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GPU
● Graphics Processor Unit
● Co-processor located on a pci-express slot
● Architecture many-core with its own memory space

● Initially, static graphics pipeline
● Designed for 3D computation required by image synthesis 
● Driven by the video game market
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GPU
● Graphics Processor Unit
● Co-processor located on a pci-express slot
● Architecture many-core with its own memory space

● Initially, static graphics pipeline
● Designed for 3D computation required by image synthesis 
● Driven by the video game market

● Early 2000s, GPGPU (General Processing GPU)

● Opening of the architecture
● More general computation types  
● A lot of application domains : image processing, numerical simulations, linear 

algebra, deep learning, etc.  
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Result

GPU
• Architecture SIMD

– Single Instruction / Multiple Data
– Data parallelism
– Ideal for intensive massively parallel 

computation 

• Hundreds of cores
• Cores with limited capabilities  

– No dynamic memory allocation 
– No heap  > no recursion

• Memory hierarchy 
– NUMA effects

SISD

SIMD

Data
Instructions
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CPU vs GPU 
● CPU

● Architecture to minimize latency
– Demanding operations, e.g. keyboard events
– Relying on caches
– Dedicated circuits for out-of-cache operations

● e.g. pre-fetch, out-of-order execution 

● GPU
● High latency and high bandwidth processors

– No need for a large cache
➔ Transistors dedicated to data processing 

rather than cache management
➔ Chip of the same size but with much more ALU

● Latency 
● Delay between the initialization of an operation 

and when its effects are detectable
● A car has a lower latency than a bus.

● Bandwidth
● Amount of work achieved over a given period of time
● A bus has a higher bandwidth than a car.
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CPU vs GPU
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Concurrent GPUs
● GeForce/Quadro/Tesla NVIDIA cards

● Micro-architectures : Fermi, Kepler, Maxwell, Pascal, Volta, 
Turing, Ampere 

● Calculation-oriented programming : CUDA

● AMD Radeon cards
● Including ATI's Stream Computing architectures
● OpenCL : standardization of GPU programming

● Graphic programming : OpenGL, Vulkan, Direct3D, DirectX
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Turing Architecture (2018)
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Blackwell Architecture (2024)
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Tensor cores
● Specialized cores

● 4x4 matrix cores
● Ultra fast for operations on very small matrixes

– 1 matrix multiply-accumulate operation per 1 GPU clock
● Particularly adapted to the demands of deep learning
● https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
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Description
● Compute Unified Device Architecture
● Hardware and software architecture of NVidia GPUs
● Programmable in C, C++, Fortran, Python
● Exploits directly the unified architecture (G80 and +)
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Principle
● From a host program running on a CPU,

● Launching a computing kernel on the GPU device that 
– Executes the same calculation 

●  Thanks to many very light threads
– On different data loaded in the GPU memory

● Since Fermi, several kernels can be launched in parallel
● Since Kepler, launching kernels from a kernel
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Programming model
● Kernel executed by a grid of 

thread blocks
● 3D Grid 
● 3D blocks  

● In a block, the threads
● Cooperate via shared memory
● Are scheduled by warp

– Warp = 32 threads
● Threads of a warp are 

synchronous

● No inter-block cooperation 
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Multi-dimensional identifiers
● Each thread accesses a different part of the data

● Complies with the data structure
● Thread indexing information

● threadIdx.x, .y, .z : thread index within the block
● blockIdx.x, .y, .z : block index within the grid

● Information about the grid at runtime
● blockDim.x, .y, .z 
● GridDim.x, .y, .z  Grid

0

0 1 2 3 4

1 

0 1 2 3 4threadIdx.x

blockIdx.x

blockDim.x = 5

0 1 2 3 4 5 6 7 8 9
blockIdx.x*blockDim.x  + threadIdx.x
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GPU Memory Architecture
CPU and GPU memory spaces physically separated 

● Explicit transferts between the two spaces
● Two entry points on the GPU

● Global and constant memories
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GPU memory hierarchy
 

● On GPU, 4 levels of memory      [+ texture memory] 
A) Global memory  [__device__ ]
B) Constant memory  [ __device__ ] __constant__
C) Shared memory  [ __device__ ] __shared__
D) Registers

Grid
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Shared Memory

Thread

Global Memory

Thread
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Thread Thread

Constant Memory
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A) Global Memory
● Large, high latency, no cache

● Data 
● Accessible by all the threads of the grid
● Lifespan : as required by the application

● From host, 
● Allocation/Free + copies in both ways

● Static declaration from the GPU with keyword __device__



5

Global memory management 
● Allocation : cudaMalloc(void ** pointer, size_t nbytes)
● Desallocation : cudaFree(void* p)
● Cleaning : cudaMemset(void * p, int val, size_t nbytes)
● Copy of the data from host :

cudaMemcpy(void *dst, void *src,  
                        size_t nbytes, 
                        enum cudaMemcpyKind direction);

with enum cudaMemcpyKind 
         ={cudaMemcpyHostToDevice,
             cudaMemcpyDeviceToHost,
             cudaMemcpyDeviceToDevice}   
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Global Memory coalescing
● Multiple memory accesses 

into a single transaction

● Uncoalesced load, 
ie serialized memory access, 
when memory accesses

● are not sequential 
● are sparse
● are misaligned 
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B) Constant Memory
● For data that will not change over a kernel execution
● Read-only, pretty small memory, slow, cached

● The first read from constant memory costs one memory read from 
global memory ; after, costs one read from the constant cache

● Cache for each multiprocessor very small

→ Optimized when warp of threads read same location

● Data accessible by all the threads of the grid
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Constant memory management 
● Declaration :  __constant__ float buffer [size];

●  Copy of the data from the host :
cudaError_t cudaMemcpytoSymbol  

(const char * symbol, 
 const void * src, size_t count , 
 size_t offset=0, 
 enum cudaMemcpyKind )

with enum cudaMemcpyKind 
         ={cudaMemcpyHostToDevice,
             cudaMemcpyDeviceToHost,
             cudaMemcpyDeviceToDevice}   
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C) Shared Memory

● Keyword __shared__
● Separate space with very low latency

● Data
● Accessible by all threads of the same block
● Lifetime: kernel run

● Static allocation
● From the GPU device
● Static size given 

at compile time (case a) 
or at the kernel launch (case b)

// case a
__global__void myKernel(){

__shared__int shared[32];
       ...
}

// case b
__global__void myKernel(){

extern __shared__int s[];
       ...
}
int main() {
int size= numThreadsPerBlock* sizeof(int);
myKernel<<< dimGrid, dimBlock, size>>>();}
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Shared memory management 

● All operations on the device within a same kernel

● Static allocation from device : __shared__ int tab[4] ;

● Classic explicit initialization/modification in kernel
for (int i = 0 ; i< 4 ; i++) tab[i]=i ;
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D) Registers
● Fast, only for one thread

● For local kernel variables 
● Allocation of scalar variables in registers
● Allocation of arrays of more than 4 elements in the 

global memory

● No specific keyword 
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CUDA Kernel
● __global__ void my_kernel(parameters){...}

● A kernel is a C function with some features :
● Identified using the keyword __global__
● Invoked by the CPU and runs on the GPU
● Only accesses GPU memory
● Void return
● No variable number of arguments
● No recursion
● No static variable
● Kernel arguments are passed by copy
● Flow instructions (if, while, for, switch, do)

– Branch serialization within warp → performance loss
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Kernel Invocation 
● my_kernel <<<dim3 Grid,dim3 Block>>>(parameters)

● Maximum number of threads per block : 
1024 to be distributed over the 3 dimensions

● Maximum grid size : 2^31-1 x 65535 x 65535
➔ Information related to the specification of the GPU used 

● Predefined variables set by invocation 
● dim3 gridDim : grid dimensions  
● dim3 blockDim : block dimensions 

● dim3 blockIdx : block index in the grid
● dim3 threadIdx : thread index in the block
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Example : Array incremention

CPU code GPU code
void incr_cpu(float *a,  float b, int N){

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main(){
.....
incr_cpu(a, b, N);

}

__global__ void incr_gpu(float *a, float b, int N){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx < N)
    a[idx] = a[idx] + b;

}

void main(){
…
dim3 dimBlock (blocksize);
dim3 dimGrid( ceil( N / (float)blocksize) );
incr_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}
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Data management (1/3)
 

● CPU and GPU have physically separate memory spaces
● Different GPU memories seen in an upcoming course

● Data must be in GPU global memory to be processed
● From host,

● allocation/free and copy of data
● From device,

● Static declaration with keyword __device__
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Data management (2/3)
● Allocation : cudaMalloc(void ** pointer, size_t nbytes)
● Desallocation : cudaFree(void* p)
● Cleaning : cudaMemset(void * p, int val, size_t nbytes)   

// Allocation of an array of n integers 
int n = 1024;
int nbytes = n*sizeof(int);
int *d_tab = NULL;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
...

     cudaFree(d_a);
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Data management (3/3)
● Copy of the data from host :

cudaMemcpy(void *dst, void *src,  
                        size_t nbytes, 
                        enum cudaMemcpyKind direction);

with enum cudaMemcpyKind 
         ={cudaMemcpyHostToDevice,
             cudaMemcpyDeviceToHost,
             cudaMemcpyDeviceToDevice}

● Copies after previous CUDA calls are completed
● Blocks the master thread for copy time
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Example : Array incremention
CPU code GPU code

void incr_cpu(float *a,  float b, int N){
  for (int idx = 0; idx<N; idx++)
     a[idx] = a[idx] + b;
}

void main(){
  …
  float*a=malloc(N*sizeof(float)) ;
  // initialisation de a
  incr_cpu(a, b, N);
}

__global__ void incr_gpu(float *a, float b, int N){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx < N)    a[idx] = a[idx] + b;

}
void main(){
  …
  float *a=malloc(N*sizeof(float)) ;
  // initialisation de a
  float *d_a = NULL ;
  cudaMalloc( (void**)&d_a, N*sizeof(float) );
  cudaMemcpy(d_a, a,N*sizeof(float),
                          cudaMemcpyHostToDevice) ; 
   ...
  dim3 dimBlock (blocksize);
  dim3 dimGrid( ceil( N / (float)blocksize) );
  incr_gpu<<<dimGrid, dimBlock>>>(d_a, b, N);
  cudaMemcpy(a, d_a, N*sizeof(float),         

cudaMemcpyDeviceToHost) ; 
}
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Synchronization from host
● Kernels are asynchronous

● Kernel calls return immediately
● Kernels run after all previous ones have run

● cudaMemcpy() is synchronous
● Call returns after the copy is made
● Copying starts after all previous CUDA calls have been 

executed

● cudaThreadSynchronize()
● Blocks until all previous CUDA calls have fully executed
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Synchronization on GPU
● void __syncthreads();

● Synchronizes all threads of a block

● Atomic operations 
● atomicAdd()
● atomicSub()
● atomicMin()
● atomicMax()

● atomicInc()
● atomicDec()
● atomicExch()
● atomicCAS()

● atomicAnd()
● atomicOr()
● atomicXor()
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Compilation 
CUDA C/C++ 
Application

NVCC CPU code

PTX code

Specific   
PTX compiler 

G80 GT200 GPU…

Device code

● Meta-compiler nvcc
● CPU and GPU codes

● Binary containing CUDA 
code requires

● CUDA core library (cuda)
● CUDA runtime library (cudart) 

sif needed
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Runtime Error Management
● All CUDA calls, except kernels, return an error code

● cudaError_t type

● cudaError_t cudaGetLastError(void)
● Returns the error code of the last call made to CUDA
● Useful for asynchronous calls 

● char* cudaGetErrorString(cudaError_t code)
● Returns a string describing the error
● printf ("%s\n”, cudaGetErrorString(cudaGetLastError ()));
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Time measurement
● API CUDA event 

● If another timer is used (e.g. clock_gettime)
● cudaDeviceSynchronize to wait for the end of the kernel

cudaEvent_t  start,  stop ;

float milliseconds = 0.0;

cudaEventCreate(&start ) ; cudaEventCreate(&stop ) ;

. . .

cudaEventRecord(start) ;

saxpy <<<(N+255) /256 , 256>>>(N,  2.0 f ,  d_x ,d_y) ;

cudaEventRecord(stop) ;

cudaEventSynchronize(stop) ; // Guarantees that the event has been executed

cudaEventElapsedTime(&milliseconds, start, stop) ;
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Let's go to practise now !


