM

RCache

BTL OpenIB

MPool OpenIB

RCache

10

TL;DR

● For networks whose API is similar to MPI
– Myrinet MX, Blue Gene, Quadrics, ...

– Direct translation of MPI calls

● For other networks
– TCP, Infiniband, ...

– A message may be processed before being transmitted
● Collective communication –> P2P communication
● Message matching
● Other processing ? (aggregation, multi-rail, ...)

11

MPI transfer methods

● Exercise:
– Analyze and run bibw.c
– The program only works for small messages
– Is it always the same message size that fails ?

● Is it the same for intra-node and inter-node ?

12

Sending/Receiving a message

● On a classic network (eg. TCP/Ethernet)

– Sending

1 copy the message to a buffer (+adding headers)

2 ask the NIC to send

3-4 copie the message to the NIC memory, and the NIC
sends the data to the network

– Receiving

2 NIC raises an interrupt

3 OS copies the message to an internal buffer

4 application polls the OS

5 OS copies the message to the application buffer

–> 2 copies per transfer

13

Sending/Receiving a message: zero copy

On a high performance network (eg. InfiniBand)
● Sending

1 ask to NIC to send data

 2-3 NIC copies the data to the NIC memory,
and send it to the network

● Receiving

2 application polls the NIC

3 upon reception, the NIC copies the message
to the application buffer

–> only one message copy

14

Eager mode

If MPI_Recv happens before sending
● List of pending MPI_*recv
● When a message arrives, search for a matching

receive in the reception list
– Takes into account the src, and tag

● If found, copy the message in the application
buffer

15

Unexpected messages

In case there’s no matching MPI_Recv
● A message arrive
● Search for a matching recv

– Not found
● Add the message to a list of “unexpected” messages
● When MPI_Recv is called:

– Search for a matching unexpected message
– Copy the message in the application buffer

→ spurious message copy

→ need to store unexpected messages

16

Rendez-vous mode

Send a Rendez-Vous request
● When the matching MPI_Recv happens, reply

“Ready To Receive”
● Send the message
● Receive the message in the application buffer

→ No spurious message copy
→ Additional messages, synchronization between
nodes

17

Data transfer in MPI

● For small messages: use the eager mode
– Directly send the date along with a header (src=X, tag=Y, len=Z)
– If no MPI_Recv matches, store the message in the unexpected messages list

● For large messages: Rendez-Vous mode
– Send a Rendez-Vous request that contains the header (src=X, tag=Y, len=Z)
– When the receiver is ready, it replies Ready To Receive
– Send the message
– Recevie the message in the application buffer

● The Rendez-Vous prevents from
– Storing large messages in the unexpected list
– Copying a large message from one buffer to another

18

Eager vs Rendez-vous

19

Exercise

● Analyze the pingpong program
● Run the program with 2 MPI ranks
● Explain the behavior of the program for large messages

20

Progression of communications

● Problem: MPI needs to poll the network to answer Rendez-
Vous requests

● Possible solutions:
– Call MPI_Test while computing
– Add a thread dedicated to communication
– Use another protocol that does not rely on rendez-vous

21

Progression of communications: exercise

● Analyze and run stencil_mpi.c with 2 MPI ranks.
– Vary the problem size N

● With some values of N, the program stalls
● Fix the problem !

22

Thread-safety

● The MPI standard defines several thread-safety levels :
– MPI_THREAD_SINGLE: only one thread runs
– MPI_THREAD_FUNNELED: the program may have threads, but only the main thread calls MPI
– MPI_THREAD_SERIALIZED: the program may have multiple threads that call MPI, but once at a time
– MPI_THREAD_MULTIPLE: the program may call MPI concurrently from multiple threads

● Instead of initializing MPI with MPI_Init, we use:
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Warning : provided contains the thread-safety level chosen by MPI (may be different than required)

23

Consequences for an MPI implementation

● For an MPI implentation, the thread safety levels mean:
– MPI_THREAD_FUNNELED: MPI cannot use a non thread-safe library
– MPI_THREAD_SERIALIZED: code must be reentrant, no thread-specific variable
– MPI_THREAD_MULTIPLE: data structured must be protected from concurrent access

24

Support for MPI_THREAD_MULTIPLE

● Need to protect data structure from concurrent
access

● Without degrading performance
→ Problems
– Lots of modules to protect
– Interactions between modules

→ Quite often, only a part of MPI is thread-safe

25

Hybrid programming models

● Typical cluster of compute nodes
– N machines connected to a network
– Each machine has M cores

● How to exploit this cluster ?

26

Using MPI only

● How to exploit this cluster ?
● 1 MPI rank per core

+ MPI handles the inter/intra node communication

– no shared memory between processes on a
node

– locality of MPI ranks is hard to exploit

27

Mixing MPI with threads

● How to exploit this cluster ?
● 1 MPI rank per node
● 1 thread per core

+ shared memory within a node

+ load balancing is easier

+ fewer MPI ranks (→ better scalability for
collective communication)

– hard to debug

28

MPI + OpenMP

● 1 MPI rank per node
● Within a node : parallelization with OpenMP
● What level of thread-safety ?

– MPI_THREAD_FUNNELED: MPI calls outside of parallel regions
– MPI_THREAD_SERIALIZED: MPI call in critical sections
– MPI_THREAD_MULTIPLE: no restriction

29

MPI + CUDA

● 1 MPI rank per GPU
● Some computations are offloaded to the GPU
● How to transfer data on the network from one GPU to another ?

→ use a lot of CPU (cudaMemCopy, then MPI_Send)
→ multiple memory copies

30

MPI + CUDA: GPUDirect

● Available with some network technologies (eg. InfiniBand)
● DMA-based copies

→ low usage of the CPU
→ no spurious memory copy

31

MPI + OpenMP: exercise

● Parallelize the program stencil_mpi.c with OpenMP
● Initialize MPI properly
● A program that runs fine may still be bugous

– Watchout for race condition

32

MPI + CUDA: exercise

● Parallelize the program stencil_cuda.c with MPI

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

