

Institut Mines-Télécom

Introduction to GPU architecture

Elisabeth Brunet

- Introduction
- GPU Architecture
- CUDA Architecture
- CUDA Programming

GPU ARCHITECTURE

- Graphics Processor Unit
- Co-processor located on a pci-express slot
- Architecture many-core with its own memory space
- Initially, static graphics pipeline
 - Designed for 3D computation required by image synthesis
 - Driven by the video game market

彩雪饼

GPU

- Graphics Processor Unit
- Co-processor located on a pci-express slot
- Architecture many-core with its own memory space
- Initially, static graphics pipeline
 - Designed for 3D computation required by image synthesis
 - Driven by the video game market
- Early 2000s, GPGPU (General Processing GPU)
 - Opening of the architecture
 - More general computation types
 - A lot of application domains : image processing, numerical simulations, linear algebra, deep learning, etc.

GPU

- Architecture SIMD
 - Single Instruction / Multiple Data
 - Data parallelism
 - Ideal for intensive massively parallel computation
- Hundreds of cores
- Cores with limited capabilities
 - No dynamic memory allocation
 - No heap > no recursion
- Memory hierarchy
 - NUMA effects

CPU vs GPU

- Latency
 - Delay between the initialization of an operation and when its effects are detectable
 - A car has a lower latency than a bus.
- Bandwidth
 - Amount of work achieved over a given period of time
 - A bus has a higher bandwidth than a car.

• CPU

- Architecture to minimize latency
 - Demanding operations, e.g. keyboard events
 - Relying on caches
 - Dedicated circuits for out-of-cache operations
 - e.g. pre-fetch, out-of-order execution
- GPU
 - High latency and high bandwidth processors
 - No need for a large cache
 - Transistors dedicated to data processing rather than cache management
 - Chip of the same size but with much more ALU

Control	ALU ALU ALU ALU
Cache	
DRAM	

CPU vs GPU

CPU vs GPU

Concurrent GPUs

- GeForce/Quadro/Tesla NVIDIA cards
 - Micro-architectures : Fermi, Kepler, Maxwell, Pascal, Volta, Turing, Ampere
 - Calculation-oriented programming : CUDA
- AMD Radeon cards
 - Including ATI's Stream Computing architectures
 - OpenCL : standardization of GPU programming
- Graphic programming : OpenGL, Vulkan, Direct3D, DirectX

Turing Architecture

INTRODUCING TURING

TU102 – FULL CONFIG

18.6 BILLION TRANSISTORS

SM	72
CUDA CORES	4608
TENSOR CORES	576
RT CORES	72
GEOMETRY UNITS	36
TEXTURE UNITS	288
ROP UNITS	96
MEMORY	384-bit 7 GHz GDDR6
NVLINK CHANNELS	2

THIS PRESENTATION IS EMBARGOED UNTIL SEPTEMBER 14, 2018

RTX

Tensor cores

- Specialized cores
 - 4x4 matrix cores
 - Ultra fast for operations on very small matrixes
 - 1 matrix multiply-accumulate operation per 1 GPU clock
 - Particularly adapted to the demands of deep learning
 - https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

CUDA ARCHITECTURE

Description

- Compute Unified Device Architecture
- Hardware and software architecture of NVidia GPUs
- Programmable in C, C++, Fortran, Python
- Exploits directly the unified architecture (G80 and +)

Principle

- From a host program running on a CPU,
 - Launching a computing kernel on the GPU device that
 - Executes the same calculation
 - Thanks to many very light threads
 - On different data loaded in the GPU memory
 - Since Fermi, several kernels can be launched in parallel
 - Since Kepler, launching kernels from a kernel

Programming model

- Kernel executed by a grid of thread blocks
 - 3D Grid
 - 3D blocks
- In a block, the threads
 - Cooperate via shared memory
 - Are scheduled by warp
 - Warp = 32 threads
 - Threads of a warp are synchronous
- No inter-block cooperation

Multi-dimensional identifiers

- Each thread accesses a different part of the data
 - Complies with the data structure
- Thread indexing information
 - threadIdx.x, .y, .z : thread index within the block
 - blockIdx.x, .y, .z : block index within the grid
- Information about the grid at runtime
 - blockDim.x, .y, .z
 - GridDim.x, .y, .z

blockldx.x

blockDim.x = 5

threadIdx.x

CUDA C PROGRAMMING

CUDA Kernel

- _global__ void my_kernel(parameters) {...}
- A kernel is a C function with some features :
 - Identified using the keyword __global__
 - Invoked by the CPU and runs on the GPU
 - Only accesses GPU memory
 - Void return
 - No variable number of arguments
 - No recursion
 - No static variable
 - Kernel arguments are passed by copy
 - Flow instructions (if, while, for, switch, do)
 - Branch serialization within warp \rightarrow performance loss

Kernel Invocation

- my_kernel <<<dim3 Grid,dim3 Block>>>(parameters)
- Maximum number of threads per block : 1024 to be distributed over the 3 dimensions
- Maximum grid size : 2^31-1 x 65535 x 65535
- Information related to the specification of the GPU used
- Predefined variables set by invocation
 - dim3 gridDim : grid dimensions
 - dim3 blockDim : block dimensions
 - dim3 blockIdx : block index in the grid
 - dim3 threadIdx : thread index in the block

Example : Array incremention

CPU code	GPU code
<pre>void incr_cpu(float *a, float b, int N){ for (int idx = 0; idx<n; +="" a[idx]="a[idx]" b;="" idx++)="" pre="" }<=""></n;></pre>	<pre>global void incr_gpu(float *a, float b, int N){ int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < N) a[idx] = a[idx] + b; }</pre>
<pre>void main(){ incr_cpu(a, b, N); }</pre>	<pre>void main(){ dim3 dimBlock (blocksize); dim3 dimGrid(ceil(N / (float)blocksize)); incr_gpu<<<<dimgrid, dimblock="">>>(a, b, N); }</dimgrid,></pre>

Data management (1/3)

- CPU and GPU have physically separate memory spaces
 - Different GPU memories seen in an upcoming course
- Data must be in GPU global memory to be processed
- From host,
 - allocation/free and copy of data
- From device,
 - Static declaration with keyword __device__

Data management (2/3)

- Allocation : cudaMalloc(void ** pointer, size_t nbytes)
- Desallocation : cudaFree(void* p)
- Cleaning : cudaMemset(void * p, int val, size_t nbytes)

```
// Allocation of an array of n integers
int n = 1024;
int nbytes = n*sizeof(int);
int *d_tab = NULL;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
```

cudaFree(d_a);

Data management (3/3)

 Copy of the data from host : cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

with enum cudaMemcpyKind

={cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice}

- Copies after previous CUDA calls are completed
- Blocks the master thread for copy time

Example : Array incremention

CPU code

```
void incr_cpu(float *a, float b, int N){
  for (int idx = 0; idx<N; idx++)
    a[idx] = a[idx] + b;
}</pre>
```

void main(){

```
float*a=malloc(N*sizeof(float));
// initialisation de a
incr cpu(a, b, N);
```

GPU code

```
_global__ void incr_gpu(float *a, float b, int N){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx < N) a[idx] = a[idx] + b;
```

```
void main(){
```

}

}

```
float *a=malloc(N*sizeof(float));
```

```
// initialisation de a
```

```
float *d_a = NULL ;
```

```
cudaMalloc( (void**)&d_a, N*sizeof(float) );
```

```
cudaMemcpy(d_a, a,N*sizeof(float),
```

cudaMemcpyHostToDevice) ;

}

Synchronization from host

- Kernels are asynchronous
 - Kernel calls return immediately
 - Kernels run after all previous ones have run
- cudaMemcpy() is synchronous
 - Call returns after the copy is made
 - Copying starts after all previous CUDA calls have been executed
- cudaThreadSynchronize()
 - Blocks until all previous CUDA calls have fully executed

Synchronization on GPU

void __syncthreads();

• Synchronizes all threads of a block

Atomic operations

- atomicAdd()
- atomicSub()
- atomicMin()
- atomicMax()
- atomicInc()
- atomicDec()
- atomicExch()
- atomicCAS()
- atomicAnd()
- atomicOr()
- atomicXor()

Device code

- Meta-compiler nvcc
 - CPU and GPU codes
- Binary containing CUDA code requires
 - CUDA core library (cuda)
 - CUDA runtime library (cudart) sif needed

Runtime Error Management

- All CUDA calls, except kernels, return an error code
 - cudaError_t type
- cudaError_t cudaGetLastError(void)
 - Returns the error code of the last call made to CUDA
 - Useful for asynchronous calls

- char* cudaGetErrorString(cudaError_t code)
 - Returns a string describing the error
 - printf ("%s\n", cudaGetErrorString(cudaGetLastError ()));

Time measurement

• API CUDA event

```
cudaEvent_t start, stop;
float milliseconds = 0.0;
cudaEventCreate(&start); cudaEventCreate(&stop);
...
cudaEventRecord(start);
saxpy <<<(N+255) /256, 256>>>(N, 2.0 f, d_x,d_y);
cudaEventRecord(stop);
cudaEventRecord(stop);// Guarantees that the event has been executed
cudaEventElapsedTime(&milliseconds, start, stop)
```

- If another timer is used (e.g. clock_gettime)
 - cudaDeviceSynchronize to wait for the end of the kernel

Let's go to practise now !

