
Institut Mines-Télécom

Introduction to GPU architecture

Elisabeth Brunet

2

Plan

● Introduction
● GPU Architecture
● CUDA Architecture
● CUDA Programming

GPU ARCHITECTURE

3

4

GPU
● Graphics Processor Unit
● Co-processor located on a pci-express slot
● Architecture many-core with its own memory space

● Initially, static graphics pipeline
● Designed for 3D computation required by image synthesis
● Driven by the video game market

5

Graphics Pipeline
CPU

Vertex
Shading

Rasterization

Fragment
Shading

Framebuffer

Object space

Image space

GPU

Mémoire
Texture

6

GPU
● Graphics Processor Unit
● Co-processor located on a pci-express slot
● Architecture many-core with its own memory space

● Initially, static graphics pipeline
● Designed for 3D computation required by image synthesis
● Driven by the video game market

● Early 2000s, GPGPU (General Processing GPU)

● Opening of the architecture
● More general computation types
● A lot of application domains : image processing, numerical simulations, linear

algebra, deep learning, etc.

7

Result

GPU
• Architecture SIMD

– Single Instruction / Multiple Data
– Data parallelism
– Ideal for intensive massively parallel

computation

• Hundreds of cores
• Cores with limited capabilities

– No dynamic memory allocation
– No heap > no recursion

• Memory hierarchy
– NUMA effects

SISD

SIMD

Data
Instructions

8

CPU vs GPU
● CPU

● Architecture to minimize latency
– Demanding operations, e.g. keyboard events
– Relying on caches
– Dedicated circuits for out-of-cache operations

● e.g. pre-fetch, out-of-order execution

● GPU
● High latency and high bandwidth processors

– No need for a large cache
➔ Transistors dedicated to data processing

rather than cache management
➔ Chip of the same size but with much more ALU

● Latency
● Delay between the initialization of an operation

and when its effects are detectable
● A car has a lower latency than a bus.

● Bandwidth
● Amount of work achieved over a given period of time
● A bus has a higher bandwidth than a car.

9

CPU vs GPU

1
0

CPU vs GPU

1
1

Concurrent GPUs
● GeForce/Quadro/Tesla NVIDIA cards

● Micro-architectures : Fermi, Kepler, Maxwell, Pascal, Volta,
Turing, Ampere

● Calculation-oriented programming : CUDA

● AMD Radeon cards
● Including ATI's Stream Computing architectures
● OpenCL : standardization of GPU programming

● Graphic programming : OpenGL, Vulkan, Direct3D, DirectX

1

Turing Architecture (2018)

2

Blackwell Architecture (2024)

1
3

Tensor cores
● Specialized cores

● 4x4 matrix cores
● Ultra fast for operations on very small matrixes

– 1 matrix multiply-accumulate operation per 1 GPU clock
● Particularly adapted to the demands of deep learning
● https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

CUDA ARCHITECTURE

14

1
5

Description
● Compute Unified Device Architecture
● Hardware and software architecture of NVidia GPUs
● Programmable in C, C++, Fortran, Python
● Exploits directly the unified architecture (G80 and +)

1
6

Principle
● From a host program running on a CPU,

● Launching a computing kernel on the GPU device that
– Executes the same calculation

● Thanks to many very light threads
– On different data loaded in the GPU memory

● Since Fermi, several kernels can be launched in parallel
● Since Kepler, launching kernels from a kernel

1
7

Programming model
● Kernel executed by a grid of

thread blocks
● 3D Grid
● 3D blocks

● In a block, the threads
● Cooperate via shared memory
● Are scheduled by warp

– Warp = 32 threads
● Threads of a warp are

synchronous

● No inter-block cooperation

Grid 2

Grid 1
Block
 (0,0)

Block
 (1,0)

Block
 (2,0)

Block
 (0,1)

Block
 (1,1)

Block
 (2,1)

Device

Block (1,1)
Thread
 (0,0)

Thread
 (1,0)

Thread
 (2,0)

Thread
 (3,0)

Thread
 (0,1)

Thread
 (1,1)

Thread
 (2,1)

Thread
 (3,1)

Thread
 (0,2)

Thread
 (1,2)

Thread
 (2,2)

Thread
 (3,2)

Host

Kernel
1

Kernel
2

17

1
8

Multi-dimensional identifiers
● Each thread accesses a different part of the data

● Complies with the data structure
● Thread indexing information

● threadIdx.x, .y, .z : thread index within the block
● blockIdx.x, .y, .z : block index within the grid

● Information about the grid at runtime
● blockDim.x, .y, .z
● GridDim.x, .y, .z Grid

0

0 1 2 3 4

1

0 1 2 3 4threadIdx.x

blockIdx.x

blockDim.x = 5

0 1 2 3 4 5 6 7 8 9
blockIdx.x*blockDim.x + threadIdx.x

1
9

Memory

Grid
Block

Shared Memory

Registers

Thread

Global MemoryHost

Registers

Thread

Block
Shared Memory

Registers

Thread

Registers

Thread

Constant Memory

2

GPU Memory Architecture
CPU and GPU memory spaces physically separated

● Explicit transferts between the two spaces
● Two entry points on the GPU

● Global and constant memories

Grid
Block

Shared Memory

Thread

Global Memory

Thread

Block
Shared Memory

Thread Thread

Constant Memory

Registers

Host

3

GPU memory hierarchy

● On GPU, 4 levels of memory [+ texture memory]
A) Global memory [__device__]
B) Constant memory [__device__] __constant__
C) Shared memory [__device__] __shared__
D) Registers

Grid
Block

Shared Memory

Thread

Global Memory

Thread

Block
Shared Memory

Thread Thread

Constant Memory

Registers

Host

4

A) Global Memory
● Large, high latency, no cache

● Data
● Accessible by all the threads of the grid
● Lifespan : as required by the application

● From host,
● Allocation/Free + copies in both ways

● Static declaration from the GPU with keyword __device__

5

Global memory management
● Allocation : cudaMalloc(void ** pointer, size_t nbytes)
● Desallocation : cudaFree(void* p)
● Cleaning : cudaMemset(void * p, int val, size_t nbytes)
● Copy of the data from host :

cudaMemcpy(void *dst, void *src,
 size_t nbytes,
 enum cudaMemcpyKind direction);

with enum cudaMemcpyKind
 ={cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost,
 cudaMemcpyDeviceToDevice}

6

Global Memory coalescing
● Multiple memory accesses

into a single transaction

● Uncoalesced load,
ie serialized memory access,
when memory accesses

● are not sequential
● are sparse
● are misaligned

7

B) Constant Memory
● For data that will not change over a kernel execution
● Read-only, pretty small memory, slow, cached

● The first read from constant memory costs one memory read from
global memory ; after, costs one read from the constant cache

● Cache for each multiprocessor very small

→ Optimized when warp of threads read same location

● Data accessible by all the threads of the grid

8

Constant memory management
● Declaration : __constant__ float buffer [size];

● Copy of the data from the host :
cudaError_t cudaMemcpytoSymbol

(const char * symbol,
 const void * src, size_t count ,
 size_t offset=0,
 enum cudaMemcpyKind)

with enum cudaMemcpyKind
 ={cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost,
 cudaMemcpyDeviceToDevice}

9

C) Shared Memory

● Keyword __shared__
● Separate space with very low latency

● Data
● Accessible by all threads of the same block
● Lifetime: kernel run

● Static allocation
● From the GPU device
● Static size given

at compile time (case a)
or at the kernel launch (case b)

// case a
__global__void myKernel(){

__shared__int shared[32];
 ...
}

// case b
__global__void myKernel(){

extern __shared__int s[];
 ...
}
int main() {
int size= numThreadsPerBlock* sizeof(int);
myKernel<<< dimGrid, dimBlock, size>>>();}

1
0

Shared memory management

● All operations on the device within a same kernel

● Static allocation from device : __shared__ int tab[4] ;

● Classic explicit initialization/modification in kernel
for (int i = 0 ; i< 4 ; i++) tab[i]=i ;

1
5

D) Registers
● Fast, only for one thread

● For local kernel variables
● Allocation of scalar variables in registers
● Allocation of arrays of more than 4 elements in the

global memory

● No specific keyword

CUDA C PROGRAMMING

20

2
2

CUDA Kernel
● __global__ void my_kernel(parameters){...}

● A kernel is a C function with some features :
● Identified using the keyword __global__
● Invoked by the CPU and runs on the GPU
● Only accesses GPU memory
● Void return
● No variable number of arguments
● No recursion
● No static variable
● Kernel arguments are passed by copy
● Flow instructions (if, while, for, switch, do)

– Branch serialization within warp → performance loss

2
3

Kernel Invocation
● my_kernel <<<dim3 Grid,dim3 Block>>>(parameters)

● Maximum number of threads per block :
1024 to be distributed over the 3 dimensions

● Maximum grid size : 2^31-1 x 65535 x 65535
➔ Information related to the specification of the GPU used

● Predefined variables set by invocation
● dim3 gridDim : grid dimensions
● dim3 blockDim : block dimensions

● dim3 blockIdx : block index in the grid
● dim3 threadIdx : thread index in the block

2
4

Example : Array incremention

CPU code GPU code
void incr_cpu(float *a, float b, int N){

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main(){
.....
incr_cpu(a, b, N);

}

__global__ void incr_gpu(float *a, float b, int N){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx < N)
 a[idx] = a[idx] + b;

}

void main(){
…
dim3 dimBlock (blocksize);
dim3 dimGrid(ceil(N / (float)blocksize));
incr_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}

2
6

Data management (1/3)

● CPU and GPU have physically separate memory spaces
● Different GPU memories seen in an upcoming course

● Data must be in GPU global memory to be processed
● From host,

● allocation/free and copy of data
● From device,

● Static declaration with keyword __device__

2
7

Data management (2/3)
● Allocation : cudaMalloc(void ** pointer, size_t nbytes)
● Desallocation : cudaFree(void* p)
● Cleaning : cudaMemset(void * p, int val, size_t nbytes)

// Allocation of an array of n integers
int n = 1024;
int nbytes = n*sizeof(int);
int *d_tab = NULL;
cudaMalloc((void**)&d_a, nbytes);
cudaMemset(d_a, 0, nbytes);
...

 cudaFree(d_a);

2
8

Data management (3/3)
● Copy of the data from host :

cudaMemcpy(void *dst, void *src,
 size_t nbytes,
 enum cudaMemcpyKind direction);

with enum cudaMemcpyKind
 ={cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost,
 cudaMemcpyDeviceToDevice}

● Copies after previous CUDA calls are completed
● Blocks the master thread for copy time

2
9

Example : Array incremention
CPU code GPU code

void incr_cpu(float *a, float b, int N){
 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b;
}

void main(){
 …
 float*a=malloc(N*sizeof(float)) ;
 // initialisation de a
 incr_cpu(a, b, N);
}

__global__ void incr_gpu(float *a, float b, int N){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx < N) a[idx] = a[idx] + b;

}
void main(){
 …
 float *a=malloc(N*sizeof(float)) ;
 // initialisation de a
 float *d_a = NULL ;
 cudaMalloc((void**)&d_a, N*sizeof(float));
 cudaMemcpy(d_a, a,N*sizeof(float),
 cudaMemcpyHostToDevice) ;
 ...
 dim3 dimBlock (blocksize);
 dim3 dimGrid(ceil(N / (float)blocksize));
 incr_gpu<<<dimGrid, dimBlock>>>(d_a, b, N);
 cudaMemcpy(a, d_a, N*sizeof(float),

cudaMemcpyDeviceToHost) ;
}

3
0

Synchronization from host
● Kernels are asynchronous

● Kernel calls return immediately
● Kernels run after all previous ones have run

● cudaMemcpy() is synchronous
● Call returns after the copy is made
● Copying starts after all previous CUDA calls have been

executed

● cudaThreadSynchronize()
● Blocks until all previous CUDA calls have fully executed

3
1

Synchronization on GPU
● void __syncthreads();

● Synchronizes all threads of a block

● Atomic operations
● atomicAdd()
● atomicSub()
● atomicMin()
● atomicMax()

● atomicInc()
● atomicDec()
● atomicExch()
● atomicCAS()

● atomicAnd()
● atomicOr()
● atomicXor()

3
3

Compilation
CUDA C/C++
Application

NVCC CPU code

PTX code

Specific
PTX compiler

G80 GT200 GPU…

Device code

● Meta-compiler nvcc
● CPU and GPU codes

● Binary containing CUDA
code requires

● CUDA core library (cuda)
● CUDA runtime library (cudart)

sif needed

3
4

Runtime Error Management
● All CUDA calls, except kernels, return an error code

● cudaError_t type

● cudaError_t cudaGetLastError(void)
● Returns the error code of the last call made to CUDA
● Useful for asynchronous calls

● char* cudaGetErrorString(cudaError_t code)
● Returns a string describing the error
● printf ("%s\n”, cudaGetErrorString(cudaGetLastError ()));

3
5

Time measurement
● API CUDA event

● If another timer is used (e.g. clock_gettime)
● cudaDeviceSynchronize to wait for the end of the kernel

cudaEvent_t start, stop ;

float milliseconds = 0.0;

cudaEventCreate(&start) ; cudaEventCreate(&stop) ;

. . .

cudaEventRecord(start) ;

saxpy <<<(N+255) /256 , 256>>>(N, 2.0 f , d_x ,d_y) ;

cudaEventRecord(stop) ;

cudaEventSynchronize(stop) ; // Guarantees that the event has been executed

cudaEventElapsedTime(&milliseconds, start, stop) ;

3
6

Let's go to practise now !

