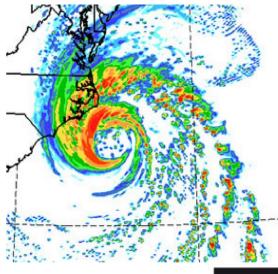


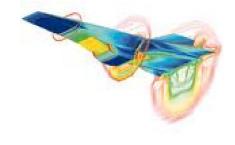
High Performance Systems Introduction


Elisabeth Brunet CSC5001 - Septembre 2023

Scientific Computing and simulation

- Essential for scientific and industrial innovation
- Numerous fields of application

 Meteorology, astrophysics, nanoscience, etc.
 Automotive, aeronautics, 7th art, defense, etc.
- Simulation is necessary when the problems are ...
 - I...too complex
 - 0...to massive
 - I...too expensive
 - I...too dangerous
 - ^I...predictive


Scientific Computing and simulation

- A lot of calculation
- Handling of huge amounts of data
- Time constraints

Consequences

Increased computing resourcesParallelization of problems

- To go faster and faster
- but above all to deal with ever bigger problems

High Performance Platforms

- Component capacities maximized
- Processor diversity
 - Boosted consumer architectures
 - Specialized Architectures
 - ^I Processors Alpha, MIPS, Cray, Power, Sparc, NEC, etc.
 - Instruction sets
 - Architectural processing flow
 - Vectorial processor
 - Processor Cell

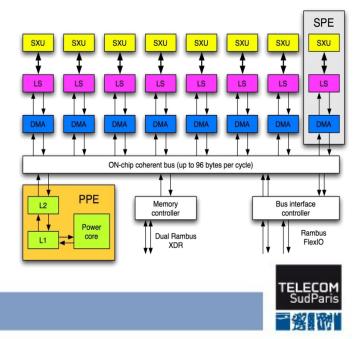
• Processor design by IBM, Sony and Toshiba in 2005

Totally different architectural model

1 master PowerPC processor called PPE

¹ 8 SPE vectorial co-processors

^{II} Internal EIB interconnection bus


Peak performances

¹ 230,4 GFLOPS in single précision

Initially designed for multimedia (PS3) and hijacked by HPC

• Extremely difficult to program

¹ Abandoned in 2009

副多聞 High Performance Platforms

Component capacities maximized

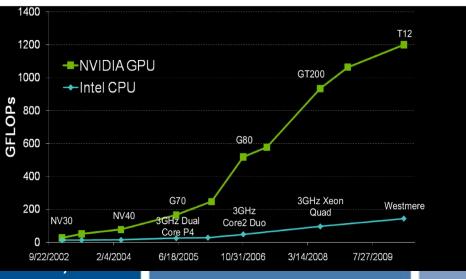
• Processor diversity

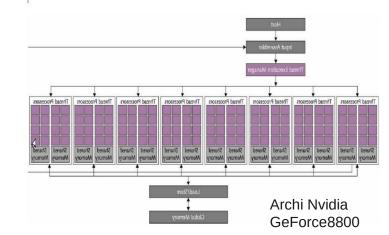
- Boosted consumer architectures
- Specialized Architectures
- Co-processors
 - I FPGA : programmable logic circuit
 - **GPU**: Graphics Processing Unit

1 GPU = hundreds of limited cores

No dynamic memory allocationNo stack, so no recursivity

• Design for 3D image synthesis


3D API : OpenGL, DirectX


Then parallel computing focus

^I Nvidia : Architecture Tesla(2006), Fermi(2009) / API CUDA

^I AMD : Archi RadeonHD / API ATI Stream SDK

^I API unifiée GPU+CPU : OpenCL (2008)

Vectorial computation offloading

- ^I Suitable to massively parallel compute
- Data transfert
- Kernel computation
- Result transfert
- Slow CPU/GPU communication

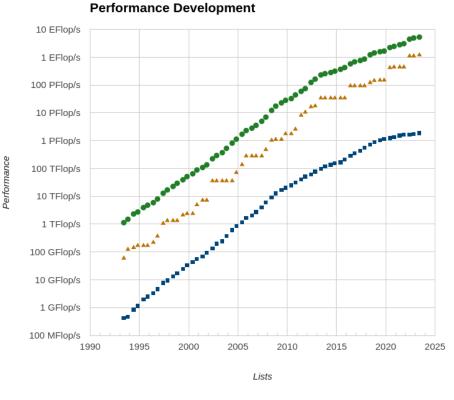
副選択 High Performance Platforms

Component capacities maximized

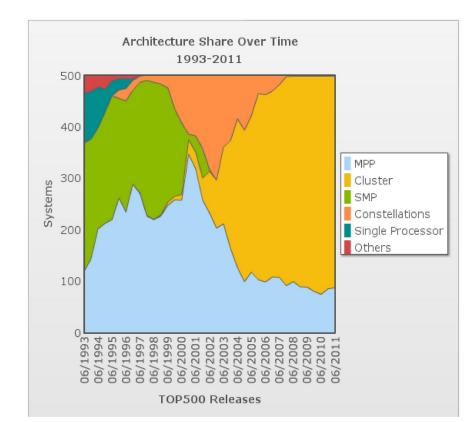
• Processor diversity

- Boosted consumer architectures
- Specialized Architectures
- Co-processors
- Massive aggregation of resources
 - ^I High performance networks InfiniBand, Myrinet, 10G-Ethernet, etc.
 - ^I Topologies : supercomputer, cluster, grid

全部的Computing resources in HPC


- Hybrid architectures
- High capabiliy components
- Ever increasing computing power
 - Petascale (10^15 floating point operations per second), even exascale

Top500 ranking



Bi-annual ranking of the 500 most powerful machines in the world

● Sum ▲ #1 ■ #500

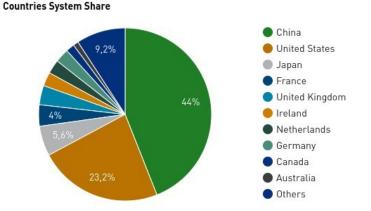
1 Frontier - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X – Oak Ridge (USA)

#cores = 8,699,904 Rmax = 1,194.00 Rpeak=1,679.82 Power=22,703

- 2 Fugaku A64FX48C 2.2GHz, Tofu Interconnect Fujitsu RIKEN Center of Computational Science (Japan)
 #cores = 7,630,848 Rmax = 442.01 Rpeak=537.21 Power=29,899 → #1 in 2020
- 3 Lumi HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X EuroHPC CSC (Finland)

#cores = 2,220,288 Rmax = 309.10 Rpeak=428.70 Power=6,016

- 4 Leonardo –BullSequana XH2000, Xeon Platinum 2.6GHz, NVIDIA A100 64GB, Infiniband– EuroHPC CINECA (Italy) #cores = 1,824,768 Rmax = 238.70 Rpeak=304.47 Power=7,404
- **5** Summit IBM POWER9, NVIDIA Volta GV100 Oak Ridge National Lab (USA) \rightarrow #2 in 2020 # cores=2,414,592 Rmax=148,600 RPeak=200,794 Power=10,096



• 12. Adastra - HPE Cray EX235a, AMD Optimized EPYC 64C 2GHz - GENCI-CINES

#cores=319,072 Rmax=46.10 Rpeak=61.61 Power=921

- 22. CEA HF Bull Sequana X1000 Xeon Phi 7250 CEA #cores=810,240 Rmax=23.24 Rpeak=31.76 Power=4,959
- **39. PANGEA III** IBM POWER9, NVIDIA Volta GV100 Total Exploration Production
 - #cores=291 024 Rmax=17860 Rpeak=25025 Power=1367

警察部 Green 500 in 2020

Best performance/energy consumption ratio

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	255	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
2	34	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	12	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI- CINES) France	319,072	46.10	921	58.021
4	17	Setonix – GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Pawsey Supercomputing Centre, Kensington, Western Australia Australia	181,248	27.16	477	56.983
5	77	Dardel GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE	52,864	8.26	146	56.491

- Most of them are accelerator-based
- Trend of aggregating many low-power processors tops the Green500

Critical points of HPC applications

In terms of implementation

- Classic problems exacerbated
- Use of material resources
- Data distribution
- Dissemination of résultats

^I Collective operations (*alltoall*, *broadcast*, reduction, etc.)

• Problems related to the size of the platforms

^I Fault tolerance, etc.

In terms of efficiency

- Data locality
- Data granularity
- Load balancing

多聞 Support for HPC applications

- Hardware abstraction interfaces
 - ^I Examples : OpenCL, PVM, MPI, etc.
 - ^I For software portability

Runtimes

^I Multiprocessor architectures

^I Thread scheduling

^I Data placement

Distributed architecturess

Data distribution

Data transfert

- I MPI, RPC, DSM , etc
- ^I Heterogeneous architectures

Load balancing

^I StarSs, Intel Ct, StarPU, etc.

For performance portability !

多数 Support for HPC applications

- Libraries for classical problem solving
 - □ FFT, linear algebra (BLAS, etc.), etc.

• Tools

^I Performance Analysis (Easytrace, Vampir, Scalasca, etc.)

^{II} Bugs detection (Valgrind, gdb, etc.)

^I Fault tolerance

0

Middlewares

^I Code couplage

• Performance dependent on several factors

- ¹ Fraction of the parallelizable application
- ¹ Quality of scheduling on computing resources
- ^I Additional cost introduced by the parallel version
- **Speedup :** measures the acceleration between parallel and sequential versions
 - ^I Sp = Tseq /Tp , where
 - Sp = speedup on P procs
 - Tp = execution time on P processors
 - Tseq = execution time on 1 processor
 - ^{\Box} Aiming at Sp = P
- Amdahl law : acceleration bound as a function of parallelization quality
 - R = 1 / ((1-S)+S/P), where
 - S = parallelized code ratio, P = #processors
 - ^{\Box} Speedup is bounded by 1/S > addition of processors can be unnecessary

